This guide explains how to use DECamds software to detect and fix system availability problems. It also explains how to install DECamds.

Operating System and Version: Data Analyzer: OpenVMS Alpha and VAX Version 7.2 or later
Data Provider: OpenVMS Alpha and VAX Version 6.2 or later

Software Version: Compaq DECamds Version 7.3

Compaq Computer Corporation
Houston, Texas
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>1 Overview of DECamds</td>
<td></td>
</tr>
<tr>
<td>1.1 How Does DECamds Work?</td>
<td>1–2</td>
</tr>
<tr>
<td>1.2 Where to Install the DECamds Data Analyzer</td>
<td>1–3</td>
</tr>
<tr>
<td>1.3 DECamds Security Features</td>
<td>1–3</td>
</tr>
<tr>
<td>1.3.1 Understanding DECamds Security Files</td>
<td>1–5</td>
</tr>
<tr>
<td>1.3.2 Customizing Security Files</td>
<td>1–7</td>
</tr>
<tr>
<td>1.3.2.1 Setting Up Node Groups</td>
<td>1–8</td>
</tr>
<tr>
<td>1.3.2.2 Defining Data Exchange Access Between Nodes</td>
<td>1–8</td>
</tr>
<tr>
<td>1.3.2.3 Limiting Specific Users to Read Access</td>
<td>1–9</td>
</tr>
<tr>
<td>1.3.3 Sending Messages to OPCOM</td>
<td>1–9</td>
</tr>
<tr>
<td>1.3.4 Setting Broadcast Intervals for Node Availability Messages</td>
<td>1–10</td>
</tr>
<tr>
<td>2 Getting Started</td>
<td></td>
</tr>
<tr>
<td>2.1 Starting DECamds</td>
<td>2–1</td>
</tr>
<tr>
<td>2.2 Using the System Overview Window</td>
<td>2–2</td>
</tr>
<tr>
<td>2.2.1 Expanding and Collapsing Group Information</td>
<td>2–5</td>
</tr>
<tr>
<td>2.2.2 Displaying Additional Data</td>
<td>2–5</td>
</tr>
<tr>
<td>2.2.3 Stopping Data Collection</td>
<td>2–6</td>
</tr>
<tr>
<td>2.3 Using the Event Log Window</td>
<td>2–7</td>
</tr>
<tr>
<td>2.3.1 Displaying Information About an Event Log Entry</td>
<td>2–9</td>
</tr>
<tr>
<td>2.3.2 Performing Corrective Action on an Event Log Entry</td>
<td>2–9</td>
</tr>
<tr>
<td>2.3.3 Sending Event Information to OPCOM</td>
<td>2–10</td>
</tr>
<tr>
<td>2.3.4 Removing an Event from the Event Log Window</td>
<td>2–10</td>
</tr>
<tr>
<td>2.3.5 Retaining and Releasing an Event in the Event Log Window</td>
<td>2–10</td>
</tr>
<tr>
<td>3 Managing DECamds Data Windows</td>
<td></td>
</tr>
<tr>
<td>3.1 Disk Status Summary Window</td>
<td>3–2</td>
</tr>
<tr>
<td>3.2 Volume Summary Window</td>
<td>3–5</td>
</tr>
<tr>
<td>3.3 Single Disk Summary Window</td>
<td>3–6</td>
</tr>
<tr>
<td>3.4 Page/Swap File Summary Window</td>
<td>3–8</td>
</tr>
<tr>
<td>3.5 Node Summary Window</td>
<td>3–10</td>
</tr>
<tr>
<td>3.6 Process I/O Summary Window</td>
<td>3–12</td>
</tr>
<tr>
<td>3.7 CPU Modes Summary Window</td>
<td>3–14</td>
</tr>
<tr>
<td>3.8 CPU Summary Window</td>
<td>3–15</td>
</tr>
<tr>
<td>3.9 Memory Summary Window</td>
<td>3–17</td>
</tr>
<tr>
<td>3.10 Single Process Summary Window</td>
<td>3–19</td>
</tr>
<tr>
<td>3.11 Lock Contention Summary Window</td>
<td>3–25</td>
</tr>
<tr>
<td>3.12 Single Lock Summary Window</td>
<td>3–28</td>
</tr>
<tr>
<td>3.13 Cluster Transition/Overview Summary Window</td>
<td>3–30</td>
</tr>
</tbody>
</table>
4 Performing Fixes

4.1 Understanding Fixes .. 4–1
4.2 Performing Fixes .. 4–2
 4.2.1 Adjust Quorum Fix 4–4
 4.2.2 Adjust Process Quota Limit 4–5
 4.2.3 Adjust Working Set Fix 4–6
 4.2.4 Change Process Priority Fix............................ 4–6
 4.2.5 Crash Node Fix .. 4–7
 4.2.6 Exit Image and Delete Process Fixes 4–8
 4.2.7 Purge Working Set Fix 4–9
 4.2.8 Suspend Process and Resume Process Fixes 4–9
4.3 Examples for Fixing Low Memory Availability 4–10
 4.3.1 Performing a Fix Using Automatic Fix Settings 4–10
 4.3.2 Performing a Fix Using Manual Investigation 4–11

5 Customizing DECamd

5.1 Customizing DECamd Defaults 5–1
 5.1.1 Setting Default Data Collection 5–3
 5.1.2 Setting Automatic Event Investigation 5–4
 5.1.3 Setting Automatic Lock Investigation 5–4
 5.2 Filtering Data ... 5–4
 5.2.1 Filtering Events 5–6
 5.2.2 Customizing Events 5–8
 5.3 Sorting Data .. 5–14
 5.4 Setting Collection Intervals 5–16
 5.5 Optimizing Performance with System Settings 5–18
 5.5.1 Optimizing DECamd Software 5–18
 5.5.1.1 Setting Process Quotas 5–19
 5.5.1.2 Setting LAN Load 5–19
 5.5.1.3 Setting Window Customizations 5–20
 5.5.2 Optimizing System Settings 5–20
 5.5.2.1 Setting Data Link Read Operations 5–20
 5.5.2.2 Setting the Communications Buffer 5–20
 5.5.3 Optimizing Performance with Hardware 5–21

A Installing the DECamd Data Analyzer

A.1 General Installation Information A–1
A.2 Data Analyzer Installation Requirements A–2
A.3 Obtaining the Data Analyzer Software A–4
A.4 Installing Data Analyzer Software from a PCSI Kit A–4
A.5 Postinstallation Tasks on Data Provider Nodes A–7
 A.5.1 Starting, Stopping, and Reloading DECamd A–8
A.6 Postinstallation Tasks on a Data Analyzer Node A–8
Tables

1–1 Security Triplet Format .. 1–5
1–2 Security Triplet Verification 1–7
1–3 DECamds Logical Names for OPCOM Messages 1–9
1–4 Broadcast Availability Logical Names 1–10
2–1 System Overview Window Display Fields 2–4
2–2 Event Log Window Display Fields 2–7
3–1 DECamds Data Windows .. 3–1
3–2 Disk Status Summary Window Data Fields 3–3
3–3 Volume Summary Window Data Fields 3–6
3–4 Single Disk Summary Window Data Fields 3–8
3–5 Page/Swap File Summary Window Data Fields 3–9
3–6 Node Summary Window Data Fields 3–11
3–7 Process I/O Summary Window Data Fields 3–13
3–8 CPU Modes Summary Window Data Fields 3–15
3–9 CPU Summary Window Data Fields 3–16
3–10 Memory Summary Window Data Fields 3–18
3–12 Lock Contention Summary Window Data Fields 3–26
3–13 Single Lock Summary Window Data Fields 3–29
3–14 Data Items in the Summary Panel of the Cluster Transition/Overview Summary Window 3–32
3–15 Data Items in the Cluster Members Panel of the Cluster Transition/Overview Summary Window 3–32
3–16 Data Items in the SCA Summary Window 3–35
3–17 Data Items in the Transmit Panel 3–38
3–18 Data Items in the Receive Panel 3–38
<table>
<thead>
<tr>
<th>Page</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–19</td>
<td>Data Items in the Congestion Control Panel</td>
<td>3–39</td>
</tr>
<tr>
<td>3–20</td>
<td>Data Items in the Channel Selection Panel</td>
<td>3–39</td>
</tr>
<tr>
<td>3–21</td>
<td>Data Items in the VC Closures Panel</td>
<td>3–40</td>
</tr>
<tr>
<td>3–22</td>
<td>Data Items in the Packets Discarded Panel</td>
<td>3–40</td>
</tr>
<tr>
<td>4–1</td>
<td>Summary of DECamds Fixes</td>
<td>4–3</td>
</tr>
<tr>
<td>5–1</td>
<td>DECamds Application Defaults</td>
<td>5–3</td>
</tr>
<tr>
<td>5–2</td>
<td>Event Log Filters</td>
<td>5–6</td>
</tr>
<tr>
<td>5–3</td>
<td>CPU, I/O, and Memory Class Definitions</td>
<td>5–12</td>
</tr>
<tr>
<td>5–4</td>
<td>Memory Summary Collection Interval Fields</td>
<td>5–17</td>
</tr>
<tr>
<td>5–5</td>
<td>Default Window Collection Intervals</td>
<td>5–17</td>
</tr>
<tr>
<td>5–6</td>
<td>LAN Load</td>
<td>5–19</td>
</tr>
<tr>
<td>5–7</td>
<td>Monitoring Nodes</td>
<td>5–21</td>
</tr>
<tr>
<td>A–1</td>
<td>Recommended System Requirements</td>
<td>A–2</td>
</tr>
<tr>
<td>B–1</td>
<td>Files on the Data Analyzer Node</td>
<td>B–1</td>
</tr>
<tr>
<td>B–2</td>
<td>Logical Names Defined for the Data Analyzer</td>
<td>B–2</td>
</tr>
<tr>
<td>B–3</td>
<td>Files on Nodes Running the Data Provider</td>
<td>B–3</td>
</tr>
<tr>
<td>B–4</td>
<td>Logical Names Defined on Nodes Running the Data Provider</td>
<td>B–3</td>
</tr>
</tbody>
</table>
Preface

Intended Audience

This guide is intended for system managers who install and use Compaq DECamds software.

Document Structure

This guide contains the following chapters and appendixes:

- Chapter 1 describes an overview of DECamds software, where to install DECamds, security features, and customizing security files.
- Chapter 2 describes how to start DECamds and use online help. It also describes the System Overview window and the Event Log window.
- Chapter 3 describes how to use the DECamds data windows.
- Chapter 4 describes how to take corrective actions, called fixes, to improve system availability.
- Chapter 5 describes the tasks you can perform to filter, sort, and customize the display of system data using DECamds. It also describes how some of these tasks can optimize the performance of DECamds.
- Appendix A contains instructions for installing DECamds.
- Appendix B contains a description of all files and logical names created when DECamds is installed and gives examples of the log files that DECamds writes.
- The Glossary defines DECamds terminology.

Related Documents

The following manuals provide additional information:

- OpenVMS Version 7.3 Release Notes describes features and changes that apply to DECamds software.
- OpenVMS System Manager's Manual describes tasks you perform to manage an OpenVMS system. It also describes installing a product with the POLYCENTER Software Installation utility.
- OpenVMS System Management Utilities Reference Manual describes utilities you use to manage an OpenVMS system.
- OpenVMS Programming Concepts Manual explains OpenVMS lock management concepts.
• POLYCENTER Software Installation Utility User’s Guide describes the features you can request with the PRODUCT INSTALL command when starting an installation.

For additional information about Compaq OpenVMS products and services, access the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments

Compaq welcomes your comments on this manual. Please send comments to either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation

Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call 800-282-6672.

Conventions

The following conventions are used in this guide:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key labeled PF1 and then press and release another key or a pointing device button.

In examples, a key name enclosed in a box indicates that you press a key on the keyboard. (In text, a key name is not enclosed in a box.)

In the HTML version of this document, this convention appears as brackets, rather than a box.

... Horizontal ellipsis points in examples indicate one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.

. . . Vertical ellipsis points indicate the omission of items from a code example or command format; the items are omitted because they are not important to the topic being discussed.
Overview of DECamds

This chapter describes the following:

- Overview of DECamds
- Where to install the DECamds Data Analyzer
- DECamds security features

Compaq DECamds is a real-time monitoring, diagnostic, and correction tool that helps you improve OpenVMS system and OpenVMS Cluster availability. DECamds also helps system programmers/analysts to target a specific node or process for detailed analysis, and system operators and service technicians to determine hardware and software issues.

DECamds simultaneously collects and analyzes system data and process data from multiple nodes and displays the output on a DECwindows Motif display. Based on the analyzed data, DECamds detects events and proposes actions to correct resource availability and system denial issues in real time.

DECamds helps improve OpenVMS system and OpenVMS Cluster availability in the following ways:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>Alerts users to resource availability problems, suggests paths for further investigation, and recommends actions to improve availability.</td>
</tr>
<tr>
<td>Centralized management</td>
<td>Provides centralized management of remote nodes within an extended local area network (LAN).</td>
</tr>
<tr>
<td>Intuitive interface</td>
<td>Provides an easy-to-learn and easy-to-use DECwindows Motif user interface.</td>
</tr>
<tr>
<td>Correction capability</td>
<td>Allows real-time intervention, including adjustment of node and process parameters, even when remote nodes are hung.</td>
</tr>
<tr>
<td>Customization</td>
<td>Adjusts to site-specific requirements through a wide range of customization options.</td>
</tr>
<tr>
<td>Scalability</td>
<td>Makes it easier to monitor multiple OpenVMS systems and OpenVMS Cluster systems over a single site or over multiple sites.</td>
</tr>
</tbody>
</table>
1.1 How Does DECamds Work?

DECamds is a client/server application. It is installed in two parts as follows:

1. The Data Provider gathers system data and transmits it to the Data Analyzer.
2. The Data Analyzer receives data from the Data Provider, analyzes the data, and displays it.

A node that has the DECamds Data Provider installed announces its availability, using a multicast LAN message, to any DECamds Data Analyzer that is installed and running. The Data Analyzer receives the Data Provider’s availability announcement and a communications link is established.

Note

The Data Provider runs at a high interrupt priority level (IPL), so it gathers data and transmits it to the Data Analyzer even if the Data Provider is on a remote node that is hung. However, because of the high IPL collection, the Data Provider cannot collect nonresident memory data, restricting some data collection in process space.

The Data Analyzer portion of DECamds is a DECwindows Motif application that runs on any OpenVMS Version 6.2 or later system. Although you can run the Data Analyzer as a member of a monitored cluster, it is typically run on an OpenVMS system that is not a member of the cluster being monitored. You can have more than one Data Analyzer application executing in a LAN, but only one can be running at a time on each OpenVMS system.

System data is analyzed and translated into meaningful values and rates that are displayed in DECwindows Motif windows. The data is screened for data points that exceed thresholds that might cause system or OpenVMS Cluster availability problems. The Data Analyzer can also implement various system correction options if authorized to do so.

The Data Analyzer and Data Provider nodes communicate over an Extended LAN using an IEEE 802.3 Extended Packet format protocol. Once a secure connection is established, the Data Analyzer instructs the Data Provider to gather specific system and process data.

Figure 1–1 illustrates the interaction of the Data Analyzer and Data Provider on nodes in a cluster.

Nodes A, C, D, E, F, and H can exchange information with the Data Analyzer. Node B has defined its security to exclude the Data Analyzer from accessing its system data. Node G has not installed DECamds and does not communicate with the Data Analyzer.
1.1 How Does DECamds Work?

Figure 1–1 DECamds Processing

1.2 Where to Install the DECamds Data Analyzer

This section discusses where to install the DECamds Data Analyzer software. You can install and run the DECamds Data Analyzer from either a cluster member or a standalone system outside the cluster. However, Compaq recommends that you run the Data Analyzer from outside a cluster because then you can monitor system information even if the nodes in the cluster pause or hang.

Generally, you can install and run the DECamds Data Provider on any OpenVMS Version 6.2 or later system. Appendix A describes the specific system hardware and software requirements for installing and running the DECamds Data Analyzer.

1.3 DECamds Security Features

DECamds has several security features, including the following:

- Private LAN transport
Overview of DECamds
1.3 DECamds Security Features

The DECamds protocol is based on the 802.3 Extended Packet Format (also known as SNAP). The IEEE DECamds protocol values are as follows:

- **Protocol ID**: 08-00-2B-80-48
- **Multicast Address**: 09-00-2B-02-01-09

If you filter protocols for bridges or routers in your network, add these values to your network protocols.

- **DECamds data transfer security**
 Each node running DECamds as a Data Analyzer or a Data Provider has a file containing a list of three-part codes, called security triplets. See Section 1.3.1 for more information about security triplets.
 For Data Analyzer and Data Provider nodes to exchange data, at least one security triplet must match between the files on each system. DECamds Data Provider nodes that have read access allow system data to be viewed by the Data Analyzer node. Data Provider nodes that have write access also allow fixes to be performed by the Data Analyzer node.

- **DECamds security log**
 The Data Provider logs all access denials and executed write instructions to the operator communication manager (OPCOM). Each log entry contains the network address of the initiator. If access is denied, the log entry also indicates whether a read or write was attempted. If a write operation was performed, the log entry indicates the process identifier (PID) of the affected process.

- **OpenVMS file protection and process privileges**
 When the DECamds Data Analyzer and Data Provider are installed, they set directory and file protections on system directories so that only SYSTEM accounts can read the files. For additional security on these system directories and files, you can create access control lists (ACLs) to restrict and set alarms on write access to the security files. For more information about creating ACLs, see the OpenVMS Guide to System Security.

The AMDS$CONFIG logical translates to the location of the default security files, including the following:

- The AMDS$DRIVER_ACCESS.DAT file is installed on all Data Provider nodes. The file contains a list of Data Analyzer nodes to which system data can be sent. It also contains the type of access allowed for each of those nodes.

- The AMDS$CONSOLE_ACCESS.DAT file is installed on only those nodes that run the Data Analyzer portion of DECamds. It contains a list of passwords to identify itself to Data Provider nodes.

You can create additional security files in the directory associated with the AMDS$CONFIG logical name. By default, this logical name is assigned to AMDS$SYSTEM. As you customize DECamds, you can change the logical assignment of AMDS$CONFIG to read input files from other locations.

The following sections describe what a security triplet is, where to find the security files, and how to set up your security files.
1.3.1 Understanding DECamds Security Files

A security triplet determines which systems can access system data from the node. The $AMDS\$DRIVER_ACCESS.DAT$ and $AMDS\$CONSOLE_ACCESS.DAT$ files on the Data Analyzer and Data Provider systems list security triplets.

A security triplet is a three-part record that is separated by backslashes (\). A triplet consists of the following fields:

- A network address (DECnet address, hardware address, or a wildcard character)
- An 8-character (alphanumeric) password
 The password is not case sensitive, so the passwords “testtest” and “TESTTEST” are considered to be the same.
- A read or write (R or W) access verification code
 For the Data Analyzer, the security triplets that allow write access are listed last in the $AMDS\$CONSOLE_ACCESS.DAT$ security file.

The exclamation point (!) is a comment delimiter; any characters after the comment delimiter are ignored.

Table 1–1 describes the detailed format of each portion of the security triplet and then gives some examples for different situations.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECnet address (area.number)</td>
<td>Although DECnet is not required to run DECamds, the DECnet address is used to determine a node's physical address. The DECnet address is created by using the area.number format, where area is a value from 1 to 63, and number is a value from 1 to 1023. This address is modified into a physical address of the form AA-00-04-00-xx-yy to conform to the standard IEEE 802.3 protocol for network addressing. The AA-00-04-00 prefix is associated with the Compaq-owned address. The xx-yy suffix is the hexadecimal representation of the address formula: area*1024+number</td>
</tr>
</tbody>
</table>

Note: If you are running on a system with more than one LAN adapter or are running DECnet-Plus networking software, then this format is not valid for you. Instead, you must use the hardware address or wildcard address format for this field.
Overview of DECamds
1.3 DECamds Security Features

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| Hardware address (08-00-2B-xx-xx-xx) | The hardware address field is the physical hardware address in the LAN adapter chip. It is used if you have multiple LAN adapters or are running the DECnet-Plus networking software on the system (as opposed to the DECnet for OpenVMS Phase IV networking software). For adapters provided by Compaq, the hardware address is in the form 08-00-2B-xx-xx-xx, where the 08-00-2B portion is Compaq's valid range of LAN addresses as defined by the IEEE 802 standards and the xx-xx-xx portion is chip specific. To determine the value of the hardware address on a system, use the OpenVMS System Dump Analyzer (SDA) as follows:

$ ANALYZE/SYSTEM
SDA> SHOW LAN

The previous commands display a list of available devices. Choose the template device of the LAN adapter you will be using and then enter the following command:

SDA> SHOW LAN/DEVICE=xxA0

| Wildcard address (*) | The wildcard character allows any incoming triplet with a matching password field to access the Data Provider node. Use the wildcard character to allow read access and to run the console application from any node in your network. Because the Data Analyzer does not use this field, you should use the wildcard character in this field in the AMDS$CONSOLE_ACCESS.DAT file. |

Caution

Use of the wildcard character for write access security triplets enables any system to perform system-altering fixes.

The following steps show how DECamds uses the security triplets to ensure security among DECamds nodes:

1. A message is broadcast at regular intervals to all nodes within the LAN indicating the availability of a Data Provider node to communicate with a Data Analyzer node.
2. The node running the Data Analyzer receives the availability message and returns a security triplet that identifies it to the Data Provider and requests system data from the Data Provider.
3. The Data Provider examines the security triplet to determine if the Data Analyzer is listed in the AMDS$DRIVER_ACCESS.DAT file to permit access to the system.
 - If the AMDS$DRIVER_ACCESS.DAT file lists Data Analyzer access information, then the Data Provider and the Data Analyzer can exchange information.
 - If the Data Analyzer is not listed in the AMDS$DRIVER_ACCESS.DAT file, or does not have appropriate access information, then access is denied and a message is logged to OPCOM; the Data Analyzer receives a message stating that access to that node is not permitted.
Table 1–2 describes how the Data Provider node interprets a security triplet match.

<table>
<thead>
<tr>
<th>Security Triplet</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-00-2B-12-34-56\HOMETOWN\W</td>
<td>The Data Analyzer has write access to the node only when the Data Analyzer is run from the node with this hardware address (multiadapter or DECnet-Plus system) and with the password HOMETOWN.</td>
</tr>
<tr>
<td>2.1\HOMETOWN\R</td>
<td>The Data Analyzer has read access to the node when run from a node with DECnet for OpenVMS Phase IV address 2.1 and the password HOMETOWN.</td>
</tr>
<tr>
<td>*\HOMETOWN\R</td>
<td>Any Data Analyzer with the password HOMETOWN has read access to the node.</td>
</tr>
</tbody>
</table>

1.3.2 Customizing Security Files

Security files define which Data Analyzers can access data on nodes that have a Data Provider. The security files let you group nodes according to specific criteria.

Note

Compaq recommends that you group nodes according to OpenVMS Cluster membership. A node can be in only one group at a time. All nodes in a cluster must also be in the same group.

Installing DECamds initially assigns all nodes to one group. Each node that is assigned to a group is listed under the group name heading in the System Overview window.

Consider the following items when you set up customized groups:

- **OpenVMS Cluster and data integrity**
 - All nodes in a cluster must be in the same group for data in the disk volume and lock contention windows to be complete and accurate.
 - It is possible to include two clusters in one group, but if a cluster is divided between two groups or only partially included, the data might not be accurate.
 - Adding standalone nodes to the group will affect only the accuracy of disk volume and lock contention data.

- **Partitioning for analysis**
 Specific users can have read or write access to certain subsets of nodes. For example, one Data Analyzer can be designated to monitor a certain hardware type or cluster. This is entirely independent of the group to which the nodes of that hardware type or cluster are assigned. Apart from strict security considerations, this mechanism is often used to partition systems for convenience.

Your site might already have criteria relevant to defining groups. These could include a system management division of labor, hardware type, physical location, or work function.
Overview of DECamds

1.3 DECamds Security Features

Compaq recommends that you correlate your security files to your group definitions so that all nodes in the group are visible in the System Overview window. Section 1.3 explains how to set up security files.

1.3.2.1 Setting Up Node Groups

Assign nodes in a cluster to the same group.

To assign a node to a group, perform the following steps on each Data Provider node that is to be part of the group:

1. Assign a unique name of up to 15 alphanumeric characters to the AMDS$GROUP_NAME logical name in the AMDS$SYSTEM:AMDS$LOGICALS.COM file. For example:

 $ AMDS$DEF AMDS$GROUP_NAME FINANCE ! Group FINANCE; OpenVMS Cluster alias

2. Apply the logical name by restarting the Data Provider, as follows:

 $ @SYS$STARTUP:AMDS$STARTUP.COM START

For more information about the other logical names in AMDS$LOGICALS.COM, see Appendix B.

1.3.2.2 Defining Data Exchange Access Between Nodes

The Data Provider stores access security triplets in a file called AMDS$DRIVER_ACCESS.DAT, which indicates the Data Analyzer nodes that are allowed to request that data be provided. If a Data Analyzer node is not listed in the file, access is denied.

Examples

All Data Provider nodes in Group FINANCE have the following AMDS$DRIVER_ACCESS.DAT file:

```plaintext
*\FINGROUP\R ! Let anyone with FINGROUP password read

2.1\DEVGROUP\W ! Let only DECnet node 2.1 with

   \DEVGROUP password perform fixes (writes)

2.2\FINGROUP\W ! Let DECnet node 2.2 perform fixes
```

All Data Provider nodes in Group DEVELOPMENT have the following AMDS$DRIVER_ACCESS.DAT file:

```plaintext
*\GROUPBRD\R ! Let anyone with GROUPBRD password read

2.1\DEVGROUP\W ! Let only DECnet node 2.1 with

   \DEVGROUP password perform fixes
```

AMDS$CONSOLE_ACCESS.DAT file for a Data Analyzer

For a Data Analyzer to access information on any node in Groups FINANCE or DEVELOPMENT, the following access security triplets must be listed in the Data Analyzer node's AMDS$CONSOLE_ACCESS.DAT file:

```plaintext
*\FINGROUP\R ! Let anyone with FINGROUP password read

2.1\DEVGROUP\W ! Let only DECnet node 2.1 with

   \DEVGROUP password perform fixes

2.2\FINGROUP\W ! Let DECnet node 2.2 perform fixes
```

AMDS$CONSOLE_ACCESS.DAT file for a Data Analyzer

For a Data Analyzer to access information on any node in Groups FINANCE or DEVELOPMENT, the following access security triplets must be listed in the Data Analyzer node's AMDS$CONSOLE_ACCESS.DAT file:

```plaintext
```
1.3 DECamds Security Features

1.3.3 Limiting Specific Users to Read Access

You can restrict write access for certain users by performing the following steps:

1. Assign a search list of directories to the AMDS$CONFIG logical name in the AMDS$SYSTEM:AMDS$LOGICALS.COM file. For example:

 `$ DEFINE AMDS$CONFIG SYS$LOGIN,AMDS$SYSTEM`

 Execute the procedure as follows:

 `$ @AMDS$SYSTEM:AMDS$LOGICALS`

2. Copy the AMDS$CONSOLE_ACCESS.DAT security file to the SYS$LOGIN directory of a user and edit the file for that user.

3. Restart the Data Analyzer with the AVAIL command. For more information about starting the Data Analyzer, see Chapter 2.

The next time the user starts DECamds, the new security file will be found in their SYS$LOGIN directory and will be used. The security file found in AMDS$SYSTEM will not be read.

