This document describes reference information for System Management utilities used with the OpenVMS Alpha operating system.

Software Version: OpenVMS Alpha Version 7.3-2

Hewlett-Packard Company
Palo Alto, California
Contents

Preface ... xv

1 Access Control List Editor

1.1 ACL Editor Description ... 1–3
1.2 ACL Editor Usage Summary ... 1–3
1.3 ACE Formats .. 1–5
 - Alarm ACE ... 1–6
 - Audit ACE ... 1–8
 - Creator ACE ... 1–10
 - Default Protection ACE ... 1–12
 - Identifier ACE ... 1–14
 - Subsystem ACE .. 1–16
1.4 ACL Editor Qualifiers ... 1–18
 - /CLASS .. 1–19
 - /JOURNAL ... 1–20
 - /MODE ... 1–21
 - /OBJECT_TYPE ... 1–22
 - /RECOVER ... 1–23

2 Accounting Utility

2.1 ACCOUNTING Description ... 2–3
2.2 ACCOUNTING Usage Summary .. 2–3
2.3 ACCOUNTING Qualifiers .. 2–3
 - /ACCOUNT .. 2–5
 - /ADDRESS ... 2–6
 - /BEFORE ... 2–7
 - /BINARY ... 2–8
 - /BRIEF ... 2–9
 - /ENTRY .. 2–11
 - /FULL ... 2–12
 - /IDENT .. 2–14
 - /IMAGE .. 2–15
 - /JOB ... 2–16
 - /LOG ... 2–17
 - /NODE ... 2–18
 - /OUTPUT (Alpha Only) ... 2–19
 - /OWNER ... 2–20
 - /PRIORITY .. 2–21
3 Analyze/Disk_Structure Utility

3.1 ANALYZE/DISK_STRUCTURE Description 3–3
3.1.1 Disk Error Reporting and Repair .. 3–4
3.1.2 Detecting Shadow Set Errors ... 3–6
3.2 ANALYZE/DISK_STRUCTURE Usage Summary 3–6
3.3 ANALYZE/DISK_STRUCTURE Qualifiers 3–7
 /CONFIRM ... 3–9
 /HOMEBLOCKS ... 3–10
 /LIST .. 3–11
 /LOCK_VOLUME (Alpha only) .. 3–12
 /OUTPUT .. 3–13
 /READ_CHECK .. 3–14
 /RECORD_ATTRIBUTES .. 3–15
 /REPAIR ... 3–16
 /SHADOW .. 3–17
 /STATISTICS ... 3–19
 /USAGE[=filespec] ... 3–21

4 Audit Analysis Utility

4.1 ANALYZE/AUDIT Description .. 4–3
4.2 ANALYZE/AUDIT Usage Summary ... 4–3
4.3 ANALYZE/AUDIT Qualifiers .. 4–4
 /BEFORE ... 4–5
 /BINARY .. 4–6
 /BRIEF .. 4–7
 /EVENT_TYPE .. 4–8
 /FULL .. 4–10
 /IGNORE ... 4–11
 /INTERACTIVE .. 4–12
 /OUTPUT ... 4–13
 /PAUSE ... 4–14
4.4 ANALYZE/AUDIT Commands 4–28
CONTINUE .. 4–29
DISPLAY .. 4–30
EXIT .. 4–32
HELP .. 4–33
LIST ... 4–34
NEXT FILE .. 4–35
NEXT RECORD .. 4–36
POSITION .. 4–37
SHOW .. 4–38

5 Authorize Utility

5.1 AUTHORIZE Description 5–3
5.2 AUTHORIZE Usage Summary 5–4
5.3 AUTHORIZE Commands 5–5

ADD ... 5–7
ADD/IDENTIFIER .. 5–21
ADD/PROXY .. 5–23
COPY .. 5–25
CREATE/PROXY .. 5–37
CREATE/RIGHTS 5–38
DEFAULT ... 5–39
EXIT .. 5–51
GRANT/IDENTIFIER 5–52
HELP .. 5–54
LIST ... 5–56
LIST/IDENTIFIER 5–58
LIST/PROXY .. 5–60
LIST/RIGHTS .. 5–61
MODIFY ...
MODIFY/IDENTIFIER
MODIFY/PROXY ..
MODIFY/SYSTEM_PASSWORD
REMOVE ...
REMOVE/IDENTIFIER
REMOVE/PROXY 5–81
RENAME ...
RENAME/IDENTIFIER 5–85
REVOKE/IDENTIFIER 5–86
SHOW .. 5–87
SHOW/IDENTIFIER 5–92
SHOW/PROXY ... 5–94
SHOW/RIGHTS ... 5–96
6 AUTOGEN Command Procedure

6.1 AUTOGEN Description .. 6–3
6.1.1 NEWPARAMS.DAT .. 6–3
6.1.1.1 How NEWPARAMS.DAT Works 6–4
6.1.1.2 What Goes into NEWPARAMS.DAT 6–4
6.1.1.2.1 Product Name .. 6–5
6.1.1.2.2 Parameter Assignment 6–5
6.1.1.2.3 How to Remove Assignments from CLU$PARAMS.DAT 6–5
6.1.1.3 What CLU$PARAMS.DAT Looks Like 6–6
6.2 AUTOGEN Usage Summary .. 6–6
6.3 Feedback .. 6–8
6.4 Phases .. 6–9
6.4.1 SAVPARAMS .. 6–9
6.4.2 GETDATA .. 6–10
6.4.3 GENPARAMS .. 6–10
6.4.4 TESTFILES .. 6–10
6.4.5 GENFILES ... 6–11
6.4.6 SETPARAMS .. 6–11
6.4.7 SHUTDOWN ... 6–11
6.4.8 REBOOT .. 6–11
6.4.9 HELP ... 6–12
6.5 Execution Modes .. 6–12
6.6 Files Used by AUTOGEN .. 6–12
6.7 AUTOGEN Usage Summary 6–13