1.3.3 Sending Messages to OPCOM

The logical names shown in Table 1–3 control the sending of messages to OPCOM and are defined in the AMDS$LOGICALS.COM file.

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$RM_OPCOM_READ</td>
<td>A value of TRUE logs read failures to OPCOM.</td>
</tr>
<tr>
<td>AMDS$RM_OPCOM_WRITE</td>
<td>A value of TRUE logs write failures to OPCOM.</td>
</tr>
</tbody>
</table>

To use the changes, restart the Data Analyzer with the following command on each system or use the System Management utility (SYSMAN) to run the command on all systems within the OpenVMS Cluster:

`$ @SYS$STARTUP:AMDS$STARTUP RESTART`
1.3.4 Setting Broadcast Intervals for Node Availability Messages

Availability messages are broadcast by the Data Provider on nodes at regular intervals until a node establishes a link with the Data Analyzer. After a link has been established, the interval varies depending on the amount of data collection (and other factors) occurring between nodes.

You can modify the logical names in the AMDS$LOGICALS.COM file (shown in Table 1–4) to change the broadcast availability intervals.

Table 1–4 Broadcast Availability Logical Names

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$RM_DEFAULT_INTERVAL</td>
<td>Defines from 15- to 300-second intervals between availability message broadcasts.</td>
</tr>
<tr>
<td>AMDS$RM_SECONDARY_INTERVAL</td>
<td>Defines from 15- to 1800-second intervals between availability message broadcasts after a link has been established between nodes.</td>
</tr>
</tbody>
</table>

To use the changes, restart the Data Analyzer with the following command on each system or by using SYSMAN to run the command on all systems within the OpenVMS Cluster:

$ @SYS$STARTUP:AMDS$STARTUP RESTART
This chapter describes the following:

- How to start DECamds
- How to use the System Overview window to monitor resource availability problems on your system
- How to use the Event Log window to correct resource availability problems on your system

2.1 Starting DECamds

To start the DECamds Data Analyzer, enter the following command and any of the following qualifiers:

```
AVAIL /qualifiers
```

Note

If you have a recent version of DECamds or if you have Availability Manager installed, you must use the following command to invoke DECamds:

```
$ AVAIL/ MOTIF
```

Qualifiers

`/CONFIGURE`

Specifies the directories from which input files are read. This can be a search list of directories or a logical defining a search list of directories.

`/LOG_DIRECTORY`

Specifies the directory to which log files are written. Output files can be directed to the null device, NLA0:.

`/GROUP`

A comma-separated list of the groups of Data Provider nodes that you want the Data Analyzer to access.

Note

If you have not already set up a group hierarchy of nodes during DECamds installation, refer to Section 1.3.2.1 for information about setting up node groups.
2.1 Starting DECamds

The following examples of commands start DECamds with input files read first from SYS$LOGIN, and then from AMDS$SYSTEM (if the files are not found in SYS$LOGIN). All output files are written to the SYS$LOGIN directory. Only data from the group you enter (such as KUDOS) is collected.

$ DEFINE/JOB AMDS$CONFIG SYS$LOGIN,AMDS$SYSTEM
$ AVAIL/CONFIGURE=AMDS$CONFIG/LOG_DIRECTORY=SYS$LOGIN/GROUP=(KUDOS)

When DECamds starts, it displays the System Overview and Event Log windows.

To obtain help about DECamds, choose a menu item from the Help menu.

2.2 Using the System Overview Window

The System Overview window allows you to focus on resource usage activity at a high level and to display more specific data when necessary. The System Overview window displays CPU, memory, I/O data, number of processes in CPU queues, operating system version, and hardware model for each node and group DECamds recognizes.

Figure 2–1 shows a sample System Overview window displaying the nodes that DECamds can reach and is monitoring.
The System Overview window contains two kinds of information:

- **Group information**, displayed in the row next to the group name, shows averages for all nodes in the group.

- **Node information**, displayed in the row next to the node name, shows averages for the node.

If the View menu is set to Hide Nodes, node information is not displayed.

Table 2–1 explains the fields displayed in the System Overview window.
Table 2–1 System Overview Window Display Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Displays the group names in alphabetical order and the number of nodes recognized by DECamds. A group is a defined set of nodes that appear together in the System Overview window. A group can be defined by type of hardware, physical location, function, or OpenVMS Cluster alias.</td>
</tr>
<tr>
<td>NodeName</td>
<td>Displays the name of the node in a node row.</td>
</tr>
<tr>
<td>CPU (CPU usage)</td>
<td>In a group row, displays the average of the percentage of CPU time used by all processors weighted toward the present. In a node row, displays the percentage of CPU time used by all processes on the node, expressed as an exponential average, weighted toward the present. On Symmetric Multiprocessing (SMP) nodes, rates for CPU time are added and divided by the number of CPUs.</td>
</tr>
<tr>
<td>MEM (Memory rate)</td>
<td>In a group row, displays the average of the sampled values (over time) for all processes on all nodes in a group. In a node row, displays the percent of space in physical memory that all processes on the node are currently occupying. The value represents 100 percent minus the amount of free memory.</td>
</tr>
<tr>
<td>BIO (Buffered I/O rate)</td>
<td>In a group row, displays the average of BIO operations of all processes on all nodes. In a node row, displays the BIO rate for all processes on the node across the number of CPUs.</td>
</tr>
<tr>
<td>DIO (Direct I/O usage)</td>
<td>In a group row, displays the average of DIO operations of all processes on all nodes. In a node row, displays the DIO rate for all processes on the node.</td>
</tr>
<tr>
<td>#procs in CPU Qs (Number of processes in CPU queues)</td>
<td>Represents the number of processes the Node Summary data collection found in the COM, COMO, MWAIT, and PWAIT CPU queues.</td>
</tr>
<tr>
<td>O.S. Version (Version of the operating system)</td>
<td>Lists the currently loaded version of OpenVMS on the node being monitored (not the node doing the monitoring).</td>
</tr>
<tr>
<td>Hardware Model</td>
<td>Lists the hardware model of the node being monitored.</td>
</tr>
</tbody>
</table>

A percentage of a used resource is shown both by number and a dynamic status bar. For group rows, the values are averaged for all nodes in the group when node summary data collection is active. (Node summary data collection is active by default on DECamds startup.)

Resource availability problems are indicated by highlighting. When an event occurs, DECamds highlights the status bar that represents the resource. Highlighting is shown in red on color monitors, by default; it is bold on monochrome monitors. You can change the highlight color. (See Chapter 5 for more information.)

When data appears dimmed, the data is more than 60 seconds old due to a user action that stopped node summary data collection. When the data is updated, the display returns to normal resolution.

Figure 2–2 shows the System Overview window options. Note that on the View menu, the Hide Nodes item toggles with Show Nodes; on the Control menu, the Disable menu choices toggle with Enable choices.
2.2 Using the System Overview Window

2.2.1 Expanding and Collapsing Group Information

Use the View menu to display group or group and node status in the System Overview window. Typically, a group is an OpenVMS Cluster. Groups are displayed in alphabetical order. Nodes within a group are also displayed in alphabetical order.

You can also expand and collapse specific group displays by clicking MB3 while the cursor is on the selected group and choosing either the Hide Nodes or Show Nodes menu item.

2.2.2 Displaying Additional Data

By default, the Data Analyzer collects, analyzes, and displays four categories of data from Data Provider nodes:

- Node Summary
- Page/Swap File Summary
- Lock Contention Summary
- Cluster Transition Summary

In addition to the default data, you can choose any of these categories of additional data to be collected, analyzed, and displayed:

- CPU Summary
- Memory Summary
- Process I/O Summary
- Disk Status Summary
- Disk Volume Summary
Getting Started
2.2 Using the System Overview Window

You can change the default data windows that are displayed with the DECamds Application Customizations dialog box. For more information about customizing DECamds, see Chapter 5.

Note
Data gathering and display consume CPU time and network bandwidth. Request only the data you need to conclude an investigation, and then stop collecting the data (see Section 2.2.3). Whenever possible, collect data for just one node, not the entire group.

To request a specific data category, do one of the following:

• For data on a single node or a group, in the System Overview window, click MB3 on a selected node or group, then choose Collect from the menu, and then choose a category from the submenu.
• For data on all nodes, in the System Overview window, choose a category from the Collect menu.
• In the Event Log window, click MB3 on a selected event and choose Display from the menu. (See Section 2.3 for information on the Event Log window.)

2.2.3 Stopping Data Collection

To stop collecting data, do one of the following:

• Choose Stop All Data Collection from either of the following:
 – Collect menu or Control menu of the System Overview window
 – Control menu of the Event Log window

This stops collecting for all nodes. Events are removed from the Event Log, and data values in the System Overview window go to zero and are dimmed. Use this item if you lose track of data you are collecting in the background. Then restart data collection as needed; new events appear once data collection resumes.

• Click MB3 on a group or node name of the System Overview window to display the Collect submenu. Select Stop All Data Collection.
 This stops all data collection for the group or node you select. Node or group data in the System Overview window is zeroed.

• From the File menu of any data window, select Stop Collecting.
 If the data window is specific to a node or group, this option stops collecting for the node or group. (Data windows are discussed in Chapter 3.)

Note
Choosing Close Display from the File menu of any data window closes the window but continues data collection as a background task.

• From the File menu of the System Overview window, select Exit or Quit.
2.3 Using the Event Log Window

The Event Log window allows you to identify and correct a system problem. The Event Log window displays a warning message whenever DECamds detects a resource availability problem. Figure 2–3 shows an Event Log window.

Figure 2–3 Event Log Window

DECamds writes all events to a log file (AMDS$LOG:AMDS$EVENT_LOG.LOG). You can read this file in the Event Log window while the application is running.

Note

Ignore event messages that report the system process “SWAPPER” as having used all its quotas. The SWAPPER process is the OpenVMS memory management process; it does not have its quotas defined in the same way other system and user processes do.

Table 2–2 explains the fields displayed in the Event Log window.

Table 2–2 Event Log Window Display Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Displays, in real time, the time that an event is detected.</td>
</tr>
<tr>
<td>Sev (Severity)</td>
<td>Displays a value from 0 to 100. By default, events are listed in the Event Log window in order of decreasing severity. 0 is an informational message; 100 is a severe event. An event severity of 80 is high and indicates a potentially serious problem. Events with a severity of less than 50 appear dimmed, to indicate that they are less important. See Chapter 5 for information about how to change the display of severe events. Events that are critical are also sent to the OpenVMS operator communication manager (OPCOM).</td>
</tr>
<tr>
<td>Event</td>
<td>Displays an alphanumeric identifier of the type of event.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 2–2 (Cont.) Event Log Window Display Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the node or group name and a short description of the resource availability problem.</td>
</tr>
</tbody>
</table>

When an event “times out” by an improvement in availability, it is removed from the display. Events that are not triggered by a condition are timed out after 30 seconds (for example, the “CFGDON, node configuration done” event). When you select an event, the event remains displayed for 15 seconds (or until you initiate another task in the window), even if the event times out.

Figure 2–4 shows the Event Log window options.

Figure 2–4 Event Log Window Menus

<table>
<thead>
<tr>
<th>File</th>
<th>Control</th>
<th>Customize</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quit</td>
<td>Disable Automatic Data Collection</td>
<td>DECamds Customizations</td>
<td>On Context</td>
</tr>
<tr>
<td>Exit</td>
<td>Enable Automatic Event Investigation</td>
<td>Save DECamds Customizations</td>
<td>On Window</td>
</tr>
<tr>
<td></td>
<td>Stop All Data Collection</td>
<td>Save Geometry</td>
<td>On Version</td>
</tr>
<tr>
<td></td>
<td>Close All Displays</td>
<td>Use System Defaults</td>
<td>On Help</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Customize Events</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Save Event Customizations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sort Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use Last Saved Settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Save Sort Changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Save Filter Changes</td>
<td></td>
</tr>
</tbody>
</table>

For information about customizing event log information, see Section 5.2.1.
2.3 Using the Event Log Window

2.3.1 Displaying Information About an Event Log Entry
To display more information about an event, click MB3 on the event in the Event Log window, and then choose Display. Depending on the event, you have one or more event display choices that give you more information about the event. Figure 2–5 shows a sample event display choice dialog box.

Figure 2–5 Event Display Choice Dialog Box

2.3.2 Performing Corrective Action on an Event Log Entry
To take corrective action on an event, click MB3 on the event in the Event Log window, and then choose Fix. Depending on the type of event, one or more of the following event fix choices are displayed (not all events have all fix options):

- Adjust process working set
- Crash node
- Delete a process
- Exit an image
- Lower process priority
- Purge process working set
- Raise process priority
- Resume a process
- Suspend a process

See Chapter 4 for detailed information about performing fixes.
2.3 Using the Event Log Window

2.3.3 Sending Event Information to OPCOM

DECamds sends critical events to the operator communication manager (OPCOM).

By default, events that meet both of the following criteria are sent to OPCOM:

- Have a severity level of 90 or above
- Occur continuously for 600 seconds (10 minutes)

You can change either criterion by choosing Filter Data... from the Customize menu of the Event Log window. For more information on changing Event Log filters, see Chapter 5.

2.3.4 Removing an Event from the Event Log Window

To remove an event from the Event Log window, click MB3 on an event, and choose Remove from the menu. An event reappears if DECamds routine sampling detects the same situation that caused the original log entry.

2.3.5 Retaining and Releasing an Event in the Event Log Window

Event Log entries are removed when the underlying cause is removed, so an event might disappear from the Event Log window. To retain the selected event in the Event Log window, click MB3 on an event and choose Freeze. When an event is frozen, the Time field is highlighted.

To release the selected event, click MB3 on the event and choose Unfreeze.
Managing DECamds Data Windows

This chapter describes the DECamds data windows that you can display from the System Overview and Event Log windows.

Figure 3–1 shows the hierarchy of the DECamds data windows.

Figure 3–1 DECamds Data Window Hierarchy

Table 3–1 describes the data windows and their functions.

<table>
<thead>
<tr>
<th>Window</th>
<th>Reference</th>
<th>Opened from Window</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Status Summary</td>
<td>Section 3.1</td>
<td>Event Log</td>
<td>Disk device data including path, volume name, status, and mount, transaction, error, and resource wait counts.</td>
</tr>
<tr>
<td>Volume Summary</td>
<td>Section 3.2</td>
<td>Event Log System Overview</td>
<td>Disk volume data, including path, volume name, disk block utilization, queue length, and operation count rate.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 3–1 (Cont.) DECamds Data Windows

<table>
<thead>
<tr>
<th>Window</th>
<th>Reference</th>
<th>Opened from Window</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Disk Summary</td>
<td>Section 3.3</td>
<td>Disk Status Summary, Volume Summary</td>
<td>Summary data about each node in a group in which a disk is available.</td>
</tr>
<tr>
<td>Page/Swap File Summary</td>
<td>Section 3.4</td>
<td>Event Log, System Overview</td>
<td>Data about page and swap names and utilization, including free, used, and reserved pages.</td>
</tr>
<tr>
<td>Node Summary</td>
<td>Section 3.5</td>
<td>Event Log, System Overview</td>
<td>Overview of a specific node's resource demand on the CPU state queues and processor modes, memory utilization, page faults, and I/O.</td>
</tr>
<tr>
<td>Process I/O Summary</td>
<td>Section 3.6</td>
<td>Event Log, Node Summary, System Overview, Single Disk Summary</td>
<td>Statistics about I/O utilization by process, including buffered I/O, direct I/O, and page write I/O; also lists various I/O quotas.</td>
</tr>
<tr>
<td>CPU Modes Summary</td>
<td>Section 3.7</td>
<td>Node Summary</td>
<td>A graphic representation of each CPU's processor modes, listing the process currently executing in the CPU.</td>
</tr>
<tr>
<td>CPU Summary</td>
<td>Section 3.8</td>
<td>Event Log, Node Summary, System Overview</td>
<td>Statistics about CPU utilization by process, including process state, priority, execution rate, CPU time, and wait time.</td>
</tr>
<tr>
<td>Memory Summary</td>
<td>Section 3.9</td>
<td>Event Log, Node Summary, System Overview</td>
<td>Statistics about memory usage by process, including process working set count, quota and extent, and paging rates.</td>
</tr>
<tr>
<td>Single Process Summary</td>
<td>Section 3.10</td>
<td>Event Log, Any data window</td>
<td>Specific data about a process, basically a combination of data elements from the CPU, Memory, and Process I/O displays, as well as data for specific quota utilization, current image, specific process information, and wait queue time.</td>
</tr>
<tr>
<td>Lock Contention Summary</td>
<td>Section 3.11</td>
<td>Event Log, System Overview</td>
<td>Data about each resource for which a potential lock contention situation exists.</td>
</tr>
<tr>
<td>Single Lock Summary</td>
<td>Section 3.12</td>
<td>Event Log, Lock Contention Summary</td>
<td>Specific data about the blocking lock and any other locks in the granted, conversion, or waiting queues.</td>
</tr>
<tr>
<td>Cluster Transition/Overview Summary</td>
<td>Section 3.13</td>
<td>Event Log, System Overview</td>
<td>Summary information about each node's membership in an OpenVMS Cluster.</td>
</tr>
<tr>
<td>System Communication Architecture Summary</td>
<td>Section 3.14</td>
<td>Cluster Transition/Overview Summary</td>
<td>System Communication Architecture (SCA) information about a selected node's connection or connections to other nodes in a cluster.</td>
</tr>
<tr>
<td>NISCA Summary</td>
<td>Section 3.15</td>
<td>System Communication Architecture Summary</td>
<td>Summary information about the Network Interconnect System Communication Architecture (NISCA) protocol, which is responsible for carrying messages to other nodes in the cluster.</td>
</tr>
</tbody>
</table>

3.1 Disk Status Summary Window

The Disk Status Summary window shown in Figure 3–2 displays data about availability, count, and errors of disk devices on the system.
To open a Disk Status Summary window, do one of the following:

- In the System Overview window, click MB3 on a node or group line, choose Display from the menu, and choose Disk Status Summary from the submenu.
- In the Event Log window, click MB3 on any disk status-related event, and choose Display from the menu.

Table 3–2 describes the Disk Status Summary window data fields.

Table 3–2 Disk Status Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The standard OpenVMS device name that indicates where the device is located, as well as a controller or unit designation.</td>
</tr>
<tr>
<td>Path</td>
<td>The primary path (node) from which the device receives commands.</td>
</tr>
<tr>
<td>Volume Name</td>
<td>The name of the media that is currently mounted.</td>
</tr>
</tbody>
</table>

(continued on next page)
Managing DECamds Data Windows
3.1 Disk Status Summary Window

Table 3–2 (Cont.) Disk Status Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>One or more of the following disk status values:</td>
</tr>
<tr>
<td>Alloc</td>
<td>Disk is allocated to a specific user</td>
</tr>
<tr>
<td>CluTran</td>
<td>Disk status is uncertain due to a cluster state transition in progress</td>
</tr>
<tr>
<td>Dismount</td>
<td>Disk in process of dismounting; may be waiting for a file to close</td>
</tr>
<tr>
<td>Foreign</td>
<td>Disk is mounted with the /FOREIGN qualifier</td>
</tr>
<tr>
<td>Invalid</td>
<td>Disk is in an invalid state (likely Mount Verify Timeout)</td>
</tr>
<tr>
<td>MntVerify</td>
<td>Disk is waiting for a mount verification</td>
</tr>
<tr>
<td>Mounted</td>
<td>Disk is logically mounted by a MOUNT command or service call</td>
</tr>
<tr>
<td>Offline</td>
<td>Disk is no longer physically mounted in device drive</td>
</tr>
<tr>
<td>Online</td>
<td>Disk is physically mounted in device drive</td>
</tr>
<tr>
<td>Shadow Set</td>
<td>Disk is a member of a shadow set</td>
</tr>
<tr>
<td>Shadow Set Member</td>
<td>Disk is a member of a shadow set</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Disk is set /UNAVAILABLE</td>
</tr>
<tr>
<td>Wrong Volume</td>
<td>Disk has been mounted with the wrong volume name</td>
</tr>
<tr>
<td>Wrtlk</td>
<td>Disk is mounted and write locked</td>
</tr>
<tr>
<td>Errors¹</td>
<td>The number of errors generated by the disk (a quick indicator of device problems).</td>
</tr>
<tr>
<td>Trans¹</td>
<td>The number of currently-in-progress file system operations for the disk.</td>
</tr>
<tr>
<td>Mount¹</td>
<td>The number of nodes that have the specified disk mounted.</td>
</tr>
<tr>
<td>Rwait¹</td>
<td>An indicator that a system I/O operation is stalled, usually during normal connection failure recovery or volume processing of host-based shadowing.</td>
</tr>
</tbody>
</table>

¹For the group window, the sum of the node window values is displayed.

DECamds detects the following disk status-related events and displays them in the Event Log window. Node refers to the name of the node that is signaling the event. Disk refers to the name of the disk to which the event is related.

- DSKERR, node disk disk error count is high
- DSKINV, node disk disk is in an invalid state
- DSKMNV, node disk disk mount verify in progress
- DSKOFF, node disk disk is off line
- DSKRWT, node disk disk Rwait count is high
- DSKUNA, node disk disk is unavailable
- DSKWRV, node disk disk wrong volume mounted
3.2 Volume Summary Window

The Volume Summary window shown in Figure 3–3 displays summary data about disk volumes mounted in the system. Volume summary data is accurate when every node in an OpenVMS Cluster environment is in the same group. Multiple clusters can share a group, but clusters cannot be divided into different groups without losing accuracy.

Figure 3–3 Volume Summary Window

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Path</th>
<th>Volume Name</th>
<th>Disk Space (blocks)</th>
<th>% Used</th>
<th>Free</th>
<th>Queue</th>
<th>OpRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSA4010</td>
<td>EVMS</td>
<td>WORK9</td>
<td>3815570</td>
<td>104380</td>
<td>1.26</td>
<td>45.14</td>
<td></td>
</tr>
<tr>
<td>DSA4006</td>
<td>EVMS</td>
<td>WORK5</td>
<td>3920478</td>
<td>12</td>
<td>27.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSA67</td>
<td>EVMS</td>
<td>FOLKORE</td>
<td>2252727</td>
<td>688218</td>
<td>0.00</td>
<td>7.66</td>
<td></td>
</tr>
<tr>
<td>64DU113</td>
<td>CALPAL</td>
<td>SCRTCH.1</td>
<td>2890557</td>
<td>50394</td>
<td>0.89</td>
<td>6.35</td>
<td></td>
</tr>
<tr>
<td>64DU178</td>
<td>HICLIT</td>
<td>EVMS_SYS_061</td>
<td>3850054</td>
<td>70404</td>
<td>0.00</td>
<td>5.16</td>
<td></td>
</tr>
<tr>
<td>DSA4005</td>
<td>EVMS</td>
<td>WORK4</td>
<td>3020402</td>
<td>900088</td>
<td>0.00</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>DSA64</td>
<td>EVMS</td>
<td>VMSCM/MASTER</td>
<td>3097410</td>
<td>823080</td>
<td>0.00</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>64DU203</td>
<td>LOADQ</td>
<td>AXPVM061</td>
<td>3917270</td>
<td>3220</td>
<td>0.00</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>64DU114</td>
<td>CALPAL</td>
<td>SCRTCH.2</td>
<td>2881599</td>
<td>59352</td>
<td>0.00</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>DSA4009</td>
<td>EVMS</td>
<td>WORK6</td>
<td>3207386</td>
<td>713104</td>
<td>0.00</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>DSA4004</td>
<td>EVMS</td>
<td>WORK3</td>
<td>3449114</td>
<td>471344</td>
<td>0.00</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>DSA4007</td>
<td>EVMS</td>
<td>WORK7</td>
<td>2924410</td>
<td>996080</td>
<td>0.00</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

Note

The group value for Free blocks used is determined from the node with the mastering lock on the volume resource.

To open a Volume Summary window, do one of the following:

- In the System Overview window, click MB3 on a node or group line, choose Display from the menu, and choose Volume Summary from the submenu.
- In the Event Log window, click MB3 on any volume-related event, and choose Display from the menu.

Note

DECamds does not collect Volume Summary data on remote disks mounted using the VAX Distributed File Service (DFS).

Table 3–3 describes the Volume Summary window data fields.
Managing DECamds Data Windows

3.2 Volume Summary Window

Table 3–3 Volume Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>The standard OpenVMS device name that indicates where the device is located, as well as a controller or unit designation.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the mounted media.</td>
</tr>
<tr>
<td>Path</td>
<td>The primary path (node) from which the device receives commands.</td>
</tr>
<tr>
<td>Volume</td>
<td>The number of volume blocks in use.</td>
</tr>
<tr>
<td>Name</td>
<td>The number of blocks of volume space available for new data.</td>
</tr>
<tr>
<td>% Used</td>
<td>The percentage of the number of volume blocks in use in relation to the total volume blocks available.</td>
</tr>
<tr>
<td>Queue</td>
<td>The average number of I/O operations pending for the volume (an indicator of performance; less than 1.00 is optimal).</td>
</tr>
<tr>
<td>OpRate</td>
<td>The rate at which the operations count to the volume has changed since the last sampling. The rate measures the amount of activity on a volume. The optimal load is device-specific.</td>
</tr>
</tbody>
</table>

DECamds detects the following volume-related events and displays them in the Event Log window. Node refers to the name of the node that is signaling the event. Disk refers to the name of the disk to which the event is related. Group refers to the name of the group to which the event is related.

- **DSKQLN**, node disk disk volume queue length is high
- **LOVLSP**, group disk disk volume free space is low

3.3 Single Disk Summary Window

The Single Disk Summary window shown in Figure 3–4 displays summary data about each node in the group in which a disk is available. This window is a node-by-node display of the data that is summarized in the Disk Status Summary and Volume Summary windows. The values displayed are those you would see if you displayed Disk Status Summary or Volume Summary for each node within the group.

You can use this display to determine both of the following:

- Which node in the group has a disk with high I/O rates
 Determining which node has a high I/O rate to the disk is useful because you can sort by direct I/O rate and learn which process or processes are causing the high I/O rates to the disk.

- If a disk is in a state that is inconsistent with other nodes
 Determining which node or nodes might be in an abnormal state is useful because you can then discover if, for some reason, one node believes that the disk is in the MntVerify or CluTran state, thus holding up processing in the cluster in which the node resides.
To open a Single Disk Summary window, follow these steps:

1. In the System Overview window, click MB3 on a group or node name. The system displays a pop-up menu.
2. Choose Display from the menu and Disk Status Summary (or Volume Summary) from the submenu. The system displays the Disk Status Summary window (or Volume Summary window).
3. In the Disk Status Summary window (or Volume Summary window), click MB3 on a device name. The system displays a pop-up menu.
4. Choose Display Disk. The system displays the Single Disk Summary window.

As an alternative to steps 3 and 4, you can can double-click MB1 on a line in the Disk Status Summary or Volume Summary window to display the Single Disk Summary window.