7 Backup Utility

7.1 BACKUP Description .. 7–3
7.2 BACKUP Command Line Format 7–5
7.3 BACKUP Input and Output Specifiers 7–5
7.3.1 Input and Output Specifier Element Lists 7–6
7.3.2 BACKUP Qualifiers ... 7–7
7.3.3 Using Wildcard Characters with BACKUP 7–8
7.4 BACKUP Usage Summary .. 7–10
7.5 BACKUP Qualifiers ... 7–11
 /ALIAS ... 7–15
 /ASSIST .. 7–16
 /BACKUP ... 7–17
 /BEFORE .. 7–18
 /BLOCK_SIZE ... 7–19
 /BRIEF .. 7–20
 /BUFFER_COUNT .. 7–21
 /BY_OWNER ... 7–22
 /BY_OWNER ... 7–23
 /BY_OWNER ... 7–24
 /COMMENT .. 7–25
 /COMPARE .. 7–26
 /CONFIRM .. 7–28
 /CONVERT .. 7–29
 /CRC ... 7–30
 /CRC ... 7–31
/CREATED .. 7–32
/DELETE .. 7–33
/DENSITY .. 7–34
/EXACT_ORDER .. 7–36
/EXCLUDE .. 7–39
/EXPIRED .. 7–40
/FAST .. 7–41
/FILES_SELECTED 7–42
/FULL .. 7–43
/GROUP_SIZE ... 7–45
/HEADER_ONLY .. 7–46
/IGNORE=option .. 7–48
/IMAGE ... 7–51
/INCREMENTAL .. 7–53
/INITIALIZE .. 7–55
/INPUT_FILES ... 7–57
/INTERCHANGE .. 7–58
/JOURNAL .. 7–59
/LABEL .. 7–62
/LIST ... 7–64
/LOG ... 7–66
/MEDIA_FORMAT=[NO]COMPACTION 7–67
/MODIFIED ... 7–68
/NEW_VERSION ... 7–69
/NOINCREMENTAL 7–70
/OVERLAY ... 7–71
/OWNER_UIC .. 7–72
/PHYSICAL ... 7–73
/PROTECTION ... 7–75
/RECORD .. 7–77
/RELEASE_TAPE ... 7–78
/REPLACE ... 7–79
/REWIND .. 7–80
/REWRITE ... 7–81
/SAVE_SET ... 7–84
/SAVE_SET ... 7–85
/SELECT ... 7–86
/SINCE .. 7–87
/TAPEExpiration ... 7–89
/TRUNCATE ... 7–90
/VERIFY .. 7–91
/VOLUME .. 7–92

7.6 BACKUP Examples .. 7–93
8 Crash Log Utility Extractor (CLUE) (VAX Only)

8.1 CLUE Description (VAX Only) 8–3
8.2 CLUE Usage Summary (VAX Only) 8–3
8.3 CLUE Commands (VAX Only) 8–3
 DELETE (VAX Only) .. 8–5
 DIRECTORY (VAX Only) 8–6
 EXIT (VAX Only) ... 8–8
 EXTRACT (VAX Only) .. 8–9
 HELP (VAX Only) .. 8–10
 SHOW (VAX Only) ... 8–11

9 DECevent Utility

9.1 DECevent Description ... 9–3
9.2 DECevent Usage Summary 9–3
9.3 DECevent Primary and Secondary Qualifiers 9–4
 Primary Qualifier: /ANALYZE 9–7
 Primary Qualifier: /BINARY 9–8
 Primary Qualifier: /CONTINUOUS 9–9
 Primary Qualifier: /DUMP 9–10
 Primary Qualifier: /INTERACTIVE 9–11
 Primary Qualifier: /INTERFACE 9–12
 Primary Qualifier: /TRANSLATE 9–13
 Secondary Qualifier: /BEFORE 9–14
 Secondary Qualifier: /BRIEF 9–15
 Secondary Qualifier: /ENTRY 9–16
 Secondary Qualifier: /EXCLUDE 9–17
 Secondary Qualifier: /FSTERR 9–20
 Secondary Qualifier: /FULL 9–21
 Secondary Qualifier: /INCLUDE 9–22
 Secondary Qualifier: /LOG 9–25
 Secondary Qualifier: /NODE 9–26
 Secondary Qualifier: /OUTPUT 9–27
 Secondary Qualifier: /REJECTED 9–28
 Secondary Qualifier: /REVERSE 9–29
 Secondary Qualifier: /SINCE 9–30
 Secondary Qualifier: /SUMMARY 9–31
 Secondary Qualifier: /TERSE 9–32
9.4 DECevent Examples ... 9–33

10 Error Log Report Formatter (ERF) Utility

10.1 ERF Description ... 10–3
10.2 ERF Usage Summary ... 10–3
10.3 ERF Qualifiers .. 10–4

/BEFORE ... 10–6

/BINARY .. 10–7

/BRIEF .. 10–8

/ENTRY .. 10–9

/EXCLUDE .. 10–10

/FULL ... 10–13

/INCLUDE .. 10–14

/LOG ... 10–17

/MODEL (Alpha Only) 10–18

/NODE ... 10–19

/OUTPUT ... 10–20

/PAGE ... 10–21

/REGISTER_DUMP 10–22

/REJECTED ... 10–23

/SID_REGISTER (VAX Only) 10–24

/SINCE ... 10–25

/STATISTICS .. 10–26

10.4 ERF Examples ... 10–27

11 Error Log Viewer Utility (ELV)

11.1 ELV Description ... 11–3

11.2 ELV Usage Summary 11–4

11.3 Understanding Categories of Events 11–5

11.4 ELV Commands ... 11–5

CONVERT ... 11–6

DUMP ... 11–11

EXIT ... 11–16

HELP ... 11–17

TRANSLATE .. 11–18

WRITE ... 11–25

11.5 ELV Sample Reports ... 11–30

11.5.1 /ONE_LINE Example 11–30

11.5.2 /BRIEF Example 11–31

11.5.3 No Qualifiers Example 11–31

11.5.4 /FULL Example 11–32

11.5.5 /TERSE Example 11–32

12 Install Utility

12.1 INSTALL Description 12–3

12.2 INSTALL Usage Summary 12–3

12.3 INSTALL Qualifiers 12–3

/TRANSLATE .. 12–4
12.4 INSTALL Commands .. 12–5
 ADD .. 12–6
 CREATE ... 12–7
 DELETE .. 12–12
 EXIT ... 12–13
 HELP ... 12–14
 LIST .. 12–15
 PURGE ... 12–21
 REMOVE .. 12–22
 REPLACE .. 12–23