Note that when you click on an item, DECamds temporarily stops updating the window for 15 seconds or until you choose an item from a menu.
Managing DECamds Data Windows

3.3 Single Disk Summary Window

Table 3–4 lists the Single Disk Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Name of the node</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the disk: mounted, online, offline, and so on</td>
</tr>
<tr>
<td>Errors</td>
<td>Number of errors on the disk</td>
</tr>
<tr>
<td>Trans</td>
<td>Number of currently-in-progress file system operations on the disk</td>
</tr>
<tr>
<td>Rwait</td>
<td>Indication of an I/O stalled on the disk</td>
</tr>
<tr>
<td>Free</td>
<td>Count of free disk blocks on the volume</td>
</tr>
<tr>
<td></td>
<td>An (M) after the free block count indicates this node holds the lock on</td>
</tr>
<tr>
<td></td>
<td>the volume that DECamds uses to obtain the true free block count on the</td>
</tr>
<tr>
<td></td>
<td>volume. Other nodes might not have accessed the disk, so their free block</td>
</tr>
<tr>
<td></td>
<td>count might not be up to date.</td>
</tr>
<tr>
<td>QLen</td>
<td>Average number of operations in the I/O queue for the volume</td>
</tr>
<tr>
<td>OpRate</td>
<td>Count of rate of change to operations on the volume</td>
</tr>
</tbody>
</table>

From the Single Disk Summary window, you can display the Process I/O Summary window. See Section 3.6 for more information.

3.4 Page/Swap File Summary Window

The Page/Swap File Summary window shown in Figure 3–5 displays data about a node’s page/swap file usage and identifies page or swap files that are overused or underconfigured. It also displays nodes that lack a page or swap file.
To open a Page/Swap File Summary window, do one of the following:

- In the Event Log window, click MB3 on any event, and choose Display from the menu displayed. Then choose Page/Swap File Summary from the submenu displayed.

- In the System Overview window, click MB3 on any node or group line, and choose Display from the menu displayed. Then choose Page/Swap File Summary from the submenu displayed.

Table 3–5 describes the Page/Swap File Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Name</td>
<td>The name of the node on which the page/swap file resides.</td>
</tr>
<tr>
<td>File Name</td>
<td>The name of the page/swap file. For secondary page/swap files, the file name is obtained by a special AST to the job controller on the remote node. DECamds makes one attempt to retrieve the file name.</td>
</tr>
<tr>
<td>Used</td>
<td>The number of used pages or pagelet blocks within the file.</td>
</tr>
<tr>
<td>% Used</td>
<td>A graph representing the percentage of the blocks from the available page or pagelet blocks in each file.</td>
</tr>
<tr>
<td>Total</td>
<td>The total number of pages or pagelet blocks within the file.</td>
</tr>
<tr>
<td>Reservable</td>
<td>The number of pages or pagelet blocks that can be logically claimed by a process for future physical allocation. This value can be listed as a negative value, because it is merely a value of a process's interest in getting pages from the file. If every process currently executing needed to use the file, then this value is the debt that is owed.</td>
</tr>
</tbody>
</table>

DECamds detects the following page and swap file-related events and displays them in the Event Log window. Node is replaced by the name of the node to which the event is related.

- LOPGSP, node file page file space is low
- LOSWSP, node file swap file space is low
- NOPGFL, node has no page file
- NOSWFL, node has no swap file
3.5 Node Summary Window

The Node Summary window shown in Figure 3–6 displays a high-level graphic summary of node resource demands on the CPU, memory, and I/O.

Figure 3–6 Node Summary Window

To open a Node Summary window, do one of the following:

- In the System Overview window, double-click on any node name. You can also click MB3 on any node name, and choose Display from the menu.

- In the Event Log window, double-click on any node name. You can also click MB3 on an event that is related to node summary data, and choose Display from the menu.
Dynamic bar graphs display the current values for each field. Peak values are also displayed from when DECamds begins collecting node summary data. A peak value is typically the highest value received; however, for the Free Memory field it is the lowest value received.

You can open the following windows from the Node Summary Window by double-clicking in the space for each category:

- CPU Summary
- CPU Modes Summary
- Memory Summary
- I/O summary

Table 3–6 describes the Node Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Model</td>
<td>The system hardware model name.</td>
</tr>
<tr>
<td>Operating System</td>
<td>The name and version of the operating system.</td>
</tr>
<tr>
<td>Uptime</td>
<td>The time since last reboot measured in days, hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Memory</td>
<td>The total amount of physical memory found on the system.</td>
</tr>
<tr>
<td>CPUs</td>
<td>The number of active CPUs on the node.</td>
</tr>
<tr>
<td>CPU Process State</td>
<td>One of the following:</td>
</tr>
<tr>
<td>Queues</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>Sum of the queue lengths of processes in the COM and COMO states.</td>
</tr>
<tr>
<td>WAIT</td>
<td>Sum of the queue lengths of processes in the MWAIT, COLPG, CEF, PFW, and FPG states.</td>
</tr>
<tr>
<td>CPU Modes</td>
<td>The CPU usage by mode (kernel, executive, supervisor, user, interrupt, compatibility, multiprocessor synchronization, and null). On symmetric multiprocessing (SMP) nodes, percentages are averaged across all the CPUs and displayed as one value.</td>
</tr>
<tr>
<td>Page Faults</td>
<td>The rate of system hard and soft page faulting, as well as peak values seen during a DECamds session. System page faults are taken from kernel processes.</td>
</tr>
<tr>
<td>Memory</td>
<td>The histogram listing memory distribution (Free, Used, Modified, Bad) as absolute values of number of thousands of pages or pagelets. Peak values are also listed, with Free using lowest seen value as peak.</td>
</tr>
<tr>
<td>I/O</td>
<td>The histogram listing Buffer, Direct, and Page Write I/O rates per second. Also included is the peak value seen.</td>
</tr>
</tbody>
</table>

DECamds detects the following node events and displays them in the Event Log window. Node is replaced by the name of the node to which the event is related.

- HIBIOR, node buffered I/O rate is high
- HICOMQ, node many processes waiting for CPU
- HIDIOR, node direct I/O rate is high
- HIHRDLP, node hard page fault rate is high
- HIMWTQ, node process waiting in MWAIT
- HINTER, node interrupt mode time is high
- HIPWIO, node paging write I/O rate is high
- HIPWTQ, node many processes waiting in COLPG, PFW, or FPG
- HITTLP, node total page fault rate is high
3.5 Node Summary Window

HMPSYN, node MP synchronization mode time is high
HISYSP, node system page fault rate is high
LOMEMY, node free memory is low
NOPROC, node cannot find process names process

3.6 Process I/O Summary Window

The Process I/O Summary window shown in Figure 3–7 displays summary statistics about process I/O rates and quotas. Use the Process I/O Summary window to display information about I/O issues that might be caused by I/O-intensive programs or I/O bottlenecks.

Note
DECamds does not yet support kernel threads. If you use threaded processes, DECamds displays only the top thread.

Figure 3–7 Process I/O Summary Window

To open a Process I/O Summary window, do one of the following:

- In the Node Summary window, double-click in the I/O area.
- In the System Overview window, double-click on the BIO or DIO fields for any node. You can also click MB3 on any field for any node, choose Display from the menu, and choose Process I/O Summary from the submenu.
- To open a Process I/O Summary window for every node in a group, in the System Overview window, click MB3 on a group line, choose Display from the menu, and choose Process I/O Summary from the submenu.
- In the Event Log window, click MB3 on any process I/O-related event, and choose Display from the menu.
Managing DECamds Data Windows

3.6 Process I/O Summary Window

You can open a window about a specific process in the Process I/O Summary window by double-clicking on the process name.

Table 3-7 describes the Process I/O Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>The process identifier, a 32-bit value that uniquely identifies a process.</td>
</tr>
<tr>
<td>Process Name</td>
<td>The current process name.</td>
</tr>
<tr>
<td>Direct I/O Rate (DIO)</td>
<td>The rate at which I/O transfers occur between the system devices and the pages or pagelets that contain the process buffer that the system locks in physical memory.</td>
</tr>
<tr>
<td>Buffered I/O Rate (BIO)</td>
<td>The rate at which I/O transfers occur between the process buffer and an intermediate buffer from the system buffer pool.</td>
</tr>
<tr>
<td>Paging I/O Rate (PIO)</td>
<td>The rate of read attempts necessary to satisfy page faults (also known as Page Read I/O or the Hard Fault Rate).</td>
</tr>
<tr>
<td>Open Files</td>
<td>The number of open files.</td>
</tr>
<tr>
<td>Direct I/O Limit Remaining (DIO)</td>
<td>The number of remaining direct I/O limit operations available before the process reaches its quota. DIOLM quota is the maximum number of direct I/O operations a process may have outstanding at one time.</td>
</tr>
<tr>
<td>Buffered I/O Limit Remaining (BIO)</td>
<td>The number of remaining buffered I/O operations available before the process reaches its quota. BIOLM quota is the maximum number of buffered I/O operations a process may have outstanding at one time.</td>
</tr>
<tr>
<td>Byte Limit Remaining (Bytes)</td>
<td>The number of buffered I/O bytes available before the process reaches its quota. BYTLM is the maximum number of bytes of nonpaged system dynamic memory that a process can claim at one time.</td>
</tr>
<tr>
<td>Open File Limit Remaining (Files)</td>
<td>The number of additional files the process can open before reaching its quota. FILLM quota is the maximum number of files that can be opened simultaneously by the process, including active network logical links.</td>
</tr>
</tbody>
</table>

DECamds detects the following process I/O-related events and displays them in the Event Log window. Node is replaced by the name of the node to which the event is related. Process is replaced by the name of the process to which the event is related.

- LOBIOQ, node process has used most of its BIOLM process quota
- LOBYTQ, node process has used most of its BYTLM job quota
- LODIOQ, node process has used most of its DIOLM process quota
- LOFILQ, node process has used most of its FILLM job quota
- PRBIO, node process buffered I/O rate is high
- PRDIOR, node process direct I/O rate is high
- PRPIOR, node process paging I/O rate is high
3.7 CPU Modes Summary Window

The CPU Modes Summary window shown in Figure 3–8 displays more detailed summary statistics about CPU mode usage than the Node Summary window. Use the CPU Modes Summary window to diagnose issues that may be caused by CPU-intensive users or CPU bottlenecks.

Figure 3–8 CPU Modes Summary Window

To open a CPU Modes Summary window, do one of the following:

- In the Node Summary window, double-click MB1 in the CPU Modes area. You can also click MB3, and choose Display from the menu.
- In the Node Summary window View menu, choose Display Modes Summary.

You can open a window about a specific process in the CPU Modes Summary window by double-clicking on the process name.

Table 3–8 describes the CPU Modes Summary window data fields.
Managing DECamd's Data Windows

3.7 CPU Modes Summary Window

Table 3–8 CPU Modes Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU ID</td>
<td>A decimal value representing the identity of a process in a multiprocessing system. On a uniprocessor, this value will always be CPU #00.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>One of the following CPU capabilities: Primary, Quorum, Run, or Vector.</td>
</tr>
<tr>
<td>State</td>
<td>One of the following CPU states: Boot, Booted, Init, Rejected, Reserved, Run, Stopped, Stopping, or Timeout.</td>
</tr>
<tr>
<td>Mode</td>
<td>One of the following values for CPU modes supported for the architecture: Compatibility, Executive, Interrupt, Kernel, MP Synch, Null, Supervisor, or User. Note: Compatibility mode does not exist on OpenVMS Alpha systems.</td>
</tr>
<tr>
<td>% Used</td>
<td>A bar graph, by CPU, representing the percentage of the CPU utilization for each mode.</td>
</tr>
<tr>
<td>PID</td>
<td>The process identifier value of the process that is using the CPU. If the PID is unknown to the console application, the internal PID (IPID) will be listed.</td>
</tr>
<tr>
<td>Name</td>
<td>The process name of the process found in the CPU. If no process is found in the CPU, this will be listed as *** None ***.</td>
</tr>
<tr>
<td>Rate</td>
<td>A numerical percentage of CPU time for each mode.</td>
</tr>
<tr>
<td>Peak</td>
<td>The peak CPU usage determined for each mode.</td>
</tr>
</tbody>
</table>

3.8 CPU Summary Window

The CPU Summary window shown in Figure 3–9 displays summary statistics about process CPU usage issues that might be caused by CPU-intensive users or CPU bottlenecks.

Figure 3–9 CPU Summary Window
Managing DECamds Data Windows

3.8 CPU Summary Window

To open a CPU Summary window, do one of the following:

- In the System Overview window, double-click on the CPU field of any node. You can also click MB3 on an event that is related to CPU usage, choose Display from the menu, and choose CPU Summary from the list.

- In the Node Summary window, double-click on CPU Process State Queues.

- In the Event Log window, click MB3 on an event that is related to CPU usage, choose Display from the menu, and choose CPU Summary from the list.

You can open a window about a specific process in the CPU Summary window by double-clicking on the process name.

Table 3–9 describes the CPU Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>The process identifier, a 32-bit value that uniquely identifies a process.</td>
</tr>
<tr>
<td>Name</td>
<td>The process name.</td>
</tr>
<tr>
<td>Priority</td>
<td>Computable (xx) and base (yy) process priority in the format xx/ yy.</td>
</tr>
<tr>
<td>State</td>
<td>One of the values listed under the Single Process Summary description in Table 3–11.</td>
</tr>
<tr>
<td>Rate</td>
<td>The percent of CPU time used by this process. This is the ratio of CPU time to elapsed time. The CPU rate is also displayed in the bar graph.</td>
</tr>
<tr>
<td>Wait</td>
<td>The percent of time the process is in the COM or COMO state.</td>
</tr>
<tr>
<td>Time</td>
<td>The amount of actual CPU time charged to the process.</td>
</tr>
</tbody>
</table>

DECamds detects the following CPU-related events and displays them in the Event Log window. Node is replaced by the name of the node to which the event is related. Process is replaced by the name of the process to which the event is related.

PRCCOM, node process waiting in COM or COMO
PRCCVR, node process has high CPU rate
PRCMWT, node process waiting in MWAIT
PRCPWT, node process waiting in COLPG, PFW, or FPG
3.9 Memory Summary Window

The Memory Summary window shown in Figure 3–10 displays memory usage data for processes on a node so that you can identify processes that use large amounts of memory or have high page fault rates.

Figure 3–10 Memory Summary Window

To open a Memory Summary window, do one of the following:

- In the Node Summary window, double-click on the Page Faults or Memory area. You can also click MB3 on the Page Faults or Memory area, and choose Display from the menu.
- In the View menu of the Node Summary window, choose Display Memory Summary.
- In the System Overview window, double-click on the Memory field for any node. You can also click MB3 on any field for any node, choose Display from the pop-up menu, and choose Memory Summary from the submenu.
- To display a memory summary of every node in a group from the System Overview window, click MB3 on the group line, choose Display from the menu, and choose Memory Summary from the submenu.
- In the Event Log window, click MB3 on an event related to memory usage, and choose Display from the menu.

You can open a window about a specific process in the Memory Summary window by double-clicking on the process name.
Table 3–10 describes the Memory Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>The process identifier, a 32-bit value that uniquely identifies a process.</td>
</tr>
<tr>
<td>Process Name</td>
<td>The process name.</td>
</tr>
<tr>
<td>Working Set Count¹</td>
<td>The number of physical pages or pagelets of memory that the process is using. The bar graph represents the percentage of working set count used to the working set extent.</td>
</tr>
<tr>
<td>Working Set Size²</td>
<td>The number of pages or pagelets of memory the process is allowed to use. This value is periodically adjusted by the operating system based on analysis of page faults relative to CPU time used. When the value increases in large units, this indicates a process is receiving a lot of page faults and its memory allocation is increasing.</td>
</tr>
<tr>
<td>Working Set Extent²</td>
<td>The number of pages or pagelets of memory in the process's WSEXTENT quota as defined in the user authorization file (UAF). The number of pages or pagelets will not exceed the value of the system parameter WSMAX.</td>
</tr>
<tr>
<td>Page Fault Rate</td>
<td>The number of page faults per second for the process. The bar graph represents a relative number of page faults per second.</td>
</tr>
<tr>
<td>Page Fault I/O</td>
<td>The rate of read attempts necessary to satisfy page faults (also known as Page Read I/O or the Hard Fault Rate).</td>
</tr>
</tbody>
</table>

¹Working Set Value = Total Physical Memory / Maximum Process Count

DECamds detects the following memory-related events and displays them in the Event Log window. Node is replaced by the name of the node to which the event is related. Process is replaced by the name of the process to which the event is related.

- LOWEXT, node process working set extent is too small
- LOWSQU, node process working set quota is too small
- PRPGFL, node process high page fault rate
- PRPIOR, node process paging I/O rate is high
3.10 Single Process Summary Window

The Single Process Summary window shown in Figure 3–11 displays summary data about a process, including Execution Rates, Process Quotas in Use, Wait States, and Job Quotas in Use.

![Figure 3–11 Single Process Summary Window](image)

<table>
<thead>
<tr>
<th>Process name</th>
<th>SECURITY_SERVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>Account</td>
<td><start></td>
</tr>
<tr>
<td>UIC</td>
<td>[1,4]</td>
</tr>
<tr>
<td>PID</td>
<td>20A000050</td>
</tr>
<tr>
<td>Owner ID</td>
<td>000000000</td>
</tr>
<tr>
<td>PC</td>
<td>7FFEDF8A</td>
</tr>
<tr>
<td>PSL</td>
<td>03C00000</td>
</tr>
<tr>
<td>Priority</td>
<td>10/8</td>
</tr>
<tr>
<td>State</td>
<td>HIB</td>
</tr>
</tbody>
</table>

EXECUTION RATES

- CPU: 0.00
- Direct I/O: 0.00
- Buffered I/O: 0.00
- Paging I/O: 0.00
- Page Faults: 0.00

WAIT STATES

- Compute: 0 / 100
- Memory: 0 / 100
- Direct I/O: 0 / 100
- Buffered I/O: 0 / 100
- Control: 0 / 100
- Quotas: 0 / 100
- Explicit: 68 / 100

PROCESS QUOTAS IN USE

- DIOlm: 0
- BIOlm: 1
- ASTlm: 8
- CPU: 0

JOB QUOTAS IN USE

- Fillm: 3
- Pglquo: 3296
- Englm: 6
- TQElm: 7
- Proml: 0
- Bytlm: 0

To open a Single Process Summary window, do one of the following:

- In any window that displays processes (CPU, CPU Modes, Memory, Process I/O, and Single Lock Summary), double-click on any field. You can also click MB3 on any field in a process line, and choose Display from the pop-up menu.
- You can also click on any field in a process line, and choose Display Process from the View menu.
- In the Event Log window, double-click on a process-related event. You can also click MB3 on a process-related event, choose Display from the menu, and choose Single Process in the dialog box.
Table 3–11 describes the Single Process Summary window data fields.

Table 3–11 Single Process Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process name</td>
<td>The name of the process.</td>
</tr>
<tr>
<td>Username</td>
<td>The user name of the user owning the process.</td>
</tr>
<tr>
<td>Account</td>
<td>The string assigned to the user by the system manager.</td>
</tr>
<tr>
<td>UIC</td>
<td>The user identification code (UIC), a pair of numbers or character strings designating the group and user.</td>
</tr>
<tr>
<td>PID</td>
<td>The process identifier, a 32-bit value that uniquely identifies a process.</td>
</tr>
<tr>
<td>Owner ID</td>
<td>The PID of the process that created the process displayed in the window. If 0, then the process is a parent process.</td>
</tr>
<tr>
<td>PC</td>
<td>The program counter. On OpenVMS VAX systems, this is the address of the next instruction the CPU will execute. On OpenVMS Alpha systems, this value is displayed as 0, because the data is not readily available to the Data Provider node.</td>
</tr>
<tr>
<td>PSL</td>
<td>The processor status longword (PSL). On OpenVMS VAX systems, this indicates the current processor mode (user, kernel, and so on) and its interrupt level. On OpenVMS Alpha systems, this value is displayed as 0, because the data is not readily available to the Data Provider node.</td>
</tr>
<tr>
<td>Priority</td>
<td>The computable and base priority of the process. Priority is an integer between 0 and 31. Processes with higher priority get more CPU time.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 3–11 (Cont.) Single Process Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>One of the following process states:</td>
</tr>
<tr>
<td>CEF</td>
<td>Common Event Flag, waiting for a Common Event Flag</td>
</tr>
<tr>
<td>COLPG</td>
<td>Collided Page Wait, involuntary wait state; likely indicates a memory shortage, waiting for hard page faults</td>
</tr>
<tr>
<td>COM</td>
<td>Computable; ready to execute</td>
</tr>
<tr>
<td>COMO</td>
<td>Computable Outswapped, COM, but swapped out</td>
</tr>
<tr>
<td>CUR</td>
<td>Current, currently executing in a CPU</td>
</tr>
<tr>
<td>FPW</td>
<td>Free Page Wait, involuntary wait state; likely indicates a memory shortage</td>
</tr>
<tr>
<td>LEF</td>
<td>Local Event Flag, waiting for a Local Event Flag</td>
</tr>
<tr>
<td>LEFO</td>
<td>Local Event Flag Outswapped; LEF, but outswapped</td>
</tr>
<tr>
<td>HIB</td>
<td>Hibernate, voluntary wait state requested by the process; it is inactive</td>
</tr>
<tr>
<td>HIBO</td>
<td>Hibernate Outswapped, hibernating but swapped out</td>
</tr>
<tr>
<td>MWAIT</td>
<td>Miscellaneous Resource Wait, involuntary wait state; possibly caused by a shortage of a systemwide resource such as no page or swap file capacity or synchronizations for single threaded code</td>
</tr>
<tr>
<td>PFW</td>
<td>Page Fault Wait, involuntary wait state; possibly indicates a memory shortage, waiting for hard page faults</td>
</tr>
<tr>
<td>RWAST</td>
<td>Resource Wait State, waiting for delivery of an asynchronous system trap (AST) that signals a resource availability; usually an I/O is outstanding or a process quota is exhausted</td>
</tr>
<tr>
<td>RWBRK</td>
<td>Resource Wait for BROADCAST to finish</td>
</tr>
<tr>
<td>RWCAP</td>
<td>Resource Wait for CPU Capability</td>
</tr>
<tr>
<td>RWCCLU</td>
<td>Resource Wait for Cluster Transition</td>
</tr>
<tr>
<td>RWCSV</td>
<td>Resource Wait for Cluster Server Process</td>
</tr>
<tr>
<td>RWIMG</td>
<td>Resource Wait for Image Activation Lock</td>
</tr>
<tr>
<td>RWLCK</td>
<td>Resource Wait for Lock ID data base</td>
</tr>
<tr>
<td>RWMBX</td>
<td>Resource Wait on MailBox, either waiting for data in mailbox (to read) or waiting to place data (write) into a full mailbox (some other process has not read from it; mailbox is full so this process cannot write).</td>
</tr>
<tr>
<td>RWMPB</td>
<td>Resource Wait for Modified Page writer Busy</td>
</tr>
<tr>
<td>RWMPRO</td>
<td>Resource Wait for Modified Page list Empty</td>
</tr>
<tr>
<td>RWNPG</td>
<td>Resource Wait for Non Paged Pool</td>
</tr>
<tr>
<td>RWPAG</td>
<td>Resource Wait for Paged Pool</td>
</tr>
<tr>
<td>RWPFF</td>
<td>Resource Wait for Page File Full</td>
</tr>
<tr>
<td>RWQUO</td>
<td>Resource Wait for Pooled Quota</td>
</tr>
<tr>
<td>RWSCS</td>
<td>Resource Wait for System Communication Services</td>
</tr>
<tr>
<td>RWSWP</td>
<td>Resource Wait for Swap File space</td>
</tr>
<tr>
<td>SUSP</td>
<td>Suspended, wait state process placed into suspension; it can be resumed at the request of an external process</td>
</tr>
<tr>
<td>SUSPO</td>
<td>Suspended Outswapped, suspended but swapped out</td>
</tr>
</tbody>
</table>
Table 3–11 (Cont.) Single Process Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS global pages</td>
<td>The shared data or code between processes, listed in pages or pagelets.</td>
</tr>
<tr>
<td>WS private pages</td>
<td>The amount of accessible memory, listed in pages or pagelets.</td>
</tr>
<tr>
<td>WS total pages</td>
<td>The sum of global and private pages or pagelets.</td>
</tr>
<tr>
<td>WS size</td>
<td>The working set size, number of pages or pagelets of memory the process is allowed to use. This value is periodically adjusted by the operating system based on analysis of page faults relative to CPU time used. When it increases in large units, this indicates a process is taking a lot of page faults and its memory allocation is increasing.</td>
</tr>
<tr>
<td>WSdef</td>
<td>The working set default, the initial limit to the number of physical pages or pagelets of memory the process can use. This parameter is listed in the user authorization file (UAF); discrepancies between the UAF value and the displayed value are due to page/longword boundary rounding or other adjustments made by the operating system.</td>
</tr>
<tr>
<td>WSquo</td>
<td>The working set quota, the maximum amount of physical pages or pagelets of memory the process can lock into its working set. This parameter is listed in the UAF; discrepancies between the UAF value and the displayed value are due to page/longword boundary rounding or other adjustments made by the operating system.</td>
</tr>
<tr>
<td>WSextent</td>
<td>The working set extent, the maximum number of physical pages or pagelets of memory the system will allocate for the process. The system provides memory to a process beyond its quota only when it has an excess of free pages and can be recalled if necessary. This parameter is listed in the UAF; any discrepancies between the UAF value and the displayed value are due to page/longword boundary rounding or other adjustments made by the operating system.</td>
</tr>
<tr>
<td>Images activated</td>
<td>The number of times an image is activated.</td>
</tr>
<tr>
<td>Mutexes held</td>
<td>The number of mutual exclusions (mutexes) held. Persistent values other than zero (0) require analysis. A mutex is similar to a lock but is restricted to one CPU. When a process holds a mutex, its priority is temporarily incremented to 16.</td>
</tr>
</tbody>
</table>

Execution Rates

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>The percent of CPU time used by this process. This is the ratio of CPU time to elapsed time. CPU rate is also displayed in the bar graph.</td>
</tr>
<tr>
<td>Direct I/O</td>
<td>The rate at which I/O transfers take place from the pages or pagelets containing the process buffer that the system locks in physical memory to the system devices.</td>
</tr>
<tr>
<td>Buffered I/O</td>
<td>The rate at which I/O transfers take place for the process buffer from an intermediate buffer from the system buffer pool.</td>
</tr>
<tr>
<td>Paging I/O</td>
<td>The rate of read attempts necessary to satisfy page faults. This is also known as Page Read I/O or the Hard Fault Rate.</td>
</tr>
<tr>
<td>Page Faults</td>
<td>The page faults per second for the process. The bar graph visually represents page faults per second.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 3–11 (Cont.) Single Process Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Quotas in Use<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>DIOLM</td>
<td>Direct I/O Limit. A bar graph representing current count of DIOs used with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>BIOLM</td>
<td>Buffered I/O Limit. A bar graph representing current count of BIOs used with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>ASTLM</td>
<td>Asynchronous System Traps Limit. A bar graph representing current count of ASTs used with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>CPU</td>
<td>CPU Time Limit. A bar graph representing current count of CPU time used with respect to the limit that can be attained. If the limit is 0, then this value is not used.</td>
</tr>
<tr>
<td>Wait States<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>Compute</td>
<td>A relative value indicating that the process is waiting for CPU time. The included states are COM, COMO, RWCAP.</td>
</tr>
<tr>
<td>Memory</td>
<td>A relative value indicating that the process is waiting for a page fault that requires data to be read from disk; common during image activation. The included states are PFW, COLPG, FPG, RWPAG, RWNPG, RWMP, RWMB.</td>
</tr>
<tr>
<td>Direct I/O</td>
<td>A relative value indicating that the process is waiting for data to be read from or written to a disk. The included state is DIO.</td>
</tr>
<tr>
<td>Buffered I/O</td>
<td>A relative value indicating that the process is waiting for data to be read from or written to a slower device such as a terminal, line printer, or mailbox. The included state is BIO.</td>
</tr>
<tr>
<td>Control</td>
<td>A relative value indicating that the process is waiting for another process to release control of some resource. The included states are CEF, MWAIT, LEF, LEFO, RWAST, RWMBX, RWSCS, RWCLU, RWCSV, RWUN, and LEF waiting for an ENQ.</td>
</tr>
<tr>
<td>Quotas</td>
<td>A relative value indicating that the process is waiting because the process has exceeded some quota. The included states are QUOTA and RWAST_QUOTA.</td>
</tr>
<tr>
<td>Explicit</td>
<td>A relative value indicating that the process is waiting because the process asked to wait, such as a hibernate system service. The included states are HIB, HIBO, SUSP, SUSP, and LEF waiting for a TQE.</td>
</tr>
<tr>
<td>Job Quotas in Use</td>
<td></td>
</tr>
<tr>
<td>FILLM</td>
<td>File Limit. A bar graph representing current number of open files with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>PGFLQUO</td>
<td>Page File Quota. A bar graph representing current number of disk blocks in page file that the process can use with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>ENQLM</td>
<td>Enqueue Limit. A bar graph representing current count of resources (lock blocks) queued with respect to the limit that can be attained.</td>
</tr>
</tbody>
</table>

¹ When you display the SWAPPER process, no values are listed in this section. The SWAPPER process does not have quotas defined in the same way other system and user processes do.