13 LAN Control Program (LANCP) Utility

13.1 LANCP Description ... 13–3
13.2 LANCP Usage Summary .. 13–3
13.3 LANCP Commands ... 13–4
 @ (Execute Procedure) ... 13–6
 CLEAR DEVICE .. 13–7
 CLEAR DLL ... 13–8
 CLEAR NODE ... 13–9
 CONNECT NODE ... 13–10
 CONVERT DEVICE_DATABASE .. 13–12
 CONVERT NODE_DATABASE ... 13–13
 DEFINE DEVICE .. 13–14
 DEFINE NODE ... 13–19
 EXIT .. 13–22
 HELP .. 13–23
 LIST DEVICE ... 13–24
 LIST NODE .. 13–26
 PURGE DEVICE ... 13–28
 PURGE NODE ... 13–29
 SET ACP ... 13–30
 SET DEVICE (Alpha only) .. 13–31
 SET NODE .. 13–40
 SHOW CONFIGURATION .. 13–43
 SHOW DEVICE .. 13–44
 SHOW DLL .. 13–48
 SHOW LOG ... 13–49
 SHOW NODE .. 13–51
 SPAWN ... 13–53
 TRIGGER NODE .. 13–54
14 LAT Control Program (LATCP) Utility

14.1 LATCP Description .. 14–3
14.2 LATCP Usage Summary 14–3
14.3 LATCP Commands .. 14–4
 ATTACH .. 14–5
 CREATE LINK .. 14–7
 CREATE PORT ... 14–10
 CREATE SERVICE ... 14–15
 DEFINE/KEY .. 14–19
 DELETE LINK ... 14–22
 DELETE PORT .. 14–23
 DELETE QUEUE_ENTRY .. 14–24
 DELETE SERVICE ... 14–25
 EXIT .. 14–26
 HELP .. 14–27
 RECALL .. 14–28
 REFRESH ... 14–29
 SCROLL ... 14–30
 SET LINK .. 14–31
 SET NODE ... 14–33
 SET PORT ... 14–43
 SET SERVICE ... 14–47
 SHOW LINK ... 14–50
 SHOW NODE ... 14–55
 SHOW PORT ... 14–61
 SHOW QUEUE_ENTRY ... 14–64
 SHOW SERVICE .. 14–66
 SPAWN ... 14–69
 ZERO COUNTERS .. 14–70

15 Log Manager Control Program (LMCP) Utility

15.1 LMCP Description .. 15–3
15.2 LMCP Usage Summary .. 15–3
15.3 LMCP Commands .. 15–3
 CLOSE LOG .. 15–4
 CONVERT LOG ... 15–5
 CREATE LOG ... 15–7
 DUMP .. 15–9
 EXIT .. 15–14
 HELP .. 15–15
 REPAIR ... 15–16
 SHOW LOG ... 15–19
Index

Examples

<table>
<thead>
<tr>
<th>Sample Transaction Log</th>
<th>15–1</th>
<th>15–10</th>
</tr>
</thead>
</table>

Figures

<table>
<thead>
<tr>
<th>Keypad for an LK201-Series Keyboard</th>
<th>A–1</th>
<th>A–2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format of an Accounting Record</td>
<td>C–1</td>
<td>C–2</td>
</tr>
<tr>
<td>Format of an Information Packet</td>
<td>C–2</td>
<td>C–5</td>
</tr>
<tr>
<td>Format of a File Name Packet</td>
<td>C–3</td>
<td>C–6</td>
</tr>
<tr>
<td>Format of an Identification Packet</td>
<td>C–4</td>
<td>C–7</td>
</tr>
<tr>
<td>Format of an Image Name Packet</td>
<td>C–5</td>
<td>C–8</td>
</tr>
<tr>
<td>Format of a Print Resource Packet</td>
<td>C–6</td>
<td>C–9</td>
</tr>
<tr>
<td>Format of a Resource Packet</td>
<td>C–7</td>
<td>C–10</td>
</tr>
<tr>
<td>Format of a User Data Packet</td>
<td>C–8</td>
<td>C–12</td>
</tr>
<tr>
<td>Format of a Security Audit Message</td>
<td>F–1</td>
<td>F–1</td>
</tr>
<tr>
<td>Audit Header Packet Format</td>
<td>F–2</td>
<td>F–2</td>
</tr>
<tr>
<td>Audit Data Packet Format</td>
<td>F–3</td>
<td>F–7</td>
</tr>
<tr>
<td>Command Qualifiers Used in Save Operations</td>
<td>G–1</td>
<td>G–2</td>
</tr>
<tr>
<td>Input File-Selection Qualifiers Used in Save Operations</td>
<td>G–2</td>
<td>G–3</td>
</tr>
<tr>
<td>Output Save-Set Qualifiers Used in Save Operations</td>
<td>G–3</td>
<td>G–4</td>
</tr>
<tr>
<td>Command Qualifiers Used in Restore Operations</td>
<td>G–4</td>
<td>G–5</td>
</tr>
<tr>
<td>Input Save-Set Qualifiers Used in Restore Operations</td>
<td>G–5</td>
<td>G–6</td>
</tr>
<tr>
<td>Output File Qualifiers Used in Restore Operations</td>
<td>G–6</td>
<td>G–6</td>
</tr>
<tr>
<td>Command Qualifiers Used in Copy Operations</td>
<td>G–7</td>
<td>G–7</td>
</tr>
<tr>
<td>Input File-Selection Qualifiers Used in Copy Operations</td>
<td>G–7</td>
<td>G–8</td>
</tr>
<tr>
<td>Output File Qualifiers Used in Copy Operations</td>
<td>G–8</td>
<td>G–9</td>
</tr>
<tr>
<td>Command Qualifiers Used in Compare Operations</td>
<td>G–9</td>
<td>G–10</td>
</tr>
<tr>
<td>Input File-Selection Qualifiers Used in Compare Operations</td>
<td>G–10</td>
<td>G–11</td>
</tr>
<tr>
<td>Input Save-Set Qualifiers Used in Compare Operations</td>
<td>G–11</td>
<td>G–11</td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>Manual Structure</th>
<th>1</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen Control Keys</td>
<td>5–1</td>
<td>5–88</td>
</tr>
<tr>
<td>System Parameters Affected by AUTOGEN Calculations</td>
<td>6–1</td>
<td>6–7</td>
</tr>
<tr>
<td>System Parameters Affected by AUTOGEN Feedback</td>
<td>6–2</td>
<td>6–9</td>
</tr>
<tr>
<td>AUTOGEN Phases</td>
<td>6–3</td>
<td>6–9</td>
</tr>
<tr>
<td>AUTOGEN Execution Modes</td>
<td>6–4</td>
<td>6–12</td>
</tr>
<tr>
<td>Files Used by AUTOGEN</td>
<td>6–5</td>
<td>6–12</td>
</tr>
<tr>
<td>BACKUP Input and Output by Operation Type</td>
<td>7–1</td>
<td>7–6</td>
</tr>
<tr>
<td>BACKUP Qualifier Summary</td>
<td>7–2</td>
<td>7–11</td>
</tr>
<tr>
<td>Save Operation Quick Reference</td>
<td>7–3</td>
<td>7–93</td>
</tr>
<tr>
<td>Restore Operation Quick Reference</td>
<td>7–4</td>
<td>7–94</td>
</tr>
<tr>
<td>Copy Operation Quick Reference</td>
<td>7–5</td>
<td>7–96</td>
</tr>
</tbody>
</table>
Preface