² The wait state specifies why a process cannot execute, based on application-specific calculations.

(continued on next page)
Table 3–11 (Cont.) Single Process Summary Window Data Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQELM</td>
<td>Timer Queue Entry Limit. A bar graph representing current count of timer requests with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>PRCLM</td>
<td>Process Limit. A bar graph representing current count of subprocesses created with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>BYTLM</td>
<td>Buffered I/O Byte Limit. A bar graph representing current count of bytes used for buffered I/O transfers with respect to the limit that can be attained.</td>
</tr>
<tr>
<td>Image Name</td>
<td>The name of the currently executing image, if available. If this field does not appear, then the data is not resident in memory.</td>
</tr>
</tbody>
</table>

DECamds displays them in the Event Log window. Node is replaced by the name of the node to which the event is related. Process is replaced by the name of the process to which the event is related.

- LOASTQ, node process has used most of its ASTLM process quota
- LOBIOQ, node process has used most of its BIOLM process quota
- LOBYTQ, node process has used most of its BYTLM job quota
- LODIOQ, node process has used most of its DIOLM process quota
- LOENQU, node process has used most of its ENQLM job quota
- LOFILQ, node process has used most of its FILLM job quota
- LOPGFQ, node process has used most of its PGFLQUOTA job quota
- LOPRCQ, node process has used most of its PRCLM process quota
- LOTQEQ, node process has used most of its TQELM job quota
- LOWEXT, node process working set extent is too small
- LOWSQU, node process working set quota is too small
- PRBIOR, node process buffered I/O rate is high
- PRBIOW, node process waiting for buffered I/O
- PRCCOM, node process waiting in COM or COMO
- PRCCUR, node process has high CPU rate
- PRCMUT, node process waiting for a mutex
- PRCPUL, node process has used most of its CPUTIME process quota
- PRCPWT, node process waiting in COLPG, PFW, or FPG
- PRCQUO, node process waiting for a quota
- PRCRWA, node process waiting in RWAST
- PRCRWC, node process waiting in RWCAP
- PRCRWM, node process waiting in RWMBX
- PRCRWP, node process waiting in RWPAG, PWNPG, RWMPB, or RWMPB
- PRCRWS, node process waiting in RWSCS, RWCLU, or RWCSV
- PRCUNK, node process waiting for a system resource
- PRDIOR, node process direct I/O rate is high
- PRDIOW, node process waiting for direct I/O
- PRLCKW, node process waiting for a lock
- PRPGFL, node process high page fault rate
- PRPIOR, node process paging I/O rate is high
3.11 Lock Contention Summary Window

The Lock Contention Summary window shown in Figure 3–12 determines which resources are under contention. It displays all the OpenVMS Lock Manager resources that have potential lock contention situations. The Lock Contention Summary window is available only for groups; attempting to open a Lock Contention Summary for a node opens the node's group window.

Figure 3–12 Lock Contention Summary Window

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Master Node</th>
<th>Parent Resource</th>
<th>Duration</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECW$SERVER_2680009D_0066_0</td>
<td>LCKPAG</td>
<td></td>
<td>00:09:10</td>
<td>VALID</td>
</tr>
<tr>
<td>DECW$SERVER_268000A7_0069_0</td>
<td>LCKPAG</td>
<td></td>
<td>00:09:10</td>
<td>VALID</td>
</tr>
<tr>
<td>DECW$CLIENT_268000A6_0071_0</td>
<td>LCKPAG</td>
<td></td>
<td>00:09:10</td>
<td>VALID</td>
</tr>
<tr>
<td>DECW$CLEINT_268000A7_0069_0</td>
<td>LCKPAG</td>
<td></td>
<td>00:09:10</td>
<td>VALID</td>
</tr>
<tr>
<td>DECW$CLIENT_2680009B_003A_0</td>
<td>LCKPAG</td>
<td></td>
<td>00:09:10</td>
<td>VALID</td>
</tr>
<tr>
<td>DECW$CLIENT_2680009E_0067_0</td>
<td>LCKPAG</td>
<td></td>
<td>00:09:10</td>
<td>VALID</td>
</tr>
<tr>
<td>DECW$CLIENT_2680009B_003C_0</td>
<td>LCKPAG</td>
<td></td>
<td>00:09:10</td>
<td>VALID</td>
</tr>
</tbody>
</table>

Locks are written to AMDS$LOCK_LOG.LOG; see Section B.3 for more information. To interpret the information displayed in the Lock Contention Summary window, you should have an understanding of OpenVMS lock management services. For more information, see the OpenVMS System Services Reference Manual.

Note

Lock contention data is accurate only if every node in an OpenVMS Cluster environment is in the same group. Multiple clusters can share a group, but clusters cannot be divided into different groups without losing accuracy.

You can open a Lock Contention Summary window from the Event Log or System Overview windows, as follows:

- In the Event Log window, click MB3 on any lock contention-related event and choose Display from the menu.
- In the System Overview window:
 1. Click MB3 on any node or group line, and choose Display from the menu.
 2. Choose Lock Contention Summary from the submenu.
Table 3–12 describes the Lock Contention Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Name</td>
<td>The resource name associated with the $ENQ system service call.</td>
</tr>
<tr>
<td>Master Node</td>
<td>The node on which the resource is mastered.</td>
</tr>
<tr>
<td>Parent Resource</td>
<td>The name of the parent resource. If no name is displayed, the resource listed is the parent resource.</td>
</tr>
<tr>
<td>Duration</td>
<td>The amount of time elapsed since DECamds first detected the contention situation.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the lock. See the $ENQ(W) description in the OpenVMS System Services Reference Manual.</td>
</tr>
</tbody>
</table>

You can open a Single Lock Summary window from the Lock Contention Summary window. See Section 3.12 for more information.

Figure 3–13 shows how to determine which filters can or cannot be displayed. To filter specific locks from the display, choose Filter Data... from the Customize menu on the Lock Contention Summary window. A filter dialog box appears with a list of locks currently being filtered from the display.

To add a filter, use either of the following methods:

- Type the name of a filter in the Input Lock Name to Filter field and click on the Add button. You can use the asterisk (*) wildcard character to specify a range of filters. For example, $DSA*$WAITER will filter all locks beginning with $DSA and ending with $WAITER and anything in between.
- Click on a lock in the Lock Contention Summary window. The name of the lock will appear in the Input Lock Name to Filter field (as shown in Figure 3–13). You must click on the Add button to add the filter.
Managing DECamds Data Windows
3.11 Lock Contention Summary Window

Figure 3–13 Filtering Lock Events

DECamds detects the following lock contention-related events and displays them in the Event Log window. Italicized words are replaced with actual values.

- LCKCNT, node possible contention for resource
- LRGHSH, node lock hash table too large \(n \) entries
- RESDNS, node resource hash table dense percentage full \(n \) resources, hash table size \(n \)
- RESPRS, node resource hash table sparse, only percentage full \(n \) resources, table size \(n \)

You can remove a lock from the filter list by selecting a lock and clicking on the Remove button. Any lock contentions affected by the removed filter will be displayed.
3.12 Single Lock Summary Window

The Single Lock Summary window shown in Figure 3–14 displays data about a blocking lock and all locks in the granted, conversion, and waiting queues. You can use it to display detailed information about a lock contention situation. The lock name is specified in the title bar. All locks are written to AMDS$LOCK_LOG.LOG; see Section B.3 for more information.

Figure 3–14 Single Lock Summary Window

In a Single Lock Summary window, if DECamds cannot determine the node name for the group, it uses the cluster system ID (CSID) value, which the OpenVMS Cluster software uses to uniquely identify cluster members.
Managing DECamds Data Windows
3.12 Single Lock Summary Window

To open a Single Lock Summary window, do one of the following:

- In the Lock Contention Summary window, double-click on any field. You can also click MB3 on any field, and choose Display Lock from the menu.
- In the View menu of the Lock Contention Summary window, choose Display Lock.
- In the Event Log window, click MB3 on any lock blocking-related or lock waiting-related event, and choose Display from the menu.

Table 3–13 describes the Single Lock Summary window data fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granted Lock</td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>The node name on which the lock is granted.</td>
</tr>
<tr>
<td>LKID</td>
<td>The lock ID value (which is useful with SDA).</td>
</tr>
<tr>
<td>Process Name</td>
<td>The name of the process owning the blocking lock.</td>
</tr>
<tr>
<td>Lock Type</td>
<td>One of the following: Local Copy, Process Copy, or Master Copy.</td>
</tr>
<tr>
<td>Resource Name</td>
<td>The name of the resource.</td>
</tr>
<tr>
<td>Parent Resource</td>
<td>The name of the parent resource (if any).</td>
</tr>
<tr>
<td>Granted, Conversion, and Waiting Queue</td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>The node on which the lock block resides.</td>
</tr>
<tr>
<td>Process Name</td>
<td>The process name of the process owning the lock.</td>
</tr>
<tr>
<td>LKID</td>
<td>The lock ID value (which is useful with SDA).</td>
</tr>
<tr>
<td>GR Mode</td>
<td>One of the following modes at which the lock is granted: EX, CW, CR, PW, PR, NL</td>
</tr>
<tr>
<td>RQ Mode</td>
<td>One of the following modes at which the lock is requested: EX, CW, CR, PW, PR, NL</td>
</tr>
<tr>
<td>Duration</td>
<td>The length of time the lock has been in the current queue (since the console application found the lock).</td>
</tr>
<tr>
<td>Flags</td>
<td>The flags specified with the $ENQ(W) request.</td>
</tr>
</tbody>
</table>

You can open a window about a specific process in the Single Lock Summary window by double-clicking on the process name.

--- Note ---
Processes that are labeled unknown are associated with system locks. They cannot be opened.

DECamds detects the following single lock-related events and displays them in the Event Log window. Node is replaced by the name of the node to which the event is related. Process is replaced by the name of the process to which the event is related.
3.12 Single Lock Summary Window

- **LCKBLK**, node process blocking resource
- **LCKWAT**, node process waiting for resource granted to process on node

3.13 Cluster Transition/Overview Summary Window

The Cluster Transition/Overview Summary window shown in Figure 3–15 displays information about each node in an OpenVMS Cluster. This window is very similar to the System Overview window; however, the Cluster Transition window lists only one cluster for each set of nodes in a cluster, while the System Overview window lists all the nodes and the user-defined groups the nodes are in.

The window displays summary information as well as information about individual nodes: System Communication Services (SCS) name, SCS ID, Cluster System ID, Votes, Lock Directory Weight value, cluster status, and last transition time.

The data items shown in the window correspond to data that the Show Cluster utility displays for the SYSTEM and MEMBERS classes. A status field display of “unknown” usually indicates that DECamds is not communicating with the node.
To open the Cluster Transition/Overview Summary window, do either of the following:

- In the System Overview window, click MB3 on a node line. Choose Display from the menu displayed and Cluster Transition Summary from the submenu. The system displays the Cluster Transition/Overview Summary window.

- In the Event Log window, Click MB3 on a cluster-related event. Choose Display from the menu displayed and Cluster Transition Summary from the list displayed.
Managing DECamds Data Windows

3.13 Cluster Transition/Overview Summary Window

Note: The Cluster Transition Summary menu option is not available for nodes that are not in the cluster; it is not available from lines that display groups.

3.13.1 Data Displayed

The Cluster Transition/Overview window has two panel displays:

- The Summary (top) panel displays cluster summary information.
- The Cluster Members (bottom) panel lists each node in the cluster.

Table 3–14 describes the Summary panel data fields.

Table 3–14 Data Items in the Summary Panel of the Cluster Transition/Overview Summary Window

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formed</td>
<td>Date and time the cluster was formed.</td>
</tr>
<tr>
<td>Last Trans</td>
<td>Date and time of the most recent cluster state transition.</td>
</tr>
<tr>
<td>Votes</td>
<td>Total number of quorum votes being contributed by all cluster members and quorum disk.</td>
</tr>
<tr>
<td>Expected Votes</td>
<td>Number of votes expected to be contributed by all members of the cluster as determined by the connection manager. This value is based on the maximum of the EXPECTED_VOTES system parameter and the maximized value of the VOTES system parameter.</td>
</tr>
<tr>
<td>Failover Step</td>
<td>Current failover step index; shows which step in the sequence of failover steps the failover is currently executing.</td>
</tr>
<tr>
<td>Members In</td>
<td>Number of members of the cluster DECamds has a connection to.</td>
</tr>
<tr>
<td>Members Out</td>
<td>Number of members of the cluster DECamds either has no connection to or has lost connection to.</td>
</tr>
<tr>
<td>Quorum</td>
<td>Number of votes required to keep cluster above quorum.</td>
</tr>
<tr>
<td>QD Votes</td>
<td>Number of votes given to Quorum Disk. A value of 65535 means there is no Quorum Disk.</td>
</tr>
<tr>
<td>Failover ID</td>
<td>Failover Instance Identification: unique ID of a failover sequence; indicates to system managers whether a failover has occurred since the last time they checked.</td>
</tr>
</tbody>
</table>

Table 3–15 describes the Cluster Members panel data fields.

Table 3–15 Data Items in the Cluster Members Panel of the Cluster Transition/Overview Summary Window

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCS Name</td>
<td>System Communication Services name for the node (system parameter SCSNODE)</td>
</tr>
<tr>
<td>SCS Id</td>
<td>System Communication Services identification for the node (system parameter SCSYSTEMID)</td>
</tr>
<tr>
<td>CSID</td>
<td>Cluster System Identification</td>
</tr>
<tr>
<td>Votes</td>
<td>Number of votes the member contributes</td>
</tr>
<tr>
<td>Expect</td>
<td>Expected votes to be contributed as set by the EXPECTED_VOTES system parameter</td>
</tr>
</tbody>
</table>

(continued on next page)
3.13 Cluster Transition/Overview Summary Window

Table 3–15 (Cont.) Data Items in the Cluster Members Panel of the Cluster Transition/Overview Summary Window

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quorum</td>
<td>Recommended quorum value derived from the expected votes</td>
</tr>
<tr>
<td>Lck:DirWt</td>
<td>Lock Manager distributed directory weight as determined by the LCKDIRWT system parameter</td>
</tr>
<tr>
<td>Status</td>
<td>Current cluster member status: MEMBER, UNKNOWN, or BRK_NON (break nonmember)</td>
</tr>
<tr>
<td>Transition Time</td>
<td>Time cluster member had last transition</td>
</tr>
</tbody>
</table>

3.13.2 Notes About the Display

Following are notes about the display of data in the window:

- No highlighting conventions are used in the window; all data items are displayed in normal mode.
- You cannot filter out any data.
- The data items in the window are sorted on an "as-found" basis. You cannot change the sort criteria.
- When you click on an item, DECamds temporarily stops updating the window for 15 seconds or until you choose an item from a menu.
- DECamds signals the LOVOTE event when the difference between the cluster’s quorum and votes values is less than the threshold for the event:

 LOVOTE, 'node' VOTES count is close to or below QUORUM

 The default threshold for LOVOTE is 1.
- You can change collection intervals.

3.14 System Communications Architecture Summary Window

The System Communications Architecture Summary (SCA Summary) window shown in Figure 3–16 displays information about a selected node's virtual circuits and connections to other nodes in a cluster. (The display represents the view one node has of other nodes in the cluster.) More than one type of virtual circuit indicates that more than one path to the remote node exists.
Managing DECamds Data Windows

3.14 System Communications Architecture Summary Window

Figure 3–16 SCA Summary Window

Each line in the window shows either a summary of all system applications (SysApps) using the virtual circuit communication or the communication on the connection between a local and a remote SysApp. The data displayed in the window is similar to the information that the Show Cluster utility displays for the CIRCUITS, CONNECTIONS, and COUNTERS classes. Unlike Show Cluster, however, this display shows only SCA connections to other OpenVMS nodes; it does not show SCA connections to the Disk Storage Architecture (DSA) or to devices such as FDDI or DSSI disk controllers.

By clicking MB3 on a node name and choosing View SysApps from the pop-up menu, you can display the system applications that are using virtual circuits. This option expands the list below a virtual circuit to show all the system applications that contribute to that virtual circuit. (The SysApp lines are dimmed and right-justified.)

To hide the display of system applications, click MB3 and choose Hide SysApps from the pop-up menu.

To display a menu that allows you to toggle between Raw and Rate data, click MB3 on the data to the right of the State field. (For messages, the default is the display of rate data; raw data is the default for all other types of data.)

To open an SCA Summary window, follow these steps:

1. In the Cluster Transition/Overview Summary window, click MB3 on an SCS name.
 The system displays a pop-up menu.
2. Choose Display SCA Summary.
The system displays the System Communication Architecture (SCA) Summary window.

Table 3–16 describes the SCA Summary window data fields.

Table 3–16 Data Items in the SCA Summary Window

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NodeName</td>
<td>SCS name of the remotely connected node.</td>
</tr>
<tr>
<td>VC(Type)</td>
<td>The virtual circuit being used and its type.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the virtual circuit connection.</td>
</tr>
<tr>
<td>Messages</td>
<td>Relatively small data packets sent and received between nodes for control information.</td>
</tr>
<tr>
<td>Block Transfer</td>
<td>Fields listing the count of the number of block data transfers and requests initiated.</td>
</tr>
<tr>
<td>KB Mapped</td>
<td>Field listing the number of kilobytes mapped for block data transfer. Note: This field is available in Raw data format only.</td>
</tr>
<tr>
<td>Block Data (KB)</td>
<td>Fields listing in kilobytes the data transferred via block data transfer.</td>
</tr>
<tr>
<td>Datagrams</td>
<td>Number of unacknowledged messages sent between virtual circuits.</td>
</tr>
<tr>
<td>Credit Wait</td>
<td>Number of times the connection had to wait for a send credit.</td>
</tr>
<tr>
<td>CDT Wait</td>
<td>Number of times the connection had to wait for a buffer descriptor.</td>
</tr>
<tr>
<td>Local SysApp</td>
<td>Name of the local system application using the virtual circuit.</td>
</tr>
<tr>
<td>Remote SysApp</td>
<td>Name of the remote system application being communicated to.</td>
</tr>
</tbody>
</table>

3.14.1 Notes About the Display

Following are notes about the display of data in the window:

- The window does not follow highlighting conventions: virtual circuit lines are displayed normally and are left-aligned; SysApp lines are dimmed and are indented by a column.
- You cannot filter out any data.
- The data items in the window are sorted on an "as-found" basis. You cannot change sort criteria at this time.
- DECamds signals the LOSTVC event when a virtual circuit between two nodes has been lost. This loss might be due either to a cluster node crashing or to cluster problems that caused the virtual circuit to close.

LOSTVC, <node> lost virtual circuit (<string>) to node <node>

- You can change collection intervals.
3.15 NISCA Summary Window

The Network Interconnect System Communication Architecture (NISCA) is the transport protocol responsible for carrying messages such as disk I/Os and lock messages across Ethernet and FDDI LANs to other nodes in the cluster. More detailed information about the protocol is in the OpenVMS Cluster Systems manual.

The NISCA Summary window shown in Figure 3–17 displays detailed information about the LAN (Ethernet or FDDI) connection between two nodes. DECamds displays one window per virtual circuit provided the virtual circuit is running over a PEA0: device.

The purpose of this window is to view statistics in real time and to troubleshoot problems found in the NISCA protocol. The window is intended primarily as an aid to diagnosing LAN-related problems. The OpenVMS Cluster Systems manual describes the parameters shown in this window and tells how to use them to diagnose LAN-related cluster problems.

The window provides the same information as the OpenVMS System Dump Analyzer (SDA) command SHOW PORTS/VC=VC_nodex. (VC refers to virtual circuit; nodex is a node in the cluster. The system defines VC-nodex after a SHOW PORTS command is issued from SDA.)
To open an NISCA Summary window, do one of the following:

- In the SCA Summary window, click MB3 on a row with the PEA0: Virtual Circuit. Choose View SysApps from the popup menu, click MB3 on a SysApps node, and Choose Display NISCA. The system displays the NISCA Summary window.

 Note: If the Display NISCA option is dimmed, the NISCA protocol is not running for that system application.

- Double-click MB1 on a row with a PEA0: to display an expanded list below the node name.

- Double-click MB1 on a SysApps node to display the NISCA Summary window.
3.15 NISCA Summary Window

3.15.1 Data Displayed
Panels in the NISCA Summary window contain the data described in the following tables.

Table 3-17 lists data items displayed in the Transmit Panel, which contains data packet transmission information.

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>Number of packets transmitted through the virtual circuit to the remote node, including both sequenced and unsequenced (channel control) messages, and lone acknowledgments.</td>
</tr>
<tr>
<td>Unsequenced (DG)</td>
<td>Count and rate of the number of unsequenced datagram packages transmitted.</td>
</tr>
<tr>
<td>Sequenced</td>
<td>Count and rate of the number of sequenced packages transmitted. Sequenced messages are used for application data.</td>
</tr>
<tr>
<td>Lone ACK</td>
<td>Count and rate of the number of lone acknowledgments.</td>
</tr>
<tr>
<td>ReXmt Count</td>
<td>Number of packets retransmitted. Retransmission occurs when the local node does not receive an acknowledgment for a transmitted packet within a predetermined timeout interval.</td>
</tr>
<tr>
<td>ReXmt Timeout</td>
<td>Number of retransmission timeouts that have occurred.</td>
</tr>
<tr>
<td>ReXmt Ratio</td>
<td>Ratio of ReXmt Count current and past to the current and past number of sequenced messages sent.</td>
</tr>
<tr>
<td>Bytes</td>
<td>Count and rate of the number of bytes transmitted through the virtual circuit.</td>
</tr>
</tbody>
</table>

Table 3-18 describes data items displayed in the Receive Panel, which contains data packet reception information.

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>Number of packets transmitted through the virtual circuit to the remote node, including both sequenced and unsequenced (channel control) messages, and lone acknowledgments.</td>
</tr>
<tr>
<td>Unsequenced (DG)</td>
<td>Count and rate of the number of unsequenced packages received.</td>
</tr>
<tr>
<td>Sequenced</td>
<td>Count and rate of the number of sequenced packages received. Sequenced messages are used for application data.</td>
</tr>
<tr>
<td>Lone ACK</td>
<td>Count and rate of the number of lone acknowledgments.</td>
</tr>
<tr>
<td>Duplicate</td>
<td>Number of redundant packets received by this system.</td>
</tr>
<tr>
<td>Out of Order</td>
<td>Number of packets received out of order by this system.</td>
</tr>
<tr>
<td>Illegal Ack</td>
<td>Number of illegal acknowledgments received.</td>
</tr>
<tr>
<td>Bytes</td>
<td>Count and rate of the number of bytes received through the virtual circuit.</td>
</tr>
</tbody>
</table>

Table 3-19 describes data items displayed in the Congestion Control Panel, which contains transmit congestion control information.
The values in the panel list the number of messages that can be sent to the remote node before receiving an acknowledgment and the retransmission timeout.

Table 3–19 Data Items in the Congestion Control Panel

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Window Current</td>
<td>Current value of the pipe quota (transmit window). After a timeout, the pipe quota is reset to 1 to decrease congestion and is allowed to increase quickly as acknowledgments are received.</td>
</tr>
<tr>
<td>Transmit Window Grow</td>
<td>The slow growth threshold: size at which the rate of increase is slowed to avoid congestion on the network again.</td>
</tr>
<tr>
<td>Transmit Window Max</td>
<td>Maximum value of pipe quota currently allowed for the virtual circuit based on channel limitations.</td>
</tr>
<tr>
<td>Transmit Window Reached</td>
<td>Number of times the entire transmit window was full. If this number is small as compared with the number of sequenced messages transmitted, the local node is not sending large bursts of data to the remote node.</td>
</tr>
<tr>
<td>Roundtrip uSec</td>
<td>Average roundtrip time for a packet to be sent and acknowledged. The value is displayed in microseconds.</td>
</tr>
<tr>
<td>Roundtrip Deviation uSec</td>
<td>Average deviation of the roundtrip time. The value is displayed in microseconds.</td>
</tr>
<tr>
<td>Retransmit Timeout uSec</td>
<td>Value used to determine packet retransmission timeout. If a packet does not receive either an acknowledging or a responding packet, the packet is assumed to be lost and will be resent.</td>
</tr>
<tr>
<td>UnAcked Messages</td>
<td>Number of unacknowledged messages.</td>
</tr>
<tr>
<td>CMD Queue Length</td>
<td>Current length of all command queues.</td>
</tr>
<tr>
<td>CMD Queue Max</td>
<td>Maximum number of commands in queues so far.</td>
</tr>
</tbody>
</table>

Table 3–20 describes data items displayed in the Channel Selection Panel, which contains channel selection information.

Table 3–20 Data Items in the Channel Selection Panel

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer Size</td>
<td>Maximum PPC data buffer size for this virtual circuit.</td>
</tr>
<tr>
<td>Channel Count</td>
<td>Number of channels connected to this virtual circuit.</td>
</tr>
<tr>
<td>Channel Selections</td>
<td>Number of channel selections performed.</td>
</tr>
<tr>
<td>Local Device</td>
<td>Name of the local device that the channel uses to send and receive packets.</td>
</tr>
<tr>
<td>Local LAN Address</td>
<td>Address of the local LAN device that performs sends and receives.</td>
</tr>
<tr>
<td>Remote Device</td>
<td>Name of the remote device that the channel uses to send and receive packets.</td>
</tr>
<tr>
<td>Remote LAN Address</td>
<td>Address of the remote LAN device performing the sends and receives.</td>
</tr>
</tbody>
</table>

Table 3–21 describes data items displayed in the VC Closures panel, which contains information about the number of times a virtual circuit has closed for a particular reason.
3.15 NISCA Summary Window

Table 3–21 Data Items in the VC Closures Panel

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeqMsg TMO</td>
<td>Number of sequence transmit timeouts.</td>
</tr>
<tr>
<td>CC DFQ Empty</td>
<td>Number of times the channel control DFQ was empty.</td>
</tr>
<tr>
<td>Topology Change</td>
<td>Number of times PEDRIVER performed a failover from FDDI to Ethernet, necessitating the closing and reopening of the virtual circuit.</td>
</tr>
<tr>
<td>NPAGEDYN Low</td>
<td>Number of times the virtual circuit was lost because of a pool allocation failure on the local node.</td>
</tr>
</tbody>
</table>

Table 3–22 lists data items displayed in the Packets Discarded Panel, which contains information about the number of times packets were discarded for a particular reason.