The HP OpenVMS System Management Utilities Reference Manual: A–L contains reference information about the utilities that are used to manage both the OpenVMS VAX and OpenVMS Alpha operating systems. This manual describes each system management utility and provides examples for frequently used commands and qualifiers. In addition to system management utilities, a description and usage summary of the AUTOGEN command procedure is presented in this reference manual.

All commands follow the standard rules of grammar as specified in the HP OpenVMS DCL Dictionary.

For information on how to use these system management utilities and AUTOGEN, please refer to the HP OpenVMS System Manager’s Manual.

Intended Audience

This manual is intended for system managers and users of the system management utilities for the OpenVMS VAX and OpenVMS Alpha operating systems.

Document Structure

This manual has 14 parts, arranged alphabetically. Each part, except the section on the AUTOGEN command procedure, contains reference information for a system management utility. Table 1 shows the structure.

Table 1 Manual Structure

<table>
<thead>
<tr>
<th>Part</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Access Control List Editor (ACL editor)</td>
</tr>
<tr>
<td>2</td>
<td>Accounting (ACCOUNTING)</td>
</tr>
<tr>
<td>3</td>
<td>Analyze/Disk_Structure (ANALYZE/DISK_STRUCTURE)</td>
</tr>
<tr>
<td>4</td>
<td>Audit Analysis (ANALYZE/AUDIT)</td>
</tr>
<tr>
<td>5</td>
<td>Authorize (AUTHORIZE)</td>
</tr>
<tr>
<td>6</td>
<td>AUTOGEN Command Procedure</td>
</tr>
<tr>
<td>7</td>
<td>Backup (BACKUP)</td>
</tr>
<tr>
<td>8</td>
<td>Crash Log Utility Extractor (CLUE)</td>
</tr>
<tr>
<td>9</td>
<td>DECevent</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1 (Cont.) Manual Structure

<table>
<thead>
<tr>
<th>Part</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Error Log Report Formatter (ERF)</td>
</tr>
<tr>
<td>11</td>
<td>Error Log Viewer (ELV)</td>
</tr>
<tr>
<td>12</td>
<td>Install (INSTALL)</td>
</tr>
<tr>
<td>13</td>
<td>LAN Control Program (LANCP)</td>
</tr>
<tr>
<td>14</td>
<td>LAT Control Program (LATCP)</td>
</tr>
<tr>
<td>15</td>
<td>Log Manager Control Program (LMCP)</td>
</tr>
</tbody>
</table>

Related Documents

For more information on the system management utilities, refer to the following documents:

- HP OpenVMS Guide to System Security
- HP OpenVMS DCL Dictionary
- HP OpenVMS System Manager’s Manual
- OpenVMS Programming Concepts Manual
- OpenVMS Record Management Services Reference Manual
- HP OpenVMS System Services Reference Manual
- OpenVMS User’s Manual
- OpenVMS VAX Device Support Manual (archived, available on the OpenVMS Documentation CD–ROM)
- OpenVMS VAX System Dump Analyzer Utility Manual
- HP Volume Shadowing for OpenVMS

For additional information about HP OpenVMS products and services, visit the following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either of the following addresses:

Internet openvmsdoc@hp.com
Postal Mail Hewlett-Packard Company
 OSGG Documentation Group, ZKO3-4/U08
 110 Spit Brook Rd.
 Nashua, NH 03062-2698
How To Order Additional Documentation

For information about how to order additional documentation, visit the following World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified, references to OpenVMS Cluster systems or clusters in this document are synonymous with VMScluster systems.

The contents of the display examples for some utility commands described in this manual may differ slightly from the actual output provided by these commands on your system. However, when the behavior of a command differs significantly between OpenVMS VAX and OpenVMS Alpha, that behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key labeled PF1 and then press and release another key or a pointing device button.

In examples, a key name enclosed in a box indicates that you press a key on the keyboard. (In text, a key name is not enclosed in a box.)

In the HTML version of this document, this convention appears as brackets, rather than a box.

... A horizontal ellipsis in examples indicates one of the following possibilities:

- Additional optional arguments in a statement have been omitted.
- The preceding item or items can be repeated one or more times.
- Additional parameters, values, or other information can be entered.

.. A vertical ellipsis indicates the omission of items from a code example or command format; the items are omitted because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can choose one or more items or no items. Do not type the brackets on the command line. However, you must include the brackets in the syntax for OpenVMS directory specifications and for a substring specification in an assignment statement.
In command format descriptions, vertical bars separate choices within brackets or braces. Within brackets, the choices are options; within braces, at least one choice is required. Do not type the vertical bars on the command line.