Table 3–22 Data Items in the Packets Discarded Panel

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Xmt Chan</td>
<td>Number of times there was no transmit channel.</td>
</tr>
<tr>
<td>Ill Seq Msg</td>
<td>Number of times an illegal sequenced message was received.</td>
</tr>
<tr>
<td>TR DFQ Empty</td>
<td>Number of times the Transmit DFQ was empty.</td>
</tr>
<tr>
<td>CC MFQ Empty</td>
<td>Number of times the Control Channel MFQ was empty.</td>
</tr>
<tr>
<td>Rcv Short Msg</td>
<td>Number of times a short transport message was received.</td>
</tr>
<tr>
<td>Bad Checksum</td>
<td>Number of times there was a checksum failure.</td>
</tr>
<tr>
<td>TR MFQ Empty</td>
<td>Number of times the Transmit MFQ was empty.</td>
</tr>
<tr>
<td>Cache Miss</td>
<td>Number of messages that could not be placed in the cache.</td>
</tr>
</tbody>
</table>

3.15.2 Notes About the Display

Following are notes about the display of data in the window:

- No highlighting conventions are used in the NISCA Summary window.
- You cannot sort or filter the data displayed in this window.
- You can change collection intervals.
Performing Fixes

You can perform **fixes** to resolve resource availability problems and improve system availability.

This chapter covers the following topics:

- Understanding fixes
- Performing fixes
- Typical fix examples

Caution

Performing certain actions to fix a problem can have serious repercussions on a system, including possibly causing a system failure. Therefore, only experienced system managers should perform fixes.

4.1 Understanding Fixes

When DECamds detects a resource availability problem, it analyzes the problem and proposes one or more fixes to improve the situation. Most fixes correspond to an OpenVMS system service call.

The following fixes are available from DECamds:

<table>
<thead>
<tr>
<th>Fix Category</th>
<th>Possible Fixes</th>
<th>System Service Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory usage fixes</td>
<td>Adjust working set, Purge working set</td>
<td>$ADJ WSL, $PURGWS</td>
</tr>
<tr>
<td>Process fixes</td>
<td>Delete a process, Exit an image</td>
<td>$DELPRC, $FORCEX</td>
</tr>
<tr>
<td>Adjust Process Quota Limit fix</td>
<td>Change limits for AST, BIO, DIO, ENQ, FIL, PRC, and TQE process quota limits</td>
<td>None</td>
</tr>
<tr>
<td>Process state fixes</td>
<td>Resume a process, Suspend a process</td>
<td>$RESUME, $SUSPND</td>
</tr>
<tr>
<td>Process priority fixes</td>
<td>Lower or raise a process priority</td>
<td>$SETPRI</td>
</tr>
<tr>
<td>Quorum fix</td>
<td>Adjust cluster quorum</td>
<td>None</td>
</tr>
<tr>
<td>System fix</td>
<td>Crash node</td>
<td>None</td>
</tr>
</tbody>
</table>
Performing Fixes
4.1 Understanding Fixes

Before you perform a fix, you should understand the following information:

- Fixes are optional.
- You must have write access to perform a fix. (See Section 1.3 for more information about DECamds security.)
- You cannot undo many fixes. (After using the crash node fix, for example, the node must be rebooted.)
- The exit image, delete process, and suspend process fixes should not be applied to system processes. Doing so can require rebooting the node.
- Whenever you exit an image, you cannot return to that image.
- Processes that have exceeded their job or process quota cannot be deleted.
- DECamds ignores fixes applied to the SWAPPER process.

4.2 Performing Fixes

Standard OpenVMS privileges restrict write access of users. When you run the Data Analyzer, you must have the CMKRNL privilege to send a write (fix) instruction to a node with a problem.

To initiate a fix, perform one of the following actions:

- From any of the data windows, double-click on a process, and then choose an action from the Fix menu.
- Click MB3 on an event, and choose Fix from the menu.

DECamds displays a dialog box listing the fixes you can perform for the selected event. The recommended choice is highlighted. When you click on OK or Apply, DECamds performs one of the following actions:

- If the event you selected is not specific to a certain process, DECamds automatically performs the fix. Some fixes are performed automatically when “(automatic)” is displayed next to the selection.
- If the event is specific to a process, DECamds displays another dialog box in which you can specify the fix parameters. For example, for the Adjust Working Set Size fix, you specify a new working set size for the process.

DECamds performs the highlighted fix as long as the event still exists. If the event you are fixing has changed, the dialog box disappears when you click on OK, Apply, or Cancel, and the fix is not performed.

Table 4–1 summarizes all fixes alphabetically and specifies the windows from which they are available.
Table 4-1 Summary of DECamds Fixes

<table>
<thead>
<tr>
<th>Problem to be Solved</th>
<th>Fix</th>
<th>Available From</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process quota has reached its limit and has entered RWAIT state</td>
<td>Adjust Process Quota Limit</td>
<td>Single Process Summary Event Log</td>
<td>Process receives greater limit.</td>
</tr>
<tr>
<td>Cluster hung</td>
<td>Adjust Quorum</td>
<td>Node Summary</td>
<td>Quorum for cluster is adjusted.</td>
</tr>
<tr>
<td>Working set too high or low</td>
<td>Adjust Working Set</td>
<td>Event Log</td>
<td>Removes unused pages from working set; page faulting might occur.</td>
</tr>
<tr>
<td>Runaway process</td>
<td>Change Process</td>
<td>CPU Summary</td>
<td>Priority stays at selected setting.</td>
</tr>
<tr>
<td>Runaway process</td>
<td>Change Process</td>
<td>CPU Summary</td>
<td>Priority stays at selected setting.</td>
</tr>
<tr>
<td>Runaway process</td>
<td>Change Process</td>
<td>CPU Summary</td>
<td>Priority stays at selected setting.</td>
</tr>
<tr>
<td>Node resource hanging cluster</td>
<td>Crash Node</td>
<td>System Overview</td>
<td>Node crashes with operator requested shutdown.</td>
</tr>
<tr>
<td>Process looping, intruder</td>
<td>Delete Process</td>
<td>Any process window</td>
<td>Process no longer exists.</td>
</tr>
<tr>
<td>Endlessly process loop in same PC range</td>
<td>Exit Image</td>
<td>Any process window</td>
<td>Exit from current image.</td>
</tr>
<tr>
<td>Node or process low memory</td>
<td>Purge Working Set</td>
<td>Event Log</td>
<td>Frees memory; page faulting might occur.</td>
</tr>
<tr>
<td>Process previously suspended</td>
<td>Resume Process</td>
<td>Event Log</td>
<td>Process starts from point it was suspended.</td>
</tr>
<tr>
<td>Runaway process, unwelcome intruder</td>
<td>Suspend Process</td>
<td>Event Log</td>
<td>Process gets no computes.</td>
</tr>
</tbody>
</table>

The following sections provide reference information about each DECamds fix.
4.2 Performing Fixes

4.2.1 Adjust Quorum Fix

When you perform the Adjust Quorum fix, DECamds displays a dialog box similar to the one shown in Figure 4–1.

Figure 4–1 FIX Adjust Quorum Dialog Box

The Adjust Quorum fix forces the node to refigure the quorum value. This fix is the equivalent of the Interrupt Priority C (IPC) mechanism used at system consoles for the same purpose. The fix forces the adjustment for the entire cluster so that each node in the cluster will have the same new quorum value.

The Adjust Quorum fix is useful when the number of votes in a cluster falls below the quorum set for that cluster. This fix allows you to readjust the quorum so that it corresponds to the current number of votes in the cluster.
4.2.2 Adjust Process Quota Limit

When you perform the Adjust Process Quota Limit fix, DECamds displays a dialog box similar to the one shown in Figure 4–2.

Figure 4–2 FIX Adjust Process Quota Limit Dialog Box

If a process is waiting for a resource, you can use the Adjust Process Quota Limit fix to increase the resource limit so that the process can continue. The increased limit is only in effect for the life of the process, however; any new process will be assigned the quota set in the UAF.

To use this fix, select the resource and then use the slide bar to change the current setting. Finally, select one of the following:

- **OK** — to apply the fix and exit the window
- **Apply** — to apply the fix and not exit the window (so that you can continue to make changes)
- **Cancel** — not to perform the fix and exit the window
Performing Fixes
4.2 Performing Fixes

4.2.3 Adjust Working Set Fix

When you perform the Adjust Working Set fix, DECamds displays a dialog box similar to the one shown in Figure 4–3.

Figure 4–3 FIX Adjust Working Set Size Dialog Box

Adjusting the working set can give needed memory to other processes that are page faulting. In your adjustment, try to bring the working set size closer to the actual count being used by nonpage faulting processes.

--- Caution

If the automatic working set adjustment is enabled for the system, a fix to Adjust Working Set Size will disable the automatic adjustment for the process.

4.2.4 Change Process Priority Fix

When you perform the Change Process Priority fix, DECamds displays a dialog box similar to Figure 4–4.
Setting a priority too high for a compute-bound process allows it to consume all the CPU cycles on the node, which can affect performance dramatically. On the other hand, setting a priority too low prevents the process from getting enough CPU cycles to do its job, which can also affect performance.

4.2.5 Crash Node Fix

When you perform the Crash Node fix, DECamds displays a dialog box similar to Figure 4–5.

Figure 4–4 FIX Process Priority Dialog Box

![FIX Process Priority Dialog Box](image)

Figure 4–5 FIX Crash Node Dialog Box

![FIX Crash Node Dialog Box](image)
Performing Fixes
4.2 Performing Fixes

Caution

The crash node fix is an operator-requested bugcheck from the driver. It happens immediately when you click on OK in the Fix Crash Node dialog box. After performing this fix, the node cannot be restored to its previous state. After a crash, the node must be rebooted.

Recognizing a System Failure Forced by DECamds

Because a user with suitable privileges can force a node to fail from the Data Analyzer by using the Crash Node fix, system managers have requested a method for recognizing these particular failure footprints so that they can distinguish them from other failures. These failures all have identical footprints: they are operator-induced system failures in kernel mode at IPL 8. The top of the kernel stack is similar to the following display:

```
SP => Quadword system address
Quadword data
1BE0DEAD.00000000
00000000.00000000
Quadword data TRAP$CRASH
Quadword data SYS$RMDRIVER + offset
```

4.2.6 Exit Image and Delete Process Fixes

When you perform either the Exit Image or Delete Process fix, DECamds displays a dialog box similar to Figure 4–6.

Figure 4–6 FIX Process State Dialog Box — Exit Image or Delete Process

You cannot reverse the action when you delete a process that is in a resource wait state. You must reboot the node. Deleting a process on a node that is in a resource wait state might not have an effect on the process.

Exiting an image on a node can stop an application that is required by the user. Check the single process window first to determine which image it is running.
4.2 Performing Fixes

Caution
Deleting or exiting a system process could corrupt the kernel.

4.2.7 Purge Working Set Fix
When you perform the Purge Working Set fix, DECamds displays a dialog box similar to Figure 4–7.

Figure 4–7 FIX Purge Working Set Dialog Box

Continual purging of a working set on a node could force excessive page faulting, which affects system performance.

4.2.8 Suspend Process and Resume Process Fixes
When you perform either the Suspend Process or Resume Process fix, DECamds displays a dialog box similar to the one shown in Figure 4–8.
Performing Fixes

4.2 Performing Fixes

Figure 4–8 FIX Process State Dialog Box — Suspend or Resume Process

Suspending a process that is consuming excess CPU time can improve perceived CPU performance by freeing the CPU for use by other processes. Conversely, resuming a process that was using excess CPU time while running might reduce perceived CPU performance.

Caution

Do not suspend system processes, especially JOB_CONTROL.

4.3 Examples for Fixing Low Memory Availability

This section describes two approaches for solving a low memory problem, which is a common resource availability problem.

The procedure in Section 4.3.1 uses DECamds default settings. The procedure in Section 4.3.2 shows how you can use DECamds to make a more detailed analysis and investigation. Both examples begin at the Event Log window entry.

4.3.1 Performing a Fix Using Automatic Fix Settings

When a process is page faulting, for example, it may signal a problem of available memory. A low memory (LOMEMY) event is generated. To fix this problem, you should purge the working sets of inactive processes. This will free up memory for the process that is page faulting. DECamds offers a quick, direct way to fix this and similar problems by performing the following steps:

1. Click MB3 on the event and choose Fix.

 If the event is related to a specific process, DECamds displays a dialog box with fixes you can perform. If the event is not related to a specific process but may be related to more than one process, DECamds automatically performs the fix.

 In the low memory example, DECamds displays a dialog box suggesting the automatic Purge Working Set fix.

2. Click on OK or Apply to perform the fix.
Performing Fixes

4.3 Examples for Fixing Low Memory Availability

The Purge Working Set fix purges the working set of the five processes that are the highest consumers of memory and are not page faulting. If this fix is not sufficient and the low memory event entry returns, repeat the fix every 15 or 20 seconds until enough working sets are purged to eliminate the event message. If two or three purges are not sufficient, then you should investigate manually.

4.3.2 Performing a Fix Using Manual Investigation

DECamds lets you manually display additional information related to an event before performing a fix. The following example uses the same low memory problem described in the previous section to investigate and select specific fixes for the problem.

For this example, manually select the processes you want to fix from the Memory Summary window. You also may want to refer to data in the CPU Summary window.

To investigate the low memory event before fixing it, perform the following steps:

1. Click MB3 on the event and choose Display.

 DECamds displays a dialog box with a window name highlighted to indicate the recommended path for information. In the example shown in Figure 4–9, the Memory Summary window is recommended.

Figure 4–9 Sample Fix Dialog Box

2. Click on Apply to open the Memory Summary window shown in Figure 4–10 and keep the dialog box.
Performing Fixes
4.3 Examples for Fixing Low Memory Availability

3. To determine which process consumes the most memory and is not page faulting, you can sort and examine the data in the Memory Summary window. In this example, the process TGOODWIN_1 is consuming the most memory and is page faulting.

4. Select the Node Summary window from the Low Memory dialog box and click on Apply to display the window. DECamds displays a window similar to Figure 4–11.
Performing Fixes

4.3 Examples for Fixing Low Memory Availability

Figure 4–11 DECamds Node Summary Window

The Node Summary window in Figure 4–11 confirms there is little free memory available. (The Node Summary window also can show other activity that is relevant in diagnosing the problem, such as a high number of page faults.)

5. Purge the working sets. Choose which process’s working sets are to be purged by performing the following steps:
 a. In the Memory Summary window, select any process, click MB3 on the count field, and choose Fix from the menu.
 b. Click on OK or Apply in the Fix dialog box.
This chapter describes how to organize data collection, analysis, and display by filtering, sorting, and customizing DECamds. It also describes how some of these tasks can optimize the performance of DECamds.

5.1 Customizing DECamds Defaults

To set DECamds application values such as bar graph colors and automatic collection options, choose DECamds Customizations from the Customize menu of the Event Log or System Overview window. DECamds displays the DECamds Application Customizations dialog box as shown in Figure 5–1.
Customizing DECamds
5.1 Customizing DECamds Defaults

Figure 5–1 DECamds Application Customizations Dialog Box

Table 5–1 lists the items you can customize.
To save your changes from one use to the next, choose Save DECamds Customizations from the Customize menu of the Event Log or System Overview window. The changes are stored in the AMDS$APPLIC_CUSTOMIZE.DAT file.

Subsequent installations of DECamds will not overwrite existing customization files. The installation procedure will check for the existence of each customization file. If found, the procedure will provide any new file with the .TEMPLATE file extension. The installer must check the new .TEMPLATE files for new features implemented in future releases; any changes will be stated in the online release notes in the following location:

SYS$HELP:AMDS0nn.RELEASE_NOTES

Note that nn refers to the version number of the release.
5.1 Customizing DECamds Defaults

5.1.1 Setting Default Data Collection

By default, DECamds collects the following categories of data when started:

- **Node Summary**
- **Page/Swap File Summary**
- **Lock Contention Summary**

You can change the default amount of data collected when DECamds starts by choosing DECamds Customizations from the Customize menu in the Event Log or System Overview window. The DECamds Application Customizations dialog box appears and you can click on the Automatic Collection Options buttons to select

Table 5-1 DECamds Application Defaults

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Color</td>
<td>Red</td>
<td>Specifies the bar graph color used for signaled events.</td>
</tr>
<tr>
<td>NoEvent Color</td>
<td>Green</td>
<td>Specifies the bar graph color used for nonsignaled events.</td>
</tr>
<tr>
<td>Collection Interval Factor</td>
<td>1</td>
<td>This value is multiplied by a window’s collection interval definition. Used to force windows to have longer time spans between data collection. Increasing this number decreases the use of the Data Analyzer’s CPU and LAN.</td>
</tr>
<tr>
<td>Automatic Collection Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>On</td>
<td>Determines whether node data is collected at startup.</td>
</tr>
<tr>
<td>CPU</td>
<td>Off</td>
<td>Determines whether CPU data is collected at startup.</td>
</tr>
<tr>
<td>Memory</td>
<td>Off</td>
<td>Determines whether memory data is collected at startup.</td>
</tr>
<tr>
<td>I/O</td>
<td>Off</td>
<td>Determines whether I/O data is collected at startup.</td>
</tr>
<tr>
<td>Disk</td>
<td>Off</td>
<td>Determines whether disk data is collected at startup.</td>
</tr>
<tr>
<td>Volume</td>
<td>Off</td>
<td>Determines whether volume data is collected on startup.</td>
</tr>
<tr>
<td>Page/Swap</td>
<td>On</td>
<td>Determines whether page and swap data is collected at startup.</td>
</tr>
<tr>
<td>Lock</td>
<td>On</td>
<td>Determines whether lock contention data is collected at startup.</td>
</tr>
<tr>
<td>CluTran</td>
<td>On</td>
<td>Determines whether a view of the cluster from the node on which Collect Cluster Transition Information was selected is collected.</td>
</tr>
<tr>
<td>Application State Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show Nodes</td>
<td>On</td>
<td>Determines whether the System Overview window starts up with individual node names displayed.</td>
</tr>
<tr>
<td>Lock Event Collect</td>
<td>Off</td>
<td>Determines whether DECamds automatically collects additional data about all the processes waiting for a locked resource.</td>
</tr>
<tr>
<td>Automatic Event Investigation</td>
<td>Off</td>
<td>Determines whether additional data is collected when DECamds detects an event.</td>
</tr>
<tr>
<td>Highlight Events</td>
<td>On</td>
<td>Determines whether event-related data is highlighted.</td>
</tr>
</tbody>
</table>
5.1 Customizing DECamds Defaults

or disable the categories you want. To save the settings for the next time you run DECamds, choose Save DECamds Customizations from the Customize menu.

5.1.2 Setting Automatic Event Investigation

Automatic Event Investigation enhances the speed with which you can pursue a specified event. When this option is enabled, DECamds automatically collects follow-up data on the event. When this option is disabled, you must initiate follow-up data collection when an event occurs.

To enable automatic event investigation, choose Enable Automatic Event Investigation from the Control menu of the System Overview or Event Log window. To disable it, choose Disable Automatic Event Investigation.

You also can set Automatic Event Investigation by choosing DECamds Customizations from the Customize menu; then click on the Automatic Event Investigation button in the resulting DECamds Application Customizations dialog box. To save the settings for the next time you run DECamds, choose Save DECamds Customizations from the Customize menu.

Note that enabling this option can significantly increase CPU, memory, and LAN traffic load. By default, DECamds does not automatically investigate events that might require attention. Automatic investigation applies only to events that are detected after you enable the option. It does not apply to lock-related events, which you can control using the DECamds Application Customizations dialog box.

5.1.3 Setting Automatic Lock Investigation

With Automatic Lock Investigation, the Data Analyzer automatically investigates any signaled lock contention events. Setting this option allows you to determine more quickly the blocking lock in a resource contention situation.

Note that this option sometimes uses more DECamds memory, CPU, and LAN bandwidth to investigate locks that are very transient.

To enable automatic investigation of locks, click on the Lock Event Collect button in the DECamds Application Customizations dialog box.

5.2 Filtering Data

DECamds can collect and display every event regardless of how important or unimportant an event is to you. However, you can narrow the focus so that the events that you want to see are displayed. You can use the following methods to determine which events qualify for your attention:

- Filter all events on a global severity basis. For example, you might not want to see any event that has less than a 40 severity value.
- Define specific event criteria. For example, you can refine the global filtering by also defining that DSKRWT event (high disk device Rwait count) must pass your specifications before being considered an event worth displaying or logging.

Figure 5–2 shows the process an event must pass through to qualify as important enough to be logged or displayed for your attention.
5.2 Filtering Data

Figure 5–2 Event Qualification

Data Analyzer gets information from the Data Provider

Event Severity Check
Set in Event Log Filter dialog box. Choose Filter Data... from the Customize menu of the Event Log.

Data meets or exceeds values to signal an event?

Yes

No

Do nothing.

Test Threshold Values
Set in event customization dialog box. Choose Customize Events from Event Log Customize menu. Double-click on an event.

Data meets or exceeds threshold values?

Yes

No

Do nothing.

Add 1 to Occurrence counter.

Test Threshold Values
Set in event customization dialog box. Choose Customize Events from Event Log Customize menu. Double–click on an event.

Occurrence count>=set value?

Yes

No

Do nothing.

Signal event.

Event Severity Check
Set in Event Log Filter dialog box. Choose Filter Data... from the Customize menu of the Event Log.

Data meets or exceeds values to display an event?

Yes

No

Write the event to the AMDS$LOG file, OPCOM, or user file.

Display event and write the event to the AMDS$LOG file, OPCOM, or user file.
5.2 Filtering Data

5.2.1 Filtering Events

To specify the events to be displayed in the Event Log window, perform the following steps:

1. Choose Filter Data... from the Customize menu. A filter dialog box appears. Table 5–2 describes the filter options.

Table 5–2 Event Log Filters

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>Controls the severity level at which events are displayed in the Event Log menu. By default, all events are displayed. Increasing this value reduces the number of event messages in the Event Log window and can improve perceived response time.</td>
</tr>
<tr>
<td>Event Bell</td>
<td>Determines which events are marked by an audible signal by specifying a minimum event severity value. When a new event is displayed, if the severity value is the same or greater than the specified value, an audible notification is given. To disable the sound, specify a value of 101.</td>
</tr>
<tr>
<td>Bell Volume</td>
<td>Controls the pitch or sound level at which the bell is rung when an event is signaled whose priority is greater than the Event Bell filter.</td>
</tr>
<tr>
<td>Event Highlight</td>
<td>Determines which events are marked by a visual signal by specifying a minimum event severity value. When a new event is displayed, if the severity value is the same or greater than the specified value, an event is highlighted. To disable highlighting, specify a value of 101.</td>
</tr>
<tr>
<td>Event Signal</td>
<td>Determines the severity value at which DECamds signals an event for attention. Only events that qualify are passed on to be checked by any filters you may set for a specific event. Increasing this value reduces the number of event messages that need to be tested to see if further attention is warranted, which can improve perceived response time.</td>
</tr>
<tr>
<td>Event Timeout (secs)</td>
<td>Determines how long an informational event is displayed (in seconds).</td>
</tr>
<tr>
<td>Event Escalation Time (secs)</td>
<td>Determines how long an event must be signaled before it is sent to the operator communication manager (OPCOM). DECamds uses this value along with the Event Escalation Severity value. Both criteria must be met before the event is signaled to OPCOM.</td>
</tr>
<tr>
<td>Event Escalation Severity</td>
<td>Determines which events are sent to OPCOM. DECamds uses this value along with the Event Escalation Time (secs) value. Both criteria must be met before the event is signaled to OPCOM.</td>
</tr>
</tbody>
</table>

2. Modify the settings, which will apply to the current session. To save these settings from session to session, choose Save Filter Changes from the Customize menu in the Event Log window.
You can also filter data in the following data windows:

- CPU Summary
- Lock Contention Summary
- Memory Summary
- Process I/O Summary
- Disk Status Summary
- Volume Summary
- Page/Swap File Summary

The modifiable options that are displayed in the filter dialog box for the window vary with the window.

Figure 5–3 shows the CPU Summary Filtering dialog box. For a process to be displayed in the CPU Summary window, it must have a Current Priority of 4 or more and be in any of the process states indicated except HIB, HIBO, or SUSPO. No other processes are displayed.

Figure 5–3 CPU Summary Filtering Dialog Box

If the Enable Highlighting option is on, any process that signals an event is included in the display, regardless of whether it meets the filter criteria.
Customizing DECamds

5.2 Filtering Data

To change the value of a filter, turn the filter button on by clicking on it, and then click on the up or down arrow. Click on OK or Apply for the filter to take effect. To return to system default values, click on Default.

Changing a Filter Category
Some data windows also allow you to filter data by category. For example, in the CPU Summary window, you also can filter by the Process State category to display only processes in certain states. Category buttons that are selected display the associated information.

In the CPU Summary window, to display only inactive processes, select the HIB and HIBO buttons under Process States, and deselect all other process states. When you click on OK or Apply, only inactive processes appear in the CPU Summary window.

5.2.2 Customizing Events
You can define criteria by which specific events are qualified for your attention. For example, you can refine the global filtering by also defining that DSKRWT event (high disk device Rwait count) must pass your specifications before being considered an event worth displaying or logging. To define specific event criteria, perform the following steps:

1. Choose Customize Events from the Customize menu in the Event Log window. Figure 5–4 shows the Customize Events dialog box that appears.
2. Double-click on an event that you want to customize. A dialog box appears with the event you select. The dialog box also contains an explanation of what might cause this event to occur. Figure 5–5 shows the LOWSQU Event Customization window.
Customizing DECamds
5.2 Filtering Data

Figure 5–5 LOWSQU Event Customization Window

Figure 5–5 shows the values you can set in any Event Customization window. To change the value of an option, click on an option and then use the arrow buttons to increase or decrease the value. A higher number indicates a more severe event.

3. Modify the settings that will apply to the current session. To save these settings from session to session, choose Save Event Customizations from the Customize menu in the Event Log window.
The following sections describe the event customization options.

Severity Option
Severity is the relative importance of an event. Events with a high severity must also exceed threshold settings before an event can be signaled for display or logging.

Occurrence Option
Each DECamds event is assigned an occurrence value, that is, the number of consecutive data samples that must exceed the event threshold before the event is signaled. By default, events have low occurrence values. However, you might find that a certain event only indicates a problem when it occurs repeatedly for an extended period. You can change the occurrence value assigned to that event so that DECamds signals it only when necessary.

For example, suppose page fault spikes are common in your environment, and DECamds frequently signals intermittent HITTLP, total page fault rate is high events. You could change the event’s occurrence value to 3, so that the total page fault rate must exceed the threshold for three consecutive collection intervals before being signaled to the Event Log.

To avoid displaying insignificant events, you can customize an event so that DECamds signals it only when it continuously occurs.

Automatic Event Investigation (see Section 5.1.2) uses the occurrence value to determine when to further investigate an event. When enabled, the automatic event investigation is activated when the Occurrence count is three times the Occurrence setting value.

Class Option
You can customize certain events so that the event threshold varies depending on the class of computer system the event occurs on. This feature is particularly useful in environments with many different types and sizes of computers.

By default, DECamds uses only one default threshold for each event, regardless of the type of computer the event occurs on. However, for certain events (in particular, CPU, I/O, and memory usage events) the level at which resource use becomes a problem depends on the size and type of computer. For example, a page fault rate of 100 may be important on a VAXstation 2000 system but not on a VAX 7000 system.

DECamds provides three additional predefined classes for CPU, I/O, and Memory-related events. You can specify threshold values for each class in addition to the default threshold for an event. To specify an additional event threshold for each class, edit the file AMDS$THRESHOLD_DEFS.DAT located in the AMDS$CONFIG directory.

Table 5–3 defines CPU, I/O, and Memory classes.
Customizing DECamds
5.2 Filtering Data

<table>
<thead>
<tr>
<th>Table 5–3</th>
<th>CPU, I/O, and Memory Class Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class¹</td>
<td>Description</td>
</tr>
<tr>
<td>CPU Classes</td>
<td></td>
</tr>
<tr>
<td>Class 1</td>
<td>All VAXft systems, VAXstation/VAXserver 4000, MicroVAX 4000</td>
</tr>
<tr>
<td>Class 2</td>
<td>Higher VUP workstations: VAXstation/VAXserver 3100-M76, MicroVAX 3100-M76, MicroVAX 3100-8*, VAXstation 3100-9*, MicroVAX 3100-9*, VAXstation 4000-9*</td>
</tr>
<tr>
<td>Class 3</td>
<td>VAX/VAXserver 6000, 7000, 9000, 10000</td>
</tr>
<tr>
<td>Class 4</td>
<td>All Alpha systems</td>
</tr>
<tr>
<td>I/O Classes</td>
<td></td>
</tr>
<tr>
<td>Class 1</td>
<td>All VAX systems, VAXft systems, VAXstation/VAXserver 4000, MicroVAX 4000</td>
</tr>
<tr>
<td>Class 2</td>
<td>Higher VUP workstations: VAXstation/VAXserver 3100-M76, MicroVAX 3100-M76, MicroVAX 3100-8*, VAXstation 3100-9*, MicroVAX 3100-9*, VAXstation 4000-9*</td>
</tr>
<tr>
<td>Class 3</td>
<td>VAX/VAXserver 6000, 7000, 9000, 10000</td>
</tr>
<tr>
<td>Class 4</td>
<td>All Alpha systems</td>
</tr>
<tr>
<td>Memory Classes</td>
<td></td>
</tr>
<tr>
<td>Class 1</td>
<td>Systems with less than or equal to 24 MB of memory</td>
</tr>
<tr>
<td>Class 2</td>
<td>Systems with more than 24 MB and less than or equal to 64 MB of memory</td>
</tr>
<tr>
<td>Class 3</td>
<td>Systems with more than 64 MB of memory</td>
</tr>
<tr>
<td>Class 4</td>
<td>All Alpha systems</td>
</tr>
<tr>
<td>¹If no class is defined, DECamds uses the default threshold value.</td>
<td></td>
</tr>
</tbody>
</table>

You can specify class-based thresholds only for the following events:

- **CPU-related events:**
 - HINTER, node interrupt mode time is high
 - HICOMQ, node many processes waiting for CPU
 - HMPSYN, node MP synchronization mode time is high
 - HIPWTQ, node many processes waiting in COLPG, PFW, or FPG
 - HIMWTQ, node many processes waiting in MWAIT

- **I/O-related events:**
 - HIBIOR, node buffered I/O rate is high
 - HIDIOR, node direct I/O rate is high
 - HIPWIO, node paging write I/O rate is high

- **Memory-related events:**
 - LOMEMY, node free memory is low
 - HIHRDP, node hard page fault rate is high
 - HISYSP, node high system page fault rate
 - HITTLP, node total page fault rate is high
 - RESPRS, node resource hash table sparse
 - RESDNS, node resource hash table dense
As an example of setting a class-based threshold, the HITTLP, total page fault rate is high event is a memory-related event, so the thresholds are based on the memory class definitions shown in Table 5–3. The default threshold for this event is 20 page faults per second. A page fault rate of 20 may be important on a VAXstation 2000 system, but it is not important on a VAX 7000 system. To account for this, you can specify the following additional thresholds for the HITTLP, total page fault rate is high event:

<table>
<thead>
<tr>
<th>Class</th>
<th>Threshold</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (systems with less than or equal to 64 MB of memory)</td>
<td>20</td>
<td>Event is triggered at the default threshold of 20 page faults per second.</td>
</tr>
<tr>
<td>2 (systems with 24 MB to 64 MB of memory)</td>
<td>40</td>
<td>Event is triggered at 40 page faults per second.</td>
</tr>
<tr>
<td>3 (systems with more than 64 MB of memory)</td>
<td>100</td>
<td>Event is triggered at 100 page faults per second.</td>
</tr>
<tr>
<td>4 (Alpha systems)</td>
<td>100</td>
<td>Event is triggered at 100 page faults per second</td>
</tr>
</tbody>
</table>

Threshold Options
Threshold values are compared to an event’s description to determine whether an event meets the criteria for display or log. Threshold values are used in conjunction with the occurrence and severity values. Increasing event threshold values can reduce CPU use and improve perceived response time because more instances must occur for the threshold to be crossed, so fewer thresholds are crossed and fewer events are triggered.

Note
Setting a threshold too high could mask a serious problem.

You can read a description of an event by choosing Customize Events from the Customize menu in the Event Log window, then double-clicking on the event. The Event Customization dialog box displays an Event Description field.

Most events are checked against only one threshold; however, some have dual thresholds, where the event is triggered if either one is true. For example, for the LOVLSP, node disk volume free space is low event, DECamds checks both of the following thresholds:

- Number of blocks remaining (LowDiskFreeSpace.BlkRem)
- Percentage of total blocks remaining (LowDiskFreeSpace.Percent)

Note
Events with both high severity and threshold values are signaled to the operator communication manager (OPCOM). For more information about signaling events to OPCOM, see Section 2.3.3.
5.3 Sorting Data

Choose Sort Data... from the Customize menu to change the order of the information displayed in a window. A dialog box appears in which you can specify sort criteria. All sort criteria must be met for a process to be displayed.

You can sort data in the following windows:

- CPU Summary
- Disk Status Summary
- Volume Summary
- Event Log
- Lock Contention Summary
- Memory Summary
- Page/Swap File Summary
- Process I/O Summary

Figure 5–6 shows a sample Memory Summary Sorting dialog box.
Customizing DECamds
5.3 Sorting Data

Figure 5–6 Memory Summary Sorting Dialog Box

Sorting is based on two variables: the sort order and the sort field. You can choose only one sort criterion for each variable—one for the sort order, and one for the sort field. To sort Memory Summary data to list the processes with the highest page fault rates first, for example perform the following steps:

1. Choose Sort Data... from the Customize menu on the Memory Summary window. The Memory Summary Sorting dialog box appears; current sort field settings are displayed. (By default, DECamds sorts Memory Summary data on the Working Set Count field in descending order.)

2. Change sort settings by choosing Page Fault Rate and Ascending order.
3. Click on OK or Apply.
4. To save sort settings, choose Save Sort Changes on the Customize menu.
Customizing DECamds

5.4 Setting Collection Intervals

5.4 Setting Collection Intervals

A collection interval is the time the Data Analyzer waits before requesting more information from Data Provider nodes. Changing the collection interval helps you control the performance of DECamds and its consumption of system resources.

The frequency of polling remote nodes for data (collection intervals) can affect perceived response time. You want to find a balance between collecting data often enough to detect potential resource availability problems before a node or cluster experiences a severe problem, and seldom enough to optimize perceived response time. Increasing the collection interval factor decreases CPU consumption and LAN load, but response time might appear slower because the intervals are longer.

Collection intervals do not affect memory use.

To change a collection interval, choose Collection Interval from the Customize menu. Figure 5–7 shows a sample Memory Summary Collection Interval dialog box.

Figure 5–7 Memory Summary Collection Interval Dialog Box

Table 5–4 describes the fields on the Memory Summary Collection Interval dialog box.

Table 5–4 describes the fields on the Memory Summary Collection Interval dialog box.
Customizing DECamds

5.4 Setting Collection Intervals

Table 5–4 Memory Summary Collection Interval Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Collection Interval</td>
<td>Displays the number of seconds between requests for data. You can change the value for all collection intervals for all windows by choosing DECamds Customizations from the Customize menu of the Event Log or System Overview window. The DECamds Application Customizations dialog box appears and you can increase or decrease the collection interval factor.</td>
</tr>
<tr>
<td>Based on Collection Interval Factor</td>
<td>Displays the number with which the collection interval is multiplied.</td>
</tr>
<tr>
<td>Display Interval (sec)</td>
<td>Displays the collection interval for displaying data in a window. You can change the interval by clicking on the up or down arrows in the dialog box.</td>
</tr>
<tr>
<td>Event Interval (sec)</td>
<td>Displays the collection interval used when events are found. This value is used by default when you start background collection. You can change the interval by clicking on the up or down arrows in the dialog box.</td>
</tr>
<tr>
<td>NoEvent Interval (sec)</td>
<td>Displays the collection interval when no events are found. You can change the interval by clicking on the up or down arrows in the dialog box.</td>
</tr>
</tbody>
</table>

To apply the changes, click on OK or Apply. To save collection interval changes, choose Save Collection Interval Changes from the Customize menu.

To change back to DECamds default values for the window, click on Default. To exit without making any changes, click on Cancel.

Table 5–5 lists the default window collection interval values (in seconds) provided with DECamds for each window type.

Table 5–5 Default Window Collection Intervals

<table>
<thead>
<tr>
<th>Window</th>
<th>Display</th>
<th>Event</th>
<th>No Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Modes Summary</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>CPU Summary</td>
<td>5.0</td>
<td>10.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Disk Status Summary</td>
<td>30.0</td>
<td>15.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Volume Summary</td>
<td>15.0</td>
<td>15.0</td>
<td>120.0</td>
</tr>
<tr>
<td>Lock Contention</td>
<td>10.0</td>
<td>20.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Memory Summary</td>
<td>5.0</td>
<td>10.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Node Summary</td>
<td>5.0</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Page/Swap File Summary</td>
<td>30.0</td>
<td>30.0</td>
<td>2400.0</td>
</tr>
<tr>
<td>Process Identification Manager</td>
<td>60.0</td>
<td>60.0</td>
<td>240.0</td>
</tr>
<tr>
<td>Process I/O Summary</td>
<td>10.0</td>
<td>10.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Single Lock Summary</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Single Process Summary</td>
<td>5.0</td>
<td>5.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

1All times are in seconds and cannot be less than .5 second.
2Process Identification Manager supports the CPU, Memory, Process I/O, and Single Lock Summary window sampling.
Customizing DECamds
5.5 Optimizing Performance with System Settings

5.5 Optimizing Performance with System Settings

DECamds is a compute-intensive and LAN traffic-intensive application. At times, routine data collection, display activities, and corrective actions can cause a delay in perceived response time.

This section explains how to optimize perceived response time based on actual measurements of CPU utilization rates (throughput). Performance improvements can be made in the following areas:

<table>
<thead>
<tr>
<th>Area</th>
<th>Discussed in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECamds software</td>
<td>Section 5.5.1</td>
</tr>
<tr>
<td>System settings</td>
<td>Section 5.5.2</td>
</tr>
<tr>
<td>Hardware configuration</td>
<td>Section 5.5.3</td>
</tr>
</tbody>
</table>

Site configurations vary widely, and no rules apply to all situations. However, the information in this section can help you make informed choices about improving your system performance.

The following factors affect perceived response time:

- Load on monitored nodes including applications and peripherals (especially number of disks)
- Number of monitored nodes and users
- Size of operating system tables and lists on monitored nodes (process and lock)
- Version of operating system running on monitored nodes
- LAN traffic, cluster communications, nodes booting, and network-based applications and tools

5.5.1 Optimizing DECamds Software

When DECamds starts, it polls the LAN to locate all nodes running the DECamds Data Provider, creates a communications link, and collects data from each Data Provider node on the LAN. (See Section 1.1 for more information about establishing a communications link between nodes.)

The initial polling process creates a short-term high load of CPU and LAN activity. After establishing a communications link with other nodes, DECamds reduces polling frequency, thereby reducing the CPU and LAN load.

Note

Each request to collect a new category of data increases memory and LAN requirements. Memory requirements vary with the number of categories collected and the number of nodes being polled.

Polling frequency does not affect memory because polling only changes how frequently existing data is replaced with updated data.

The following sections describe system settings that you can change to improve performance and the ability of DECamds to handle data collection demands.
Customizing DECamds

5.5 Optimizing Performance with System Settings

5.5.1 Setting Process Quotas

To improve the performance of DECamds, you might need to change process quotas. The quotas used extensively by DECamds are ASTLM, TQELM, BIOLM, BYTLM, and WSEXTENT. The values listed in Section A.2 are suggestions for a 50-node cluster.

The following process quotas are recommended:

<table>
<thead>
<tr>
<th>Quota</th>
<th>Recommended Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTLM</td>
<td>4 times the node count</td>
</tr>
<tr>
<td>TQELM</td>
<td>4 times the node count</td>
</tr>
<tr>
<td>BIOLM</td>
<td>2 times the node count</td>
</tr>
<tr>
<td>WSEXTENT</td>
<td>350 times the node count</td>
</tr>
<tr>
<td>BYTLM</td>
<td>1500 times the node count</td>
</tr>
</tbody>
</table>

1node count is the number of nodes a Data Analyzer monitors simultaneously.

Perform the following steps to change process quotas:

1. Increase the process quotas assigned to the process initiating DECamds in the system's user authorization file (UAF).
2. Log out, log back in, and restart DECamds.

5.5.1.2 Setting LAN Load

The maximum size for data packets is 1500 bytes. When the amount of data is greater than 1500 bytes, DECamds must send multiple requests to complete the data collection request.

Table 5–6 shows the LAN load for various levels of collection intervals and data collection. You can modify a data collection window's collection intervals (as explained in Section 5.4) or reduce the scope of data collection (as explained in Section 5.1.1) to reduce LAN activity.

Table 5–6 LAN Load

<table>
<thead>
<tr>
<th>Data</th>
<th>Outgoing Packet Size (in bytes) on Alpha Systems</th>
<th>Outgoing Packet Size (in bytes) on VAX Systems</th>
<th>Return Packet Size (in bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration data</td>
<td>129</td>
<td>285</td>
<td>88</td>
</tr>
<tr>
<td>CPU Modes</td>
<td>201</td>
<td>129</td>
<td>48 + (64* no. of processors)</td>
</tr>
<tr>
<td>CPU Summary</td>
<td>178</td>
<td>171</td>
<td>16 per active process</td>
</tr>
<tr>
<td>Disk Status Summary</td>
<td>473</td>
<td>473</td>
<td>56 per disk</td>
</tr>
<tr>
<td>Fix</td>
<td>24</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Hello Message</td>
<td>N/A</td>
<td>N/A</td>
<td>32</td>
</tr>
<tr>
<td>Lock Contention</td>
<td>240</td>
<td>240</td>
<td>76 per resource</td>
</tr>
<tr>
<td>Memory Summary</td>
<td>275</td>
<td>275</td>
<td>36 per active process</td>
</tr>
</tbody>
</table>

(continued on next page)
5.5 Optimizing Performance with System Settings

<table>
<thead>
<tr>
<th>Data</th>
<th>Outgoing Packet Size (in bytes) on Alpha Systems</th>
<th>Outgoing Packet Size (in bytes) on VAX Systems</th>
<th>Return Packet Size (in bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Summary</td>
<td>319</td>
<td>241</td>
<td>48 + (64 * no. of processors)</td>
</tr>
<tr>
<td>Page/Swap File</td>
<td>208</td>
<td>208</td>
<td>46 per page/swap file</td>
</tr>
<tr>
<td>Process I/O Summary</td>
<td>236</td>
<td>229</td>
<td>32 per active process</td>
</tr>
<tr>
<td>Single Lock (Waiting)</td>
<td>272</td>
<td>272</td>
<td>32 per waiter</td>
</tr>
<tr>
<td>Single Process Summary</td>
<td>491</td>
<td>471</td>
<td>00</td>
</tr>
<tr>
<td>Volume Summary</td>
<td>430</td>
<td>430</td>
<td>28 per disk</td>
</tr>
</tbody>
</table>

5.5.1.3 Setting Window Customizations

The Sort, Filter, and collection interval settings at the data window level affect performance. Follow these guidelines to balance customization with performance:

- Filter out data to improve CPU performance. Reducing the collection criteria increases performance. See Section 5.2 for information on filtering data.
- Use unsorted windows to improve performance. Sorting requires extra computations. See Section 5.3 for information on sorting data.
- Increase collection interval values to improve performance. See Section 5.4 for information on changing collection intervals.

5.5.2 Optimizing System Settings

Changing several system settings might improve the performance of DECamds on your system. The following sections discuss these settings and how to change them.

5.5.2.1 Setting Data Link Read Operations

Increase read operations to the data link by changing the logical name AMDS$COMM_READS in the AMDS$CONFIG:AMDS$LOGICALS.COM command procedure. The AMDS$COMM_READS logical name controls the number of requests for data (read operations) queued to the data link.

If you increase data collection, increase the number of requests that can be queued. Compaq recommends two requests for each node being monitored. Each read operation queued requires 1500 bytes of BYTLM quota.

5.5.2.2 Setting the Communications Buffer

Increase the communications buffer by changing the logical name AMDS$COMM_BUFFER_SIZE in the AMDS$CONFIG:AMDS$LOGICALS.COM command procedure. The buffer controls the size of the global section used for communication between the provider node and the communications process.

When DECamds cannot keep up, it displays the following warning message:

AMDS$COMMBUFOVF---communications buffer overflow. Increase the buffer by 25 percent.

In addition to increasing the value of the AMDS$COMM_BUFFER_SIZE logical name, set the system parameter GBLPAGFIL on the provider node to cover the increase. This adds to the amount of data collection that DECamds can perform.
The value of the GBLPAGFIL system parameter must always be higher than the number of FREE_GBLPAGES. To determine the value of FREE_GBLPAGES, enter the following commands:

\[
\text{	exttt{A = $\text{GETSYI}("FREE_GBLPAGES")}} \\
\text{\texttt{SHOW SYM A}}
\]

The value of A must conform to the following formula:

\[
2 \times \left(\frac{\text{buffer_size}}{512} + 512 \right)
\]

5.5.3 Optimizing Performance with Hardware

Table 5–7 provides an approximate guideline for the number of nodes you can monitor when running DECamds on certain computer types.

<table>
<thead>
<tr>
<th>Monitoring Computer Type</th>
<th>Observation Only</th>
<th>Observe and Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAXstation 3100</td>
<td>0-30</td>
<td>0-20</td>
</tr>
<tr>
<td>VAXstation 4000 Model 60</td>
<td>20-60</td>
<td>20-50</td>
</tr>
<tr>
<td>VAX 6000(^1)</td>
<td>75-150</td>
<td>65-130</td>
</tr>
<tr>
<td>VAX 4000 Model 90</td>
<td>75-150</td>
<td>65-130</td>
</tr>
<tr>
<td>DEC 3000 Model 400</td>
<td>0-50</td>
<td>0-50</td>
</tr>
<tr>
<td>DEC 4000 Model 620</td>
<td>0-70</td>
<td>0-70</td>
</tr>
<tr>
<td>DEC 7000 Model 720</td>
<td>Any number</td>
<td>Any number</td>
</tr>
</tbody>
</table>

\(^1\)With DECwindows display directed to a workstation

Follow these suggestions when choosing and configuring a console:

- **Use fast hardware.**

 Because DECamds is compute and memory-intensive, which is compounded by its real-time DECwindows-based display medium, faster CPUs will improve throughput and perceived response time.

- **Use multiprocessors.**

 DECamds runs two processes: one handling calculations and display; one handling communications between the monitoring node and the remote nodes. A multiprocessor reduces the DECwindows server process competition for CPU time. On single processor systems, the processes must compete.

- **Run the monitoring portion of DECamds on a standalone system.**

 If a cluster is experiencing system resource problems, you can still use DECamds.
Installing the DECamds Data Analyzer

This appendix explains how to install the DECamds Data Analyzer software on OpenVMS Alpha and OpenVMS VAX Version 6.2 and later systems.

Beginning with OpenVMS Version 7.2, the Data Provider ships as part of the OpenVMS installation. Installing or upgrading to OpenVMS Version 7.2 or later automatically installs the Data Provider on your system. You can run the Data Provider on any VAX or Alpha Version 6.2 or later system.

Note
The Compaq Availability Manager web site might refer you to a more recent version of the Data Provider than the one on the current OpenVMS VAX or Alpha operating system CD-ROM. Compaq recommends that you install the DECamds Data Provider software using the version indicated at the following URL:

http://www.openvms.compaq.com/openvms/products/availman/

Section A.7 explains how to start using the Data Provider.

This chapter contains the following sections:

• General installation information
• Data Analyzer installation requirements
• Downloading the Data Analyzer software
• Installing Data Analyzer software from a PCSI kit
• Postinstallation tasks on Data Provider nodes
• Postinstallation tasks on the Data Analyzer node
• Starting to use the Data Provider
• Determining and reporting problems
• Running the Installation Verification Procedure (IVP) separately

A.1 General Installation Information

DECamds provides online release notes. Compaq strongly recommends that you read the release notes before proceeding with the installation. You can print the text file of the release notes from the following location:

SYS$HELP:AMDS072-1B.RELEASE_NOTES
DECamds consists of client and server software:

- The client software, the Data Analyzer, provides the graphical user interface to display DECamds information to users.
- The server software, the DECamds Data Provider (RMDRIVER), collects the data that DECamds analyzes and displays.

In earlier versions of OpenVMS, you needed to install both both the Data Analyzer and Data Provider software on your system from the latest DECamds kit. Beginning with OpenVMS Version 7.2, you need to install only the Data Analyzer software on the system where you run the client, or graphical user interface. You need to do this to obtain the new library for DECamds Version 7.2 and later.

A.2 Data Analyzer Installation Requirements

This section provides a checklist of hardware and software requirements for installing the DECamds Data Analyzer. A typical installation takes approximately 5 to 10 minutes per node, depending on your type of media and system configuration.

- Hardware requirements
 - A workstation monitor. For any hardware configuration without a DECwindows Motif display device, use the DECwindows server to direct the display to a workstation or an X terminal.
 - 16 MB of memory for VAX systems and 32 MB for Alpha systems, for the Data Analyzer portion of DECamds.

You should use a more powerful system as the number of nodes and the amount of collected data rises. Table A-1 shows general guidelines for the default Data Analyzer node. Note that the following table does not preclude DECamds from running on a less powerful system than listed for the number of nodes being monitored.

<table>
<thead>
<tr>
<th>Number of Monitored Nodes</th>
<th>Recommended Alpha Hardware</th>
<th>Recommended VAX Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-30</td>
<td>DEC 3000 Model 400, 32 MB</td>
<td>VAXstation 3100, 16 MB</td>
</tr>
<tr>
<td>20-50</td>
<td>DEC 3000 Model 400, 64 MB</td>
<td>VAXstation 4000 Model 60</td>
</tr>
<tr>
<td>40-90</td>
<td>DEC 3000 Model 500</td>
<td>VAXstation 4000 Model 90</td>
</tr>
<tr>
<td>91 or more</td>
<td>DEC 4000 Model 620</td>
<td>VAX 6000-420</td>
</tr>
</tbody>
</table>

- Operating system version
 At least one of the following:
 - OpenVMS VAX Version 6.2 or higher
 - OpenVMS Alpha Version 6.2 or higher

- Display software
 DECwindows Motif for OpenVMS Version 1.1 or higher installed on the Data Analyzer node system.
A.2 Data Analyzer Installation Requirements

• Privileges

<table>
<thead>
<tr>
<th>Operation</th>
<th>Privileges Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor only (read-only access)</td>
<td>OPER</td>
</tr>
<tr>
<td>Implement fixes (write access)</td>
<td>OPER, CMKRNL</td>
</tr>
<tr>
<td>Stop, start, reload, or restart the Data Provider node. Includes changing security or group name.</td>
<td>OPER, CMKRNL, LOG_IO, SYSNAM, SYSPRV</td>
</tr>
</tbody>
</table>

Note

For OpenVMS Version 6.2 and later, if the Data Provider is running on the same node as the Data Analyzer node, you must also have either SYSPRV privilege or ACL access to the RMA0: device.

• Disk space

- 3500 blocks on VAX systems.
- 4000 blocks on Alpha systems.

To determine the number of free disk blocks on the current system disk, enter the following command at the OpenVMS DCL prompt:

$ SHOW DEVICE SYS$SYSDEVICE

• System parameter settings

These settings are the same as those required for operating system installation. The Installation Verification Procedure (IVP) requires additional space as follows:

GLBPAGFIL 1200
WSMAX 16384

You can modify WSMAX and GLBPAGFIL using the System Management utility (SYSMAN). See the OpenVMS System Manager's Manual for more information.

• Process account quotas (minimum)

ASTLM 150
BIOLM 51
BYTLM 75000
FILLM 20
PRCLM 3
PGFLQUO 25600
TQELM 100
WSEXTENT 16384

Note that the AMDS$COMM_READS logical determines the default value. If you are reinstalling the Data Analyzer, or have changed AMDS$COMM_READS, then the following formulas are used to determine the default value:

ASTLM \(\geq (AMDS$COMM_READS \times 3) \)
BIOLM \(\geq (AMDS$COMM_READS + 1) \)
BYTLM \(\geq (AMDS$COMM_READS \times 1500) \)
Installing the DECamds Data Analyzer

A.2 Data Analyzer Installation Requirements

TQELM >= (AMDS$COMM_READS*2)

User account quotas are stored in the file SYSUAF.DAT. Use the OpenVMS Authorize utility (AUTHORIZE) to verify and change user account quotas. For more information on modifying account quotas, see the description of the Authorize utility in the OpenVMS system management documentation.

Note

On both Alpha and VAX systems, Compaq recommends that you perform a system disk backup before installing any software. Use the backup procedures that are established at your site. For details about performing a system disk backup, see the OpenVMS Backup utility documentation.

A.3 Obtaining the Data Analyzer Software

The Data Analyzer software is available on the OpenVMS operating system layered product CD-ROM or from the Compaq Availability Manager web site. Follow these steps to download the software from the web:

1. From the Availability Manager home page, click Software Download. The Availability Manager home page is at the following URL:

 http://www.openvms.compaq.com/openvms/products/availman/

2. Complete the user survey, which allows you to proceed to the Download web page.

3. Click one or both of the DECamds executables:

 DECamds - Alpha: decamds0721b.pcsi-dcx_axpexe
 DECamds - VAX: decamds0721b.pcsi-dcx_vaxexe

4. Save the executable to a device and directory of your choice.

5. Run the executable and accept the default file name. The result will be:

 DECamds: DEC-VMS-AMDSV0702-1B-1.PCSI

The next section provides installation instructions for the Data Analyzer.

A.4 Installing Data Analyzer Software from a PCSI Kit

This section describes the installation procedure on an OpenVMS Version 6.2 or later systems from a POLYCENTER Software Installation (PCSI) kit.

- Starting the installation

Use the following procedure to start the installation:

Enter the OpenVMS DCL command PRODUCT, the name of the task to be performed, and the name of one or more products. For example, to install DECamds Version 7.2, enter the following command:

```
$ PRODUCT INSTALL AMDS/SOURCE=device directory/HELP
```

where:

device directory refers to the device and the directory where the kit is located.
Installing the DECamds Data Analyzer
A.4 Installing Data Analyzer Software from a PCSI Kit

For a description of the features you can request with the PRODUCT INSTALL command when starting an installation such as running the IVP, purging files, and configuring the installation, see the POLYCENTER Software Installation Utility User’s Guide.