{} In command format descriptions, braces indicate required choices; you must choose at least one of the items listed. Do not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It also represents the name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables. Variables include information that varies in system output (Internal error number), in command lines (/PRODUCER=name), and in command parameters in text (where dd represents the predefined code for the device type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine, the name of a file, or the abbreviation for a system privilege.

Monospace type Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following elements: keywords, the names of independently compiled external functions and files, syntax summaries, and references to variables or identifiers introduced in an example.

- A hyphen at the end of a command format description, command line, or code line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.
Access Control List Editor
1.1 ACL Editor Description

The access control list editor (ACL editor) is a screen-oriented editor used to create and maintain access control lists (ACLs). An ACL is a collection of access control entries (ACEs) that grant or deny access for specific users or groups of users of an object. (For a description of the entry and display format for ACEs, see Section 1.3.) ACLs enable you to control access more closely than you can by using the default user identification code (UIC) based protection.

The system does not limit the number of ACEs that an ACL can contain or the number of characters in an ACE. However, long ACLs increase the amount of time necessary to gain access to an object. In practice, memory constraints can limit the size of an ACL.

The order of ACEs in an ACL is important. ACEs granting or denying access to an object for specific users must appear before ACEs identifying broader classes of users. For example, to grant user SMITH read access to a system object and to deny all other interactive users all types of access to the object, place the ACE for user SMITH before the ACE identifying all interactive users on the system.

You can place ACLs on the following object classes:

- Capability
- Common event flag cluster
- Device
- File
- Group global section
- Logical name table
- Queue
- Resource domain
- Security class
- System global section
- Volume

1.2 ACL Editor Usage Summary

The access control list editor (ACL editor) creates or modifies an access control list (ACL) for a specified object.

Format

EDIT/ACL object-spec

Parameter

object-spec

Specifies the object whose access control list is to be created or edited. If an access control list does not exist, it is created.

You can specify an object from any of the following object classes:

- Capability
- Common event flag cluster
- Device
- File
- Group global section
- Logical name table
- Queue
- Resource domain

ACL

1.1 ACL Editor Description
1.2 ACL Editor Usage Summary

Security class
System global section
Volume

The default object class is a file. A file must be a disk file on a Files-11 On-Disk Structure Level 2 or 5 formatted volume. For any object other than a file, you must specify the object class with the /CLASS qualifier.

Note that the ACL editor does not provide a default file type for files. To prevent the ACL editor from using a null file type, specify the file type on the command line. If the object is a directory, specify the .DIR file type.

Do not include wildcard characters in the object specification.

Description

You can invoke the ACL editor to create or modify an ACL for an object that you own, have control access to, or can gain access to by a privilege such as BYPASS, GRPPRV, or SYSPRV. To invoke the ACL editor, enter the DCL command EDIT/ACL. In the command line, specify the name of the object whose ACL you want to edit. For example, to create an ACL for the file INVENTORY.DAT, enter the following command:

$ EDIT/ACL INVENTORY.DAT

You can use either the EDIT/ACL command or the SET SECURITY/EDIT command to invoke the ACL editor. For more information about the SET SECURITY command, refer to the HP OpenVMS DCL Dictionary and the HP OpenVMS Guide to System Security.

By default, the ACL editor creates and modifies ACLs for files. To create an ACL for an object other than a file (for example, to create an ACL for a queue), you must specify the object class when you invoke the ACL editor. For example, the following command invokes the ACL editor to create an ACL for the disk DAPR:

$ EDIT/ACL/CLASS=DEVICE DAPR

If an ACL for the object you specify already exists, the ACL editor displays the ACL. You can then use keypad editing commands to add, replace, or delete one or more ACEs in the ACL (see Section A.1). To exit from a completed editing session, press Ctrl/Z. To end an editing session without incorporating any of your edits, press the GOLD key (PF1) and then press Ctrl/Z.

For a description of keypad editing commands supplied by the ACL editor, see Appendix A. For information about how to modify the ACL editor by modifying ACL section files, see Appendix B.

______________ Note ______________

In addition to invoking the ACL editor directly or by entering commands at the DCL prompt ($), you can modify an ACL by using the callable interface to the ACL editor (the ACLEDIT$EDIT routine). For information about how to use the ACLEDIT$EDIT routine, refer to the OpenVMS Utility Routines Manual.
1.3 ACE Formats

This section describes the entry and display format for the following access control entries (ACEs):

- Alarm ACE for security auditing of an object
- Audit ACE for security auditing of an object
- Creator ACE to set the ownership access for new files created in a directory
- Default Protection ACE to set a default protection code through a directory structure
- Identifier ACE for object access control
- Subsystem ACE for protected subsystem access control

The *HP OpenVMS Guide to System Security* describes how to use each of these ACEs. You can also use other types of ACEs. For example, applications can use an Application ACE to store application-specific information associated with a file. For a description of the internal format used to store an ACE, refer to the *OpenVMS Programming Concepts Manual*.
ACL
Alarm ACE

Alarm ACE

Specifies the access criteria that cause an alarm message to be sent to all security operator terminals.

ACL alarms are enabled by default; however, alarms are not written to the system security audit log file. If you have existing files or resources protected by Alarm ACEs and you want messages to be recorded in the log file, replace the Alarm ACEs with Audit ACEs.

Format

(ALARM=SECURITY [,OPTIONS=attributes], ACCESS=access-type[+access-type...])

Parameters

options
Specify any of the following attributes:

Default Indicates that an ACE is to be included in the ACL of any files created within a directory. When the entry is propagated, the Default attribute is removed from the ACE of the created file. This attribute is valid for directory files only.

Hidden Indicates that this ACE should be changed only by the application that adds it. Although the Hidden attribute is valid for any ACE type, its intended use is to hide Application ACEs. To delete or modify a hidden ACE, you must use the SET SECURITY command. Users need the SECURITY privilege to display a hidden ACE with the DCL commands SHOW SECURITY or DIRECTORY/SECURITY. SECURITY privilege is also required to modify or delete a hidden ACE with the DCL command SET SECURITY. The ACL editor displays the ACE only to show its relative position within the ACL, not to facilitate editing of the ACE. To create a hidden ACE, an application can invoke the $SET_SECURITY system service.
Protected Protects the ACE against casual deletion. Protected ACEs can be deleted only in the following ways:

- By using the ACL editor
- By specifying the ACE explicitly when deleting it
 Use the command `SET SECURITY/ACL=(ace)/DELETE` to specify and delete an ACE.
- By deleting all ACEs, both protected and unprotected
 Use the command `SET SECURITY/ACL/DELETE=ALL` to delete all ACEs.