As an installation procedure progresses, the system displays a percentage message to indicate how much of the installation is done. For example:

Percent Done: 15%
...30%
...46%
...62%
...76%
...92%
%PCSI-I-SUCCESS, operation completed successfully

If you started the installation using the /LOG qualifier, the system displays details of the installation.

• Stopping and restarting the installation

Use the following procedure to stop and restart the installation:

1. To stop the procedure at any time, press Ctrl/Y.

2. Enter the PRODUCT REMOVE command to reverse any changes to the system that occurred during the partial installation. This deletes all files created up to that point and causes the installation procedure to exit.

3. Go back to the beginning of the installation procedure to restart the installation.

• Recovering from errors

If the installation procedure fails for any reason, the following message is displayed:

%POLYCENTER Software Installation utility
%INSTAL-E-INSFAIL, The installation of DECamds 7.2-1B has failed.

An error during the installation can occur if one or more of the following conditions exist:

• The operating system version is incorrect.
• The prerequisite software version is incorrect.
• Quotas necessary for successful installation are inadequate.
• Process quotas required by the POLYCENTER Software Installation utility are inadequate.
• The OpenVMS Help library is currently in use.

If you receive any error message beginning with %PCSI-E-INSTAL, refer to the OpenVMS DCL HELP/MESSAGE utility for POLYCENTER Software Installation information and a possible solution to the problem.

If the installation fails, you must restart the installation procedure. If the installation fails due to an IVP failure, contact a Compaq support representative.
Sample Installation on an OpenVMS Alpha System

Example A–1 shows a sample installation on an OpenVMS Alpha system. This sample was run on a system that had no previous version of DECamds installed. Depending on which layered products you have on your system, you might see additional messages and questions when you perform your installation.

Example A–1 Sample OpenVMS Alpha Installation

$ product install amds
The following product has been selected:
DEC VMS AMDS V7.2-1B Layered Product
Do you want to continue? [YES]
Configuration phase starting ...
You will be asked to choose options, if any, for each selected product and for any products that may be installed to satisfy software dependency requirements.
DEC VMS AMDS V7.2-1B: DECamds (Availability Manager for Distributed Systems) V7.2-1B
COPYRIGHT © © 1994, 1995, 1999 -- All rights reserved
Compaq Computer Corporation
License and Product Authorization Key (PAK) Information
Do you want the defaults for all options? [YES]
DECamds Data Provider Installation Verification Procedure
DECamds Startup File
DECamds Logicals Customization File
DECamds Data Provider Security Access File
DECamds Data Analyzer Security Access File
DECamds Data Analyzer Installation Verification Procedure (IVP)
IVP may fail due to the following PQL values being too low:
PQL_MASTLM, PQL_MBIOLM, PQL_MQELM, or PQL_MBYTLM
See the file AMDS$SYSTEM:AMDS$PCSI_IVP_OUTPUT.LOG for help on failure.
Do you want to review the options? [NO]
Execution phase starting ...
The following product will be installed to destination:
DEC VMS AMDS V7.2-1B DISK$ALPHA_V72:[VMS$COMMON.]
Portion done: 0%...20%...30%...40%...50%...60%...70%...80%...90%...100%
The following product has been installed:
DEC VMS AMDS V7.2-1B Layered Product
%PCSI-I-IVPEXECUTE, executing test procedure for DEC VMS AMDS V7.2-1B ...
%PCSI-I-IVPSUCCESS, test procedure completed successfully
DEC VMS AMDS V7.2-1B: DECamds (Availability Manager for Distributed Systems) V7.2-1B

(continued on next page)
Example A–1 (Cont.) Sample OpenVMS Alpha Installation

This product requires the following SYSGEN parameters:

GBLPPAGES add 1172

A.5 Postinstallation Tasks on Data Provider Nodes

Perform the following tasks after installing DECamds on Data Provider nodes:

1. If you have not read the release notes, please read them.

2. Modify user accounts.
 Users who maintain the security or group name files or load new versions of the driver need privileges associated with the driver startup procedure.

3. Add AMDS$STARTUP.COM to the node’s startup and shutdown procedures to provide for automatic startup and shutdown of the Data Provider driver when a node is booted or shut down.
 Add the following command line to SYS$MANAGER:SYSTARTUP_VMS.COM:

 $ @SYS$STARTUP:AMDS$STARTUP.COM STOP

 Also, edit SYSHUTDWN.COM to add the following line:

 $ @SYS$STARTUP:AMDS$STARTUP.COM STOP

4. Modify default security files.
 To implement fixes, which require write access, the security files must be modified. The Data Provider security file contains a list of three-part codes representing Data Analyzer nodes that have read or write access to that node. Refer to Section 1.3 for complete instructions about designing security files.

5. Assign a node to a group.
 See Section 1.3.2.1.

6. Start DECamds (the Data Provider).
 Even though the IVP starts and stops the driver, you must start the Data Provider drivers by entering the following command on each node:

 $ @SYS$STARTUP:AMDS$STARTUP.COM START

Note
Starting, stopping, or reloading DECamds (the AMDS$STARTUP.COM procedure) requires at least TMPMBX, NETMBX, SYSNAM, LOG_IO, and CMKRNL privileges. Use the OpenVMS Authorize utility (AUTHORIZE) to determine whether users have the required privileges and then make adjustments as needed.
A.5 Postinstallation Tasks on Data Provider Nodes

A.5.1 Starting, Stopping, and ReloadingDECamds

To start and stop the Data Provider driver, enter the following command. (Use this command if a node will be used to both provide and collect system data.)

```
$ @SYS$STARTUP:AMDS$STARTUP.COM [parameter]
```

where the optional parameter is one of the following:

- **NODRIVER**: Defines the default input and output logicals on the Data Analyzer node driver. Use this parameter on the Data Analyzer node where the Data Provider driver is not running. It is the default.
- **START**: Starts the Data Provider driver.
- **STOP**: Stops the Data Provider driver.
- **RELOAD**: Loads a new Data Provider driver. Use this parameter when installing a new version of DECamds.

Note

If you use the OpenVMS Snapshot Facility, stop the DECamds Data Analyzer and Data Provider node drivers before taking a system snapshot.

A.6 Postinstallation Tasks on a Data Analyzer Node

Perform the following tasks after installing the DECamds Data Analyzer:

1. If you were previously running an earlier version of DECamds, check the differences between the .DAT or .COM files on your system and the associated .TEMPLATE files provided with the new kit. Change your existing files as necessary.

 Note

 The new .TEMPLATE files may contain important changes. However, to avoid altering your customizations, the upgrade procedure does not modify your existing customized versions of these files. Check the new .TEMPLATE versions of these files provided with the kit, and make the appropriate change to your files.

2. Modify default DECamds security files on each Data Analyzer node.
 The security files must be modified to implement fixes (fixes require write access). Refer to Section 1.3 for complete instructions about designing security files.

3. Define the system directory logical name `AMDS$SYSTEM`.
 To define the logical name `AMDS$SYSTEM` on systems running the Data Analyzer but not the Data Provider, enter the following command:

   ```
   $ @SYS$STARTUP:AMDS$STARTUP.COM NODRIVER
   ```

 This command requires SYSNAM privilege. The NODRIVER parameter specifies that the procedure is to define the input and output logical names in `AMDS$LOGICALS.COM`.

4. Modify user accounts as needed.
Installing the DECamds Data Analyzer

A.6 Postinstallation Tasks on a Data Analyzer Node

To use DECamds, user accounts require certain privileges and quotas:

- Using the Data Analyzer node for data collection (read access) requires TMPMBX, NETMBX, and OPER privileges.
- Performing fixes (write access) requires the CMKRNL privilege in addition to TMPMBX, NETMBX, and OPER.
- Using the AMDS$STARTUP.COM to start, stop, or reload the Data Provider requires at least TMPMBX, NETMBX, SYSNAM, LOG_IO, and CMKRNL privileges.

5. Start the application.

For example, the following command starts DECamds with all input files read from AMDS$SYSTEM and all output files written to the current default directory. Only data from group A nodes and group B nodes is displayed.

```
$ AVAIL /CONFIGURE=AMDS$SYSTEM /LOG_DIRECTORY=SYS$LOGIN-
_$/GROUP=(GROUP_A, GROUP_B)
```

See Chapter 2 for startup options.

A.7 Starting to Use the Data Provider

Before starting to use the Data Provider, you need to move and remove several files to make the Data Provider RMDRIVER part of OpenVMS.

Move these Files

Move the following files:

<table>
<thead>
<tr>
<th>File</th>
<th>Old Directory Location</th>
<th>New Directory Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$DRIVER_ACCESS.DAT</td>
<td>SYS$COMMON:[AMDS]</td>
<td>SYS$COMMON:[SYSMGR]</td>
</tr>
<tr>
<td>AMDS$LOGICALS.COM</td>
<td>SYS$COMMON:[AMDS]</td>
<td>SYS$COMMON:[SYSMGR]</td>
</tr>
</tbody>
</table>

These new directory locations should not affect previous copies of AMDS$DRIVER_ACCESS.DAT that are in the AMDS$SYSTEM directory because the AMDS$SYSTEM logical is now a search list for SYS$COMMON:[AMDS] and SYS$COMMON:[SYSMGR]. Previous copies of the files will still be valid; however, new copies of the files will be placed in the new locations.

Delete this File

Also, because the installation replaces the following file, remove it from your system:

```
SYS$COMMON:[AMDS]AMDS$RMCP.EXE
```

Data Provider Commands

To start to use the Data Provider, perform either of the following tasks:

- Run the SYS$STARTUP:AMDS$STARTUP START command procedure at the OpenVMS DCL prompt ($).
- Add the @SYS$STARTUP:AMDS$STARTUP START command to the SYSTARTUP_VMS.COM command file in the SYS$MANAGER directory.
A.8 Determining and Reporting Problems

If you encounter a problem while using DECamds, report the problem to Compaq. Depending on the nature of the problem and the type of support you have, take one of these actions:

- If your software contract or warranty agreement entitles you to telephone support, contact a Compaq support representative.
- If the problem is related to the DECamds documentation, see the Preface of this manual for instructions.

A.9 Running the Installation Verification Procedure Separately

Usually the Installation Verification Procedure (IVP) runs during installation. Should system problems occur after you install DECamds, check the integrity of installed files by executing the following command procedure:

```
$ @SYS$TEST:AMDS$IVP.COM
```

The IVP leaves the Data Provider in the same state in which it was found. For example, if the Data Provider is running, the IVP stops and starts it.
The DECamds Data Analyzer installation procedure installs files and defines logical names to customize the environment.

The installation procedure defines all logical names in executive mode in the system table (with the /SYSTEM /EXECUTIVE qualifiers). However, you can define logical names in /JOB or /GROUP tables, preceding the system definitions.

Table B–1 and Table B–2 explain the files installed and logical names defined with the Data Analyzer.

Table B–3 and Table B–4 explain the files installed and logicals defined on each node running the Data Provider.

Logical names are added to the logical name table when the AMDS$LOGICALS.COM procedure is invoked by AMDS$STARTUP.COM.

Note

Logical names can be a search list of other logicals.
The logical names in Table B–2 and Table B–4 must be defined in the job, group, or system table. If you change the name, define the new logical in the job, group, or system table.

B.1 Files and Logical Names for the Data Analyzer Node

Table B–1 and Table B–2 contain the names of all files created on a Data Analyzer node when DECamds is installed.

<table>
<thead>
<tr>
<th>Directory-Logical:File-Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$HELP:AMDS$HELP.HLB</td>
<td>Help library</td>
</tr>
<tr>
<td>AMDS$CONFIG:AMDS$*.DAT</td>
<td>Customization files</td>
</tr>
<tr>
<td>AMDS$SYSTEM:AMDS073.RELEASE_NOTES</td>
<td>Product Release Notes</td>
</tr>
<tr>
<td>AMDS$CONFIG:AMDS$COMM.EXE</td>
<td>Communication image</td>
</tr>
<tr>
<td>AMDS$SYSTEM:AMDS$CONSOLE.EXE</td>
<td>Data Analyzer image</td>
</tr>
<tr>
<td>AMDS$CONFIG:AMDS$CONSOLE.UID</td>
<td>User interface description file</td>
</tr>
<tr>
<td>AMDS$CONFIG:AMDS$CONSOLE_ACCESS.DAT</td>
<td>Data Analyzer security file</td>
</tr>
</tbody>
</table>

1Can be provided as a TEMPLATE file, depending on whether the file was found during installation.

(continued on next page)
DECamds Files and Logical Names

B.1 Files and Logical Names for the Data Analyzer Node

Table B–1 (Cont.) Files on the Data Analyzer Node

<table>
<thead>
<tr>
<th>Directory-Logical:File-Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS$MANAGER:AMDS$LOGICALS.COM<sup>1</sup></td>
<td>Logical name definition file</td>
</tr>
<tr>
<td>AMDS$SYSTEM:AMDS$VMS*-*.LIB</td>
<td>DECamds version-specific libraries</td>
</tr>
<tr>
<td>AMDS$TEST:AMDS$IVP.COM</td>
<td>Installation verification procedure</td>
</tr>
<tr>
<td>SYS$STARTUP:AMDS$STARTUP.COM</td>
<td>DECamds startup file</td>
</tr>
</tbody>
</table>

¹Can be provided as a TEMPLATE file, depending on whether the file was found during installation.

Table B–2 Logical Names Defined for the Data Analyzer

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Definition</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$COMM_BUFFER_SIZE</td>
<td>This value is the size (in bytes) of the communications buffer between the AMDS$CONSOLE process and the AMDS$COMM process.</td>
<td>300000 bytes</td>
</tr>
<tr>
<td>AMDS$COMM_READS</td>
<td>This value is the number of read aheads posted by the DECamds communications process (AMDS$COMM) to handle the delivery of remote response packets from the Data Provider to the Data Analyzer node.</td>
<td>50 read aheads</td>
</tr>
<tr>
<td>AMDS$COMM_PKT_RETRYS</td>
<td>Specifies the number of retries before quitting and issuing a "delivery path lost message."</td>
<td>4</td>
</tr>
<tr>
<td>AMDS$COMM_PKT_TMOUT</td>
<td>Specifies the timeout period (in seconds) for packet retry for the Data Analyzer.</td>
<td>10</td>
</tr>
<tr>
<td>AMDS$CONFIG</td>
<td>The device and directory location for the following DECamds input files: AMDS$APPLIC_CUSTOMIZE.DAT AMDS$ COMM.EXE AMDS$CONSOLE.UID AMDS$CONSOLE_ACCESS.DAT AMDS$VMS*-.LIB All customization files AMDS$_DEFS.DAT</td>
<td>AMDS$SYSTEM</td>
</tr>
<tr>
<td>AMDS$DPI</td>
<td>This value specifies the DPI value of your display device.</td>
<td>75 or 100</td>
</tr>
<tr>
<td>AMDS$LOG</td>
<td>The device and directory location for the following DECamds output files: AMDS$EVENT_LOG.LOG AMDS$LOCK_LOG.LOG</td>
<td>AMDS$SYSTEM</td>
</tr>
</tbody>
</table>

B.2 Files and Logical Names for Data Provider Nodes

Table B–3 and Table B–4 contain the names of all files created on a node when a Data Provider is installed.
Table B–3 Files on Nodes Running the Data Provider

<table>
<thead>
<tr>
<th>Directory-Logical:File-Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS$MANAGER:AMDS$DRIVER_ACCESS.DAT(^1)</td>
<td>Data Provider security file</td>
</tr>
<tr>
<td>SYS$MANAGER:AMDS$LOGICALS.COM(^1)</td>
<td>Logical name definition file</td>
</tr>
<tr>
<td>AMDS$SYSTEM:RMCP.EXE</td>
<td>Management interface to the Data Provider</td>
</tr>
<tr>
<td>SYS$HELP:AMDS072-1B.RELEASE_NOTES</td>
<td>Product Release Notes</td>
</tr>
<tr>
<td>SYS$HELP:AMDS$HELP.HLB</td>
<td>Help library</td>
</tr>
<tr>
<td>SYS$LOADABLE_IMAGES:RMDRIVER.EXE, SYS$LOADABLE_IMAGES:RMDRIVER.STB(^2)</td>
<td>Data Provider (VAX systems)</td>
</tr>
<tr>
<td>SYS$LOADABLE_IMAGES:AMDS$RMDRIVER.EXE, SYS$LOADABLE_IMAGES:AMDS$RMDRIVER.STB(^3)</td>
<td>Data Provider (Alpha systems)</td>
</tr>
<tr>
<td>SYS$STARTUP:AMDS$STARTUP.COM</td>
<td>DECamds startup file</td>
</tr>
<tr>
<td>SYS$TEST:AMDS$IVP.COM</td>
<td>Installation verification procedure</td>
</tr>
</tbody>
</table>

\(^1\)Can be provided as a .TEMPLATE file, depending on whether the file was found during installation.

\(^2\)VAX specific

\(^3\)Alpha specific

Table B–4 Logical Names Defined on Nodes Running the Data Provider

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Definition</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$CONFIG</td>
<td>The device and directory location for the DECamds input file AMDS$DRIVER_ACCESS.DAT.</td>
<td>AMDS$SYSTEM</td>
</tr>
<tr>
<td>AMDS$DEVICE</td>
<td>This logical is translated as the first LAN device to which the Data Provider or Data Analyzer node attempts to connect. The attempts are made in this order: AMDS$DEVICE, FXA0, XEA0, XQA0, EFA0, ETA0, ESA0, EXA0, EZA0, FCA0, ECA0. If your LAN line is not in this list, use AMDS$DEVICE. If the Data Analyzer node and Data Provider run on the same node, *RMA0 is used.</td>
<td>Undefined</td>
</tr>
<tr>
<td>AMDS$GROUP_NAME</td>
<td>The group to which the node is assigned. Choose an alphanumeric string of up to 15 characters. The group name is defined on the node running the Data Provider and is used by the Data Analyzer node to display nodes in the System Overview window.</td>
<td>DECAMDS</td>
</tr>
<tr>
<td>AMDS$NUM_DL_READS</td>
<td>The number of data link reads to be posted by the Data Provider as read-ahead buffers. Generally between 4 and 8 should be sufficient to allow the Data Provider to process without having to wait for a data link buffer to be cleared.</td>
<td>5 data link reads(^1)</td>
</tr>
</tbody>
</table>

\(^1\)Each read request requires 1500 bytes of BYTCNT quota used for the starting process.
DECamds Files and Logical Names

B.2 Files and Logical Names for Data Provider Nodes

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Definition</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$RM_DEFAULT_INTERVAL</td>
<td>The number of seconds between multicast hello messages from the Data Provider to the Data Analyzer node when the Data Provider is inactive or is only minimally active. The minimum value is 15. The maximum value is 300.</td>
<td>30</td>
</tr>
</tbody>
</table>

AMDS$RM_OPCOM_READ | This logical defined as TRUE allows OPCOM messages for read failures from the Data Provider. Defined as FALSE, the message facility is disabled. | TRUE |

AMDS$RM_OPCOM_WRITE | This logical defined as TRUE allows OPCOM messages for write (fix) successes and failures from the Data Provider. Defined as FALSE, the message facility is disabled. | TRUE |

AMDS$RM_SECONDARY_INTERVAL | The number of seconds between multicast hello messages from the Data Provider to the Data Analyzer node when the Data Provider is active. The minimum value is 15. The maximum value is 1800. | 90 |

B.3 Log Files

The DECamds Data Analyzer records two log files:

- An events log file named AMDS$EVENT_LOG.LOG. This ASCII text file records all event messages displayed in the Event Log window.
- A lock contention log file named AMDS$LOCK_LOG.LOG. This ASCII text file records all lock contention information displayed in the Lock Contention window.

Both log files are created when the DECamds application is started. Either file can be edited while the application is running.

Event Log File and Lock Log File Enhancements

Prior to Version 7.2, the Event Log File and Lock Log File were created with a default creation size of 1 block and a default extension size of 1 block. This sometimes resulted in a very fragmented log file (and disk) when DECamds was allowed to run for a long period of time.

Two new logicals in the AMDS$LOGICALS.COM file allow users to define additional sizes in log files. The following table describes these logicals and their default values.

<table>
<thead>
<tr>
<th>Logical</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDS$EVTLOG_ALLOC_SIZE</td>
<td>Sets the initial size of the log files.</td>
<td>100 blocks</td>
</tr>
<tr>
<td>AMDS$EVTLOG_EXTNT_SIZE</td>
<td>Sets the extension size of a file when it needs to grow.</td>
<td>0 blocks</td>
</tr>
</tbody>
</table>

The default value for AMDS$EVTLOG_EXTNT_SIZE causes DECamds to use the system defaults for extent size.
B.4 Event Log File

The event log file keeps a record of the events detected by DECamds. You can review it without a DECwindows terminal. Every 30 minutes, DECamds writes a message to the file, noting the date and time.

Example B–1 is an example of AMDS$LOG:AMDS$EVENT_LOG.LOG.

Example B–1 Sample Event Log File

<table>
<thead>
<tr>
<th>Time</th>
<th>Sev</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:16:07.98 0</td>
<td>CFDON, PROD12 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:16:08.44 0</td>
<td>CFDON, PROD09 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:16:09.65 0</td>
<td>CFDON, AXPND1 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:16:11.47 0</td>
<td>CFDON, PROD01 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:16:11.89 0</td>
<td>CFDON, VAXND1 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:16:12.14 0</td>
<td>CFDON, PROD15 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:16:14.02 0</td>
<td>CFDON, PROD14 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:16:14.57 60</td>
<td>HIDIOR, PROD12 direct I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:16:14.58 70</td>
<td>HITLP, PROD12 total page fault rate is high</td>
<td></td>
</tr>
<tr>
<td>11:16:15.50 70</td>
<td>HIDIOR, PROD10 direct I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:16:15.50 80</td>
<td>LOMEMY, PROD10 free memory is low</td>
<td></td>
</tr>
<tr>
<td>11:16:40.62 95</td>
<td>LWSASP, AXPND1 DISKALPRMMS015:[SYS0.SYSEXE]SWAPFILE.SYS swap file space is low</td>
<td></td>
</tr>
<tr>
<td>11:16:49.84 70</td>
<td>HITLP, PROD09 total page fault rate is high</td>
<td></td>
</tr>
<tr>
<td>11:17:14.58 0</td>
<td>CFDON, PROD12 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:14.94 70</td>
<td>HITLP, PROD10 total page fault rate is high</td>
<td></td>
</tr>
<tr>
<td>11:17:16.93 0</td>
<td>CFDON, PROD04 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:18.10 0</td>
<td>CFDON, PROD17 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:18.15 0</td>
<td>CFDON, PROD10 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:19.50 60</td>
<td>HIBIOR, PROD10 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:17:19.50 70</td>
<td>HIDIOR, PROD10 direct I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:17:19.50 80</td>
<td>LOMEMY, PROD10 free memory is low</td>
<td></td>
</tr>
<tr>
<td>11:17:19.50 60</td>
<td>HIBIOR, AXPND1 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:17:20.33 60</td>
<td>HIBIOR, PROD05 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:17:21.49 0</td>
<td>CFDON, PROD20 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:21.52 0</td>
<td>CFDON, PROD13 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:24.96 0</td>
<td>CFDON, PROD06 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:35.35 0</td>
<td>CFDON, PROD07 configuration done</td>
<td></td>
</tr>
<tr>
<td>11:17:39.84 60</td>
<td>HIDER, PROD07 interrupt mode time is high</td>
<td></td>
</tr>
<tr>
<td>11:17:40.21 70</td>
<td>HITLP, PROD09 total page fault rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:04.69 60</td>
<td>HIBIOR, PROD10 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:05.36 60</td>
<td>HIDIOR, PROD07 direct I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:10.49 60</td>
<td>HIBIOR, PROD09 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:10.49 60</td>
<td>HIDIOR, PROD09 direct I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:14.70 60</td>
<td>HIBIOR, PROD12 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:15.68 60</td>
<td>HIBIOR, AXPND1 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:26.05 60</td>
<td>HIBIOR, PROD05 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:40.57 75</td>
<td>HHRDP, PROD10 hard page fault rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:45.80 60</td>
<td>HIDIOR, PROD09 direct I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:18:55.91 60</td>
<td>HINTER, PROD07 interrupt mode time is high</td>
<td></td>
</tr>
<tr>
<td>11:19:09.67 60</td>
<td>HIBIOR, PROD09 buffered I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:19:09.67 60</td>
<td>HIDIOR, PROD09 direct I/O rate is high</td>
<td></td>
</tr>
<tr>
<td>11:19:09.67 75</td>
<td>HHRDP, PROD09 hard page fault rate is high</td>
<td></td>
</tr>
<tr>
<td>11:19:15.48 60</td>
<td>HIBIOR, PROD05 buffered I/O rate is high</td>
<td></td>
</tr>
</tbody>
</table>

B.5 Lock Contention Log File

Example B–2 is an example of a Lock Contention Log File.
Example B–2 Sample Lock Contention Log File

**
Time: 9-JUL-2000 14:23:46.68
Master Node: AXPND1
Resource Name: QMAN$JBC_ALIVE_01
Parent Resource Name: QMAN$MSR_$10$DKA300.....R.....
RSB Address: 805B1400, GGMODE: EX, CGMODE: EX
Hex Representation
514D414E 244A4243 (Bytes 0 - 7)
5F414C49 56455F30 (Bytes 8 - 15)
31000000 00000000 (Bytes 16 - 23)
00000000 000000C0 (Bytes 24 - 31)
Status: VALID
**

Time: 9-JUL-2000 14:28:42.44
Resource Name: QMAN$JBC_ALIVE_01
Parent Resource Name: QMAN$MSR_$10$DKA300.....R.....
Blocking Lock Data
Node: AXPND1, PID: 2020008C, Name: JOB_CONTROL
LKID: 0200015E, GR Mode: EX
Flags: NOQUEUELocal Copy
Blocked Lock on WAITING queue
Node: AXPND1, PID: 2020008D, Name: QUEUE_MANAGER
LKID: 2000013B, RQ Mode: CR
Flags: NODLCKW
Local Copy
**

B.6 OPCOM Log

The following examples show some of the OPCOM messages that appear in the operator log file from the Data Provider:

%%%%%%%%%%% OPCOM 2-JAN-2000 08:16:21.92 %%%%%%%%%%%
Message from user RMDRIVER
RMA0: - No privilege to access from node 2.2
This message means that the node does not have the privilege to perform a read operation.

%%%%%%%%%%% OPCOM 2-JAN-2000 10:10:45.08 %%%%%%%%%%%
Message from user RMDRIVER
RMA0: - No privilege to write from node 2.2
This message means that the Data Provider does not have the privilege to perform a write operation.

%%%%%%%%%%% OPCOM 2-JAN-2000 12:35:05.28 %%%%%%%%%%%
Message from user RMDRIVER
RMA0: - Process 2390003c modified from node 2.2
This message means that the Data Provider has successfully performed a write operation on the node.
Glossary

Following is an alphabetical listing of terms used in this manual and their definitions.

automatic data collection
Data collection that begins automatically when the Data Analyzer runs and recognizes a Data Provider. By default, this feature is enabled.