The following commands do not delete protected ACEs:

```
SET SECURITY/ACL/DELETE
SET SECURITY/LIKE
SET SECURITY/DEFAULT
```

Nopropagate Indicates that the ACE cannot be copied by operations that usually propagate ACEs. For example, the ACE cannot be copied by the `SET SECURITY/LIKE` or `SET SECURITY/DEFAULT` commands.

None Indicates that no attributes apply to an entry. Although you can create an ACL entry with OPTIONS=None, the attribute is not displayed. Whenever you specify additional attributes with the None attribute, the other attributes take precedence. The None attribute is equivalent to omitting the field.

access
Specify any access that is valid for the object class. Refer to the *HP OpenVMS Guide to System Security* for a listing of valid access types. For an Alarm ACE to have any effect, you must include the keywords SUCCESS, FAILURE, or both with the access types. For example, if the auditing criterion is a failure to obtain write access to an object, specify the following Alarm ACE:

```
(ALARM=SECURITY, ACCESS=WRITE+FAILURE)
```
Audit ACE

Specifies the access criteria that cause an audit message to be written to the system security audit log file. A message is recorded by default. A message is recorded only if ACL audits are enabled with the DCL command SET AUDIT/AUDIT/ENABLE=ACL.

Format

(AUDIT=SECURITY [,OPTIONS=attributes], ACCESS=access-type[+access-type...])

Parameters

options
Specify one of the following attributes:

Default
Indicates that an ACE is to be included in the ACL of any files created within a directory. When the entry is propagated, the Default attribute is removed from the ACE of the created file. This attribute is valid for directory files only.

Hidden
Indicates that this ACE should be changed only by the application that adds it. Although the Hidden attribute is valid for any ACE type, its intended use is to hide Application ACEs. To delete or modify a hidden ACE, you must use the SET SECURITY command. Users need the SECURITY privilege to display a hidden ACE with the DCL commands SHOW SECURITY or DIRECTORY/SECURITY. SECURITY privilege is also required to modify or delete a hidden ACE with the DCL command SET SECURITY. The ACL editor displays the ACE only to show its relative position within the ACL, not to facilitate editing of the ACE. To create a hidden ACE, an application can invoke the $SET_SECURITY system service.

Protected
Protects the ACE against casual deletion. Protected ACEs can be deleted only in the following ways:

- By using the ACL editor
- By specifying the ACE explicitly when deleting it
 Use the command SET SECURITY/ACL=(ace)/DELETE to specify and delete an ACE.
- By deleting all ACEs, both protected and unprotected
 Use the command SET SECURITY/ACL/DELETE=ALL to delete all ACEs.

The following commands do not delete protected ACEs:

SET SECURITY/ACL/DELETE
SET SECURITY/LIKE
SET SECURITY/DEFAULT
Nopropagate Indicates that the ACE cannot be copied by operations that usually propagate ACEs. For example, the ACE cannot be copied by the SET SECURITY/LIKE or SET SECURITY/DEFAULT commands.

None Indicates that no attributes apply to an entry. Although you can create an ACL entry with OPTIONS=None, the attribute is not displayed. Whenever you specify additional attributes with the None attribute, the other attributes take precedence. The None attribute is equivalent to omitting the field.

access Specify any access that is valid for the object class. Refer to the HP OpenVMS Guide to System Security for a listing of valid access types. For an Audit ACE to have any effect, you must include the keywords SUCCESS, FAILURE, or both with the access types. For example, if the auditing criterion is a failure to obtain write access to an object, specify the following Audit ACE:

(AUDIT=SECURITY,ACCESS=WRITE+FAILURE)
ACL
Creator ACE

Creator ACE

Adds an extra ACE to the ACL for a file created within the directory to which you assign the Creator ACE. The Creator ACE applies only when the following conditions exist:

- The file being created is not owned by the user identification code (UIC) of the process creating the file.
- The process creating the file does not have system privileges.

For example, both of these conditions exist when a process holding a general identifier with the Resource attribute creates a file in a directory owned by that identifier. In this situation, the system adds an extra ACE at the top of the new file's ACL. If a Creator ACE exists in the ACL for the parent directory, the system propagates the access specified in the Creator ACE to the new ACE. If a directory lacks a Creator ACE, the system assigns an extra ACE with a combination of control access and ownership access. A Creator ACE with ACCESS=None suppresses the addition of the extra ACE.

The Creator ACE applies to directory files only.

Refer to the *HP OpenVMS Guide to System Security* for more information.

Format

(CREATOR
[.,OPTIONS=attribute[+attribute...]],ACCESS=access-type[+access-type...])

Parameters

options
Specify any of the following attributes:

Protected

Protects the ACE against casual deletion. Protected ACEs can be deleted only in the following ways:

- By using the ACL editor
- By specifying the ACE explicitly when deleting it
 Use the command SET SECURITY/ACL=(ace)/DELETE to specify and delete an ACE.
- By deleting all ACEs, both protected and unprotected
 Use the command SET SECURITY/ACL/DELETE=ALL to delete all ACEs.

The following commands do not delete protected ACEs:

```
SET SECURITY/ACL/DELETE
SET SECURITY/LIKE
SET SECURITY/DEFAULT
```

Nopropagate

Indicates that the ACE cannot be copied by operations that usually propagate ACEs. For example, the ACE cannot be copied by the SET SECURITY/LIKE or SET SECURITY/DEFAULT commands.
None Indicates that no attributes apply to an entry. Although you can create an ACL entry with OPTIONS=None, the attribute is not displayed. Whenever you specify additional attributes with the None attribute, the other attributes take precedence. The None attribute is equivalent to omitting the field.

access Specify access types that are valid for files (read, write, execute, delete, and control).
Default Protection ACE

Defines a UIC-based protection to be propagated to new files throughout a directory tree. The protection code in the ACE is assigned to new files created in the directory. The Default Protection ACE applies to directory files only. Although the system propagates the Default Protection ACE to new subdirectories, the protection code is not assigned to the subdirectories. Instead, the subdirectories receive a modified copy of the parent directory's protection code in which delete access is not granted.

An example of a Default Protection ACE is as follows:

(DEFAULT_PROTECTION,S:RWED,O:RWED,G,W)

The ACE grants read, write, execute, and delete access to users in the system (S) and owner (O) categories but no access to users in the group and world categories. For more information, refer to the HP OpenVMS Guide to System Security.

Format

(DEFAULT_PROTECTION[,OPTIONS=attribute[+attribute...]],access)

Parameters

options

Specify any of the following attributes:

Hidden Indicates that this ACE should be changed only by the application that adds it. Although the Hidden attribute is valid for any ACE type, its intended use is to hide Application ACEs. To delete or modify a hidden ACE, you must use the SET SECURITY command. Users need the SECURITY privilege to display a hidden ACE with the DCL commands SHOW SECURITY or DIRECTORY/SECURITY. SECURITY privilege is also required to modify or delete a hidden ACE with the DCL command SET SECURITY. The ACL editor displays the ACE only to show its relative position within the ACL, not to facilitate editing of the ACE. To create a hidden ACE, an application can invoke the $SET_SECURITY system service.
Protected

Protects the ACE against casual deletion. Protected ACEs can be deleted only in the following ways:

- By using the ACL editor
- By specifying the ACE explicitly when deleting it
 Use the command `SET SECURITY/ACL=(ace)/DELETE` to specify and delete an ACE.
- By deleting all ACEs, both protected and unprotected
 Use the command `SET SECURITY/ACL/DELETE=ALL` to delete all ACEs.

The following commands do not delete protected ACEs:

- `SET SECURITY/ACL/DELETE`
- `SET SECURITY/LIKE`
- `SET SECURITY/DEFAULT`

Nopropagate

Indicates that the ACE cannot be copied by operations that usually propagate ACEs. For example, the ACE cannot be copied by the `SET SECURITY/LIKE` or `SET SECURITY/DEFAULT` commands.

None

Indicates that no attributes apply to an entry. Although you can create an ACL entry with `OPTIONS=None`, the attribute is not displayed. Whenever you specify additional attributes with the None attribute, the other attributes take precedence. The None attribute is equivalent to omitting the field.

access

Specify access in the format of a UIC-based protection code, which is as follows:

```plaintext
[category: list of access allowed (, category: list of access allowed,...)]
```

- User categories include system (S), owner (O), group (G), and world (W). Refer to the HP OpenVMS Guide to System Security for a definition of these categories. Access types for files include read (R), write (W), execute (E), and delete (D). The access type is assigned to each ownership category and is separated from its access types with a colon (:).
- A null access list means no access, so when you omit an access type for a user category, that category of user is denied that type of access. To deny all access to a user category, specify the user category without any access types. Omit the colon after the user category when you deny access to a category of users.
- When you omit a user category from a protection code, the current access allowed that category of user is set to no access.
Identifier ACE

Controls the type of access allowed to a particular user or group of users. An example of an Identifier ACE is as follows:

```
(IDENTIFIER=SALES,ACCESS=READ+WRITE)
```

A system manager can use the Authorize utility (AUTHORIZE) to grant the SALES identifier to a specific group of users. Read and write access to the file INVENTORY.DAT is then granted to users who hold the SALES identifier.

For more information, refer to the *HP OpenVMS Guide to System Security*.

Format

```
(IDENTIFIER=identifier[+identifier...] [,OPTIONS=attributes[+attributes...]]
,ACCESS=access-type[+access-type...])
```

Parameters

- **identifier**
 Specifies a user or groups of users whose access to an object is defined in the ACE. A system manager creates or removes identifiers and assigns users to hold these identifiers.

 Types of identifiers are as follows:

 - **UIC** Identifiers in alphanumeric format that are based on the user identification codes (UICs) and that uniquely identify each user on the system. Users with accounts on the system automatically receive a UIC identifier, for example, [GROUP1,JONES] or [JONES]. Thus, each UIC identifier specifies a particular user.

 - **General** Identifiers defined by the security administrator in the rights list to identify groups of users on the system. A general identifier is an alphanumeric string of 1 to 31 characters, containing at least one alphabetic character. It can include the letters A to Z, dollar signs ($), underscores (_), and the numbers 0 to 9, for example, 92SALES$, ACCOUNT_3, or PUBLISHING.

 - **Environmental** Identifiers describing different types of users based on their initial entry into the system. Environmental identifiers are also called system-defined identifiers. Environmental identifiers correspond directly to the login classes described in the *HP OpenVMS Guide to System Security*. They include batch, network, interactive, local, dialup, and remote.

 For more information, refer to the *HP OpenVMS Guide to System Security*.

- **options**

 Specify any of the following attributes:
Default
Indicates that an ACE is to be included in the ACL of any files created within a directory. When the entry is propagated, the Default attribute is removed from the ACE of the created file. This attribute is valid for directory files only.

Note that an Identifier ACE with the Default attribute has no effect on access.

Hidden
Indicates that this ACE should be changed only by the application that adds it. Although the Hidden attribute is valid for any ACE type, its intended use is to hide Application ACEs. To delete or modify a hidden ACE, you must use the SET SECURITY command.

Users need the SECURITY privilege to display a hidden ACE with the DCL commands SHOW SECURITY or DIRECTORY/SECURITY. SECURITY privilege is also required to modify or delete a hidden ACE with the DCL command SET SECURITY. The ACL editor displays the ACE only to show its relative position within the ACL, not to facilitate editing of the ACE. To create a hidden ACE, an application can invoke the $SET_SECURITY system service.

Protected
Protects the ACE against casual deletion. Protected ACEs can be deleted only in the following ways:

- By using the ACL editor
- By specifying the ACE explicitly when deleting it
 Use the command SET SECURITY/ACL=(ace)/DELETE to specify and delete an ACE.
- By deleting all ACEs, both protected and unprotected
 Use the command SET SECURITY/ACL/DELETE=ALL to delete all ACEs.