The default data windows for which automatic collection is enabled are:

- Node Summary
- Page/Swap File Summary
- Lock Contention Summary
- Cluster Transition Summary

Automatic Event Investigation
Enhances the speed with which you can pursue a specified event. When this option is enabled, DECamds automatically collects follow-up data on the event. When this option is disabled, you must initiate follow-up data collection when an event occurs.

To enable automatic event investigation, choose Enable Automatic Event Investigation from the Control menu of the System Overview or Event Log window. To disable it, choose the Disable Automatic Event Investigation menu item.

This feature does not apply to any lock contention events. To enable automatic lock contention detection, use the DECamds Application Customizations dialog box, as explained in Section 5.1.

collection interval
The frequency at which the Data Analyzer will send requests to a Data Provider to collect data.

See also **Data Analyzer, Data Provider**.

Data Analyzer
The portion of DECamds that collects and displays system data from Data Provider nodes. You can also perform fixes with the Data Analyzer.

See also **Data Provider, fix**.

Data Provider
The portion of DECamds that is installed to provide system data when requested by authorized Data Analyzers. A Data Provider node uses the OpenVMS LAN drivers to receive and send data across the network.

See also **Data Analyzer**.
data window
A Data Analyzer window that displays additional data. A number of different data windows are available as follows (see also Chapter 3):

- CPU Modes Summary
- CPU Summary
- Disk Status Summary
- Volume Summary
- Single Disk Summary
- Lock Contention Summary
- Memory Summary
- Node Summary
- Page/Swap File Summary
- Process I/O Summary
- Single Lock Summary
- Single Process Summary
- Cluster Transition/Overview Summary
- System Communication Architecture Summary
- NISCA Summary

event
A description of a potential resource availability problem, based on rules defined by the Data Analyzer and customized thresholds. Events trigger display changes in data windows such as color and item highlighting.

See also Data Analyzer, data window.

Event Log window
One of two primary Data Analyzer windows that displays events as they occur. For each event, you can display more detailed information to investigate the underlying problem by double-clicking on the event. You can also perform fixes for some events from this window.

See also System Overview window.

fix
A corrective action made to a Data Provider node but initiated from the Data Analyzer node.

group
A set of remote Data Provider nodes with similar attributes; for example, all the members of an OpenVMS Cluster can be in the same group. The group that a node belongs to is determined by the translation of the AMDS$GROUP_NAME logical on each Data Analyzer.

occurrence value
The number of consecutive data samples that must exceed the event threshold before an event is signaled.

page
A unit used by the operating system to section memory. On VAX systems, a page is 512 bytes. On Alpha systems, a page can be 8 kilobytes (8192 bytes), 16 KB, 32 KB, or 64 KB.
pagelet
A unit used by the OpenVMS Alpha operating system to break down the page into smaller addressable units. One pagelet is the same as a VAX page: 512 bytes.

security triplet
A three-part access code located in the AMDS$DRIVER_ACCESS.DAT and AMDS$CONSOLE_ACCESS.DAT files that enables communications to be established between the Data Analyzer and Data Provider.

System Overview window
One of two primary Data Analyzer windows that graphically displays groups and the nodes that belong to each group. The System Overview window provides summary data about CPU, Memory, Process I/O usage, Number of Processes in CPU Queues, Operating System Version, and Hardware Model for the nodes being monitored.
Access

- for Data Analyzers, 1–4
- for Data Providers, 1–4
- read-only, 1–9

Account field, 3–20

Adjust Working Set fix, 4–6

AMDS$*_DEFS.DAT files, B–1

AMDS$APPLIC_CUSTOMIZE.DAT file, 5–2

AMDS$COMM.EXE file, B–1

AMDS$COMM_BUFOVF logical name, 5–20

AMDS$COMM_BUFFER_SIZE logical name, 5–20, B–2

AMDS$COMM_READS logical name, 5–20, A–3, B–2

AMDS$CONFIG logical name, B–1, B–3

AMDS$CONSOLE.EXE file, B–1

AMDS$CONSOLE.UID file, B–1

AMDS$CONSOLE_ACCESS.DAT file, 1–4, B–1

AMDS$DEVICE logical name, B–3

AMDS$DRIVER_ACCESS.DAT file, 1–4, B–3

example, 1–8

AMDS$EVENT_LOG.LOG file, 2–7, B–4

AMDS$EVTLLOG_ALLOC_SIZE

- DECamds logical, B–4

AMDS$EVTLLOG_EXTNT_SIZE

- DECamds logical, B–4

AMDS$GROUP_NAME logical name, 1–8, B–3

AMDS$IVP.COM file, B–2, B–3

AMDS$LOCK_LOG.LOG file, B–4

AMDS$LOGICALS.COM file, 1–8, B–1, B–3

AMDS$LOG logical name, B–2

AMDS$NUM_DL_READS logical name, B–3

AMDS$RM_DEFAULT_INTERVAL logical name, B–3

AMDS$RM_OPCOM_READ logical name, B–4

AMDS$RM_OPCOM_WRITE logical name, B–4

AMDS$RM_SECONDARY_INTERVAL logical name, B–4

AMDS$STARTUP.COM file, 1–8, A–8, B–2

AMDS$THRESHOLD_DEFS.DAT file, 5–11

AMDS$VMS*_*.LIB files, B–2

AMDS$073.RELEASE_NOTES, B–1, B–3

Assigning a node to a group, 1–8

ASTLM (AST limit) quota

- current count, 3–23

Automatic

- data collection, 5–3
- event investigation, 5–3
- fix, 4–10
- investigation for events, 5–4
- investigation for locks, 5–4

Availability messages

- setting broadcast intervals, 1–10

AVAIL command, 2–1

Bell filter, 5–6

Bell volume, 5–6

Blocks

- number free on a volume, 3–6
- number used on a volume, 3–6
- percentage number used on a volume, 3–6

Broadcast intervals, B–3

- setting for node availability messages, 1–10

Buffered I/O, 3–22

- byte limit (BYTLIM), 3–24
- field, 3–13
- limit (BIOLIM), 3–23
- Limit Remaining field, 3–13
- rate, 3–13
- rate display, 2–4
- wait state, 3–23

Byte limit remaining for process I/O, 3–13

Change process priority fix, 4–6

Choosing data categories, 2–6

Classes

- CPU, 5–12
- customizing, 5–11
- I/O, 5–12
- memory, 5–12
- thresholds, 5–12

Cluster hung, 4–3

Cluster Transition/Overview Summary window, 3–30 to 3–33
Collecting data
automatic at startup, 5-3
by category, 2-6
by event, 2-6
choosing a data category, 2-6
default, 5-3
for events, 5-3
for lock events, 5-3
options, 5-3
recommendations to handle heavy workloads, 5-18
single node or group, 2-6
stopping, 2-6
Collection intervals
changing
at window level, 5-16, 5-20
globally, 5-16
collection factor, 5-17
default values, 5-17
display factor, 5-17
Event, 5-17
factor setting, 5-3
NoEvent, 5-17
Collect menu, 2-6
Command qualifiers, 2-1
Communications buffer, 5-20
Compaq DECamds
See DECamds
Compute wait state, 3-23
/CONFIGURE qualifier, 2-1
Control wait state, 3-23
Conversion locks, 3-29
Corrective action, 2-9
CPU Modes Summary window, 3-14 to 3-15
CPU queues
display of number of processes in, 2-4
CPUs (central processing units)
capability, 3-15
classes, 5-12
CPU identifier (ID), 3-15
CPU Modes field, 3-11
CPU Process State Queues field, 3-11
default data collection, 5-3
execution rates, 3-22
filter categories, 5-8
filtering data, 5-7
improving
performance by suspending, 4-10
response, 5-13
load in gathering data, 2-6
modes, 3-11, 3-15
number active on a node, 3-11
peak usage, 3-15
percentage used, 3-15
process
identifier (PID), 3-15, 3-16
name in, 3-15
CPUs (central processing units)
process (cont’d)
priority, 3-16
state queues, 3-11
time, 3-16
program counter, 3-20
setting process priorities, 4-7
state, 3-15, 3-16
time
rate, 3-15, 3-16
time limit for single process modes, 3-23
usage, 3-14, 3-15
display of, 2-4
wait state, 3-16
CPU Summary window, 3-15 to 3-16
Crash Node fix, 4-7
Customizing
automatic investigation when events detected, 5-3
collection interval factor, 5-3, 5-20
default settings, 5-1
effect on performance, 5-20
hiding node names on startup, 5-3
highlighting event data, 5-3
security files, 1-7
template customization files, 5-2
D
Data
display
default, 2-5
event details, 2-9
link, 5-20
transfer security, 1-4
Data Analyzer, 1-2
access for Data Providers, 1-4
AMDS$CONSOLE_ACCESS.DAT file, 1-4
data exchange with Data Provider, 1-8
files used for, B-1
log files, B-4
security file, A-8
setting up after installing, A-8
starting, 2-1 to 2-2, A-9
system directory definition, A-8
typical setup, 1-2
user account privileges and quotas, A-8
Data collection
See Collecting data
Data Provider, 1-2
access for Data Analyzers, 1-4
AMDS$DRIVER_ACCESS.DAT file, 1-4
data exchange with Data Analyzer, 1-8
files, B-3
restarting, 1-8
restrictions, 1-2
security file, A-7
setting up after installation, A-7

Index–2
Data Provider (cont’d)
starting, A–8
Data windows
See also specific window names
Cluster Transition/Overview Summary, 3–30
CPU Modes Summary, 3–14
CPU Summary, 3–15
Disk Status Summary, 3–2
hierarchy, 3–1
Lock Contention Summary, 3–25
Memory Summary, 3–17
NISCA Summary, 3–36
Node Summary, 3–10
overview, 3–1
Page/Swap File Summary, 3–8
Process I/O Summary, 3–12
Single Disk Summary, 3–6
Single Lock Summary, 3–28
Single Process Summary, 3–19
System Communications Architecture (SCA)
Summary, 3–33
Volume Summary, 3–5
DECamds
Data Analyzer system requirements, A–2
installation requirements, 1–3
log file enhancements, B–4
overview, 1–1
processing model, 1–2
security features, 1–3
starting, 2–1 to 2–2, A–8
DECamds Data Analyzer
installation requirements, A–2
preparing for installation, A–1
system requirements, A–2
DECwindows Motif
used on DECamds, 1–2
Defaults
automatic data collection, 5–3
collection intervals, 5–17
customizing, 5–1
data display, 2–5
event color, 5–3
event highlighting, 5–3
event investigation, 5–3
lock event collect state, 5–3
options, 2–5
setting default data collection, 5–3
Deleting events, 2–10
Device name field, 3–3, 3–6
DIO
See Direct I/O
DIOLM (Direct I/O limit), 3–23
Direct I/O
DIO rate field, 3–13
Limit Remaining field, 3–13
use display, 2–4
wait state, 3–23
Disk
error messages, 3–4
Disk space
required for installation, A–3
Disk Status Summary window, 3–2 to 3–4
Disk volumes
error messages, 3–6
Displaying
default data, 2–5
event data, 2–9
options, 2–5
Display software installation requirements, A–2
DSKERR error message, 3–4
DSKINV error message, 3–4
DSKMNV error message, 3–4
DSKOFF error message, 3–4
DSKQLN error message, 3–6
DSKRW T error message, 3–4
DSKUNA error message, 3–4
DSKWRV error message, 3–4
Duration field, 3–26, 3–29

E
ENQLM (enqueue limit) job quotas in use, 3–23
Error messages
CPU, 3–16
disk status, 3–4
disk volume, 3–6
lock contention, 3–27
memory, 3–18
node, 3–11
page/swap file, 3–9
process I/O, 3–13
single lock, 3–29
single process, 3–24
Errors field, 3–4
Escalation
severity filter, 5–6
time filter, 5–6
Event Log window, 2–7
deleting events from, 2–10
display fields, 2–7
filters, 5–6
menus, 2–8
using, 2–7
Events
See also Event Log window
automatic investigation, 5–4
bell filter, 5–6
bell volume, 5–6
changing
default highlighting, 5–3
severity filter, 5–7, 5–11
corrective action, 2–9
creating thresholds for different computer
classes, 5–11
Events (cont’d)
- customizing based on frequency of occurrence, 5–11
- deleting, 2–10
- displaying more information, 2–9
 - escalation
 - severity filter, 5–6
 - time filter, 5–6
 - filtering, 5–6
 - highlight filter, 5–6
 - highlighting color, 5–3
 - lock contention investigation, 5–4
 - log files, B–4
 - removing from the Event Log window, 2–6
 - sending messages to OPCOM, 2–10
 - severity filter, 5–6
 - severity values, 2–7
 - signal filter, 5–6
 - temporary freeze, 2–10
 - timeout, 2–8
 - filter, 5–6

Exiting Image and Deleting Process fix, 4–8
Explicit wait state, 3–23

Fixes (cont’d)
- exiting an image, 4–8
- Fix menu, 2–9
- intruder, 4–3
- list of available, 4–1
- manual, 4–11
- memory too low, 4–3
- memory usage, 4–1
- options, 2–9
- performing, 4–2 to 4–10
- process, 4–1, 4–3
- purging a working set, 4–9
- quorum, 4–1
- resuming a process, 4–9
- runaway process, 4–3
- summary, 4–3
- suspending a process, 4–9
- system, 4–1
- understanding, 4–2
- working set too high or too low, 4–3

Flags field, 3–29
Free field, 3–6

F
Fault rate for pages, 3–18
File Name field, 3–9
File protection for security, 1–4
Files, B–1 to B–6
FILLM (file limit) job quota in use, 3–23
Filtering data
 - at window level, 5–20
 - changing a filter category, 5–8
 - event qualification, 5–5
 - methods, 5–4
Filtering events, 5–6
Filters
 - bell, 5–6
 - bell volume, 5–6
 - changing severity values for events, 5–6, 5–7, 5–11
 - escalation severity, 5–6
 - escalation time, 5–6
 - Event Log, 5–6
 - highlight, 5–6
 - signal (display), 5–6
 - timeout, 5–6
Fixes, 4–1
 - adjust working set, 4–6
 - automatic, 4–10
 - changing
 - process priority, 4–6
 - working set size, 4–6
 - cluster hung, 4–3
 - crashing a node, 4–7
 - deleting a process, 4–8
 - examples, 4–10 to 4–13

G
Getting Started, 2–1
Granted locks, 3–29
GR mode field, 3–29
/GROUP qualifier, 2–1
Groups, 2–4
 - collapsing information, 2–5
 - collecting data, 2–6
 - expanding information, 2–5
 - how to assign a node, 1–8
 - of nodes
 - creating, 1–7

H
Hanging cluster fix, 4–3
Hardware
 - DECamds installation requirements, A–2
 - model field, 3–11
 - security triplet address, 1–6
Hardware model
 - display of for node, 2–4
Hello message broadcasts
 - See Broadcast intervals
Help, 2–2
HIBIOR error message, 3–11
HICOMQ error message, 3–11
Hide Nodes, 2–5
 - changing default behavior, 5–3
HIDIOR error message, 3–11
Highlighting
 - changing default behavior, 5–3
 - customizing color, 5–3
 - filter, 5–6
INDEX
I/O (input/output)
 average number of operations pending for a
 volume, 3–6
 BIO
 limit remaining, 3–13
 buffered limit (BIOLM), 3–23
 buffered wait state, 3–23
 byte limit remaining, 3–13
 classes, 5–12
 default data collection, 5–3
 DIO
 limit remaining, 3–13
 direct limit (DIOLM), 3–23
 direct wait state, 3–23
 Fault rate for pages, 3–18
 open files, 3–13
 paging, 3–22
 PIO, 3–13
 process
 identifier (PID), 3–13
 summary, 3–12
 summary for node, 3–11
I/O field, 3–11
IEEE DECamds protocol, 1–4
Images Activated field, 3–22
Installation requirements
 DECamds, 1–3
Installing DECamds
 post-installation tasks, A–7
Installing software
 DECamds Data Analyzer, A–1
Installing the DECamds Data Analyzer, A–4
 requirements, A–2
Interrupt priority level
 See IPL
Intruder fix, 4–3
Investigating events, 4–11
IPID (internal PID), 3–15
IPL (interrupt priority level)
 on DECamds, 1–2
J
 Job quotas in use, 3–23 to 3–24
 JOB_CONTROL process, 4–10
L
 LAN
 polling, 5–18
 setting load, 5–19
 LCKBLK error message, 3–29
 LCKCNT error message, 3–27
 LCKWAT error message, 3–29
 LIB files, B–2
 LKID field, 3–29
 LOASTQ error message, 3–24
 LOBIOQ error message, 3–13, 3–24
 LOBYTQ error message, 3–13, 3–24
 Lock Contention Summary window, 3–25 to 3–27
 default data collection, 5–3
 detailed data, 3–28
 logging information, B–4
 Locks
 automatic investigation, 5–4
 types of, 3–29
 Lock Type field, 3–29
 LODIOQ error message, 3–13, 3–24
 LOENQU error message, 3–24
 LOFILQ error message, 3–13, 3–24
 Log files, B–4
 lock contention, B–5
 Logging
 event messages, B–4
 Logical names
 AMDS$COMM_BUFOVF, 5–20
 AMDS$COMM_BUFFER_SIZE, 5–20, B–2
 AMDS$COMM_READS, 5–20, B–2
 AMDS$CONFIG, B–2, B–3
 AMDS$DEVICE, B–3
 AMDS$GROUP_NAME, B–3
 AMDS$LOG, 2–7, B–2
 AMDS$NUM_DL_READS, B–3
 AMDS$RM_DEFAULT_INTERVAL, B–3
 AMDS$RM_OPCOM_READ, B–4
 AMDS$RM_OPCOM_WRITE, B–4
 AMDS$RM_SECONDARY_INTERVAL, B–4
 Data Analyzer node, B–1
 Data Provider node, B–3
 requirements, B–1
 sending messages to OPCOM, 1–9
 /LOG_DIRECTORY qualifier, 2–1
 LOMEMY error message, 3–11
 Looping process fix, 4–3
 LOPGFQ error message, 3–24
 LOPGSP error message, 3–9

Index–5
LOPRCQ error message, 3–24
LOSWSP error message, 3–9
LOTQEQ error message, 3–24
LOVLSP error message, 3–6
LOWEXT error message, 3–18, 3–24
LOWSOU error message, 3–18, 3–24
LRGHSH error message, 3–27

M

Manual fix, 4–11
Master Node field, 3–26
Memory
classes, 5–12
default data collection, 5–3
distribution on a node, 3–11
example fix for low, 4–10
fixes, 4–1
fix for low, 4–3
investigating low memory, 4–11
Memory field, 3–11
process identifier (PID), 3–18
rate display, 2–4
requirements, 5–18
sorting data, 5–14
total for a node, 3–11
wait state, 3–23
Memory field, 3–11
Memory Summary window, 3–17 to 3–18
Messages
sending to OPCOM, 1–9
Mount field, 3–4
Multicast messages
customizing interval, B–3
Mutexes held, 3–22

N

Network address
security triplet, 1–5
Network Interconnect System Communication Architecture
See NISCA
NISCA Summary window, 3–36 to 3–40
Node Name field, 3–9
Nodes
assigning to a group, 1–8
availability messages
setting broadcast intervals, 1–10
crash fix, 4–7
default data collection, 5–3
error messages, 3–11
field, 3–29
hardware model of, 2–4
shutdown procedure, A–7
Node Summary window, 3–10 to 3–12
NOPGFL error message, 3–9
NOPROC error message, 3–11
NOSWFL error message, 3–9

O

Occurrence value, 5–11
Online release notes, A–1
OPCOM (Operator Communication Manager)
filtered event messages sent to, 5–6
sending events to, 2–10
sending messages, 1–9
using on DECamds, 1–4
Open files
field, 3–13
for process I/O, 3–13
limit remaining, 3–13
Limit Remaining (Files) field, 3–13
OpenVMS Clusters
including in groups, 1–7
Operating system
field, 3–11
version displayed, 2–4
version requirements for installing the Data Analyzer, A–2
Operations count rate, 3–6
OpRate field, 3–6
Owner ID field, 3–20

P

Page/Swap file
error messages, 3–9
Page/Swap File Summary window, 3–8 to 3–9
Page faults, 3–22
adjust working set, 4–6
field, 3–11
I/O Rate field, 3–18
purging working sets, 4–9
Rate field, 3–18
Page files
default data collection, 5–3
Pagelets
number used, 3–9
percentage number used, 3–9
reserving for use, 3–9
total available in page file, 3–9
Pages
number used, 3–9
percentage number used, 3–9
reserving for use, 3–9
total available in page file, 3–9
Paging I/O, 3–22
Parameter (system) settings required for installation, A–3
Parent Resource field, 3–26, 3–29
Partitioning groups, 1–7
Path field, 3–3, 3–6
PC (program counter) field, 3–20
Performance
 improving, 5–1
 with hardware, 5–21
 optimizing by customizing data collection, 5–18
PGFLQUO (page file quota) job quotas in use, 3–23
PID (process identifier), 3–16
 CPU, 3–15
 field, 3–13, 3–18, 3–20
 I/O, 3–13
 memory, 3–18
 single process, 3–20
PIO (paging I/O)
 field, 3–13
 rate, 3–13
Polling
 LAN, 5–18
 PRBIO error message, 3–13, 3–24
 PRBIO error message, 3–24
 PRCCOM error message, 3–16, 3–24
 PRCCUR error message, 3–24
 PRCCVR error message, 3–16
 PRCLM process limit
 job quotas in use, 3–24
 PRCMUT error message, 3–24
 PRCMWT error message, 3–16
 PRCPUL error message, 3–24
 PRCPWT error message, 3–16, 3–24
 PRCQUO error message, 3–24
 PRCRWA error message, 3–24
 PRCRWC error message, 3–24
 PRCRM error message, 3–24
 PRCPWM error message, 3–24
 PRCPWP error message, 3–24
 PRCPWS error message, 3–24
 PRCU error message, 3–24
 PRDIO error message, 3–13, 3–24
 PRDIOW error message, 3–24
Priority
 field, 3–20
 process, 3–20
 process fix, 4–1
Private LAN transport security, 1–3
Privileges
 installation requirements, A–3
 to run Data Analyzer node, A–8
 to run Data Provider node, A–8
 to start DECamds, A–7
 PRCLC error message, 3–24
Problems, reporting, A–10
Processes
 account quotas required for installation, A–3
 displaying number of in CPU queues, 2–4
 fixes, 4–1
 looping fix, 4–3
 name in CPU, 3–15

Processes (cont’d)
 privileges, 1–4
 quotas
 recommended, 5–19
 setting, 5–19
 states, 3–21
 queues on CPUs, 3–11
Process I/O Summary window, 3–12 to 3–13
Process Name field, 3–13, 3–18, 3–20, 3–29
PRPGFL error message, 3–18, 3–24
PRPIOR error message, 3–13, 3–18, 3–24
PSLs (processor status longwords), 3–20
Purge Working Set fix, 4–9

Q
Qualifiers
 See Command qualifiers
Queue field, 3–6
Quorum fix, 4–1
Quotas
 in use for jobs, 3–23
 limit fix, 4–3
 process account quota requirements, A–3
 process mode, 3–23
 recommended for processes, 5–19
 to run Data Analyzer node, A–8
 wait state, 3–23

R
Read-only access, 1–9
Recording
 event messages, B–4
 lock contention information, B–4
Release Notes, 5–2, A–1
Reporting problems, A–10
RESDNS error message, 3–27
Reservable field, 3–9
Resource Name field, 3–29
Response time
 external factors, 5–18
 optimizing by customizing data collection, 5–18
 system hardware, 5–21
RESPRS error message, 3–27
Restarting the Data Provider, 1–8
Restrictions on the Data Provider, 1–8
Resume Process fix, 4–9
RMCP.EXE file, B–3
RMDRIVER.EXE file, B–3
RQ Mode field, 3–29
Runaway process fix, 4–3
Rwait field, 3–4
SCA (System Communications Architecture)
 Summary window, 3–33 to 3–35
Security
 customizing files, 1–7
 Data Analyzer file, A–8
 Data Provider file, A–7
 data transfer, 1–4
 file protection, 1–4
 logging issues with OPCOM, 1–4
 private LAN transport, 1–3
 process privileges, 1–4
 read-only access, 1–9
 steps after installing
 Data Analyzer, A–8
 Data Provider, A–7
Security triplets
 access verification code, 1–5
 format, 1–5
 how they work, 1–6
 network address, 1–5
 password, 1–5
 verifying, 1–7
 wildcard address, 1–6
Setting broadcast intervals, 1–10
Severity
 events, 5–6
Show Nodes, 2–5
 changing default behavior, 5–3
Shutdown procedure, node, A–7
Signal filter, 5–6
Single Disk Summary window, 3–6
Single Lock Summary window
 error messages, 3–29
 Granted, Conversion, and Waiting Queue lock, 3–29
 Granted lock fields, 3–29
Single node
 collecting data, 2–6
Single Process Summary window
 error messages, 3–24
 execution rates, 3–22
 quotas, 3–23
SMP (symmetric multiprocessing), 2–4
Sorting data, 5–14, 5–15
 for memory data, 5–14
Starting DECamds, 2–1 to 2–2
Starting the Data Analyzer, 2–1 to 2–2, A–9
Starting the Data Provider, A–8
State field, 3–20
Status field, 3–4, 3–26
Stopping data collection, 2–6
Suspended process fix, 4–3, 4–9
Swap files
 default data collection, 5–3
SWAPPER process
 fixes ignored, 4–2
SYS$HELP.HLB file, B–1, B–3
SYS$RMDRIVER.EXE file, B–3
SYS$STARTUP.COM file, B–3
System
 fix, 4–1
 load recommendations for hardware, 5–21
 parameter settings required for installation, A–3
 processes, 4–10
System Communications Architecture
 See SCA
System Overview window, 2–2, 2–3
 defining groups, 1–7
 hiding node name on startup with customization file, 5–3
 menus, 2–4
Thresholds
 customizing for events or computer classes, 5–11
Timeout filter, 5–6
Total field, 3–9
TQELM process limit
 job quotas in use, 3–23
Transactions
 number of operations for disk, 3–4
Triplets
 See Security triplets
UICs (user identification codes)
 single process summary, 3–20
 UIC field, 3–20
Uptime field, 3–11
Used field, 3–6, 3–9
% Used field, 3–6, 3–9
User accounts
 Data Analyzer node privileges and quotas, A–8
 Data Provider node privileges, A–3
Username field, 3–20
Version
 display of operating system, 2–4
Viewing groups, 2–5
View menu, 2–5
Volume
 default data collection, 5–3
 I/O operations, 3–6
 number of free blocks, 3–6
Volume (cont’d)
 number of used blocks, 3–6
 operations count rate, 3–6
 percentage number of blocks used, 3–6
Volume Name field, 3–3, 3–6
Volume Summary window, 3–5 to 3–6

W

Waiting queue locks, 3–29
Wait states
 buffered I/O, 3–23
 compute, 3–23
 control, 3–23
 CPU, 3–16
 direct I/O, 3–23
 disk status, 3–4
 explicit, 3–23
 memory, 3–23
 quota, 3–23
 RWAIT, 3–4
Wildcard address
 security triplet, 1–6
Working set
 count, 3–18
 default, 3–22
 extent, 3–18, 3–22
 global pages, 3–21
 private pages, 3–22
 purging, 4–9
 quota, 3–22
 size, 3–18, 3–22
 size fix, 4–6
 too high or too low, 4–3
 total pages, 3–22
 WSdef field, 3–22
 WSextent field, 3–22
 WSquo field, 3–22