The following commands do not delete protected ACEs:

```
SET SECURITY/ACL/DELETE
SET SECURITY/LIKE
SET SECURITY/DEFAULT
```

Nopropagate
Indicates that the ACE cannot be copied by operations that usually propagate ACEs. For example, the ACE cannot be copied by the SET SECURITY/LIKE or SET SECURITY/DEFAULT commands.

None
Indicates that no attributes apply to an entry. Although you can create an ACL entry with OPTIONS=None, the attribute is not displayed. Whenever you specify additional attributes with the None attribute, the other attributes take precedence. The None attribute is equivalent to omitting the field.

access
Specify access types that are valid for the object class. Refer to the *HP OpenVMS Guide to System Security* for a listing of valid access types.
ACL
Subsystem ACE

Subsystem ACE

Grants additional identifiers to a process while it is running the image to which the Subsystem ACE applies. Users with execute access to the image can access objects that are in the protected subsystem, such as data files and printers, but only when they run the subsystem images. The Subsystem ACE applies to executable images only.

An example of a Subsystem ACE is as follows:

(SUBSYSTEM, IDENTIFIER=ACCOUNTING)

Format

(SUBSYSTEM,[OPTIONS=attribute[+attribute...],]IDENTIFIER=identifier [,ATTRIBUTES=attribute[+attribute...] [,.IDENTIFIER=identifier [,ATTRIBUTES=attribute[+attribute...]]]...])

Parameters

options

Specify any of the following attributes:

Protected

Protects the ACE against casual deletion. Protected ACEs can be deleted only in the following ways:

- By using the ACL editor
- By specifying the ACE explicitly when deleting it
 Use the command SET SECURITY/ACL=(ace)/DELETE to specify and delete an ACE.
- By deleting all ACEs, both protected and unprotected
 Use the command SET SECURITY/ACL/DELETE=ALL to delete all ACEs.

The following commands do not delete protected ACEs:

SET SECURITY/ACL/DELETE
SET SECURITY/LIKE
SET SECURITY/DEFAULT

Nopropagate

Indicates that the ACE cannot be copied by operations that usually propagate ACEs. For example, the ACE cannot be copied by the SET SECURITY/LIKE or SET SECURITY/DEFAULT commands.

None

Indicates that no attributes apply to an entry. Although you can create an ACL entry with OPTIONS=None, the attribute is not displayed. Whenever you specify additional attributes with the None attribute, the other attributes take precedence. The None attribute is equivalent to omitting the field.

identifier

A general identifier specifying the users or groups of users who are allowed or denied access to an object. It is an alphanumeric string of 1 through 31 characters, containing at least one alphabetic character. It can include the letters
A to Z, dollar signs ($), underscores (_), and the numbers 0 to 9. For more information, refer to the *HP OpenVMS Guide to System Security*.

A Subsystem ACE can have multiple pairs of identifiers, with special attributes assigned to the identifiers. A subsystem might require several identifiers to work properly. For example:

```
(SUBSYSTEM,IDENTIFIER=MAIL_SUBSYSTEM,ATTRIBUTE=NONE,IDENTIFIER=BLDG5,ATTRIBUTE=NONE)
```

attribute

The identifier characteristics you specify when you add identifiers to the rights list or grant identifiers to users. You can specify the following attribute:

Resource

 Allows holders of the identifier to charge disk space to the identifier. Used only for file objects.
1.4 ACL Editor Qualifiers

When you invoke the ACL editor, you can include qualifiers on the command line that identify the object class and the editing mode (prompt or noprompt). You can also use qualifiers to name a journaling file or to recover an ACL editing session. This section describes the qualifiers listed in the following table:

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CLASS</td>
<td>Specifies the class of object whose ACL is being edited</td>
</tr>
<tr>
<td>/JOURNAL</td>
<td>Controls whether a journal file is created for the editing session</td>
</tr>
<tr>
<td>/MODE</td>
<td>Specifies the use of prompting during the editing session</td>
</tr>
<tr>
<td>/OBJECT_TYPE</td>
<td>Superseded by the /CLASS qualifier</td>
</tr>
<tr>
<td>/RECOVER</td>
<td>Restores an ACL from a journal file at the beginning of an editing session</td>
</tr>
</tbody>
</table>

All of the qualifiers described in this section also apply to the SET SECURITY/EDIT command. You can substitute the SET SECURITY/EDIT command wherever the EDIT/ACL command is shown; the syntax is the same for both commands.
/CLASS

Specifies the class of the object whose ACL is being edited. Unless the object is a file, you must specify the object class.

Format

/CLASS =object-class

Description

To edit the ACL for an object other than a file, specify the object class with the /CLASS qualifier. Specify one of the following classes:

- **CAPABILITY** - A system capability, such as the ability to process vector instructions. Currently, the only defined object name for the CAPABILITY class is VECTOR, which governs the ability of a subject to access a vector processor on the system. Note that you must supply the capability name as the object name parameter.
- **COMMON_EVENT_CLUSTER** - A common event flag cluster.
- **DEVICE** - A device, such as a disk or tape drive.
- **FILE** - A file or a directory file. This is the default.
- **GROUP_GLOBAL_SECTION** - A group global section.
- **LOGICAL_NAME_TABLE** - A logical name table.
- **QUEUE** - A batch queue or a device (printer, server, or terminal) queue.
- **RESOURCE_DOMAIN** - A resource domain.
- **SECURITY_CLASS** - A security class.
- **SYSTEM_GLOBAL_SECTION** - A system global section.
- **VOLUME** - A disk or tape volume.

Examples

1. $ EDIT/ACL/CLASS=DEVICE WORK1

 The command in this example specifies that the object WORK1 is a device.

2. $ EDIT/ACL/CLASS=QUEUE FAST_BATCH

 The command in this example creates an ACL for the queue FAST_BATCH. Note that if you create an ACL for a generic queue, you must create identical ACLs for all execution queues to which jobs can be directed.
/JOURNAL

Controls whether a journal file is created for the editing session.

Format

/JOURNAL [=file-spec]
/NOJOURNAL

Description

By default, the ACL editor keeps a journal file containing a copy of modifications made during an editing session. The journal file is given the name of the object and a .TJL file type. If you specify a different name for the file, do not include any wildcard characters.

To prevent the ACL editor from creating a journal file, specify /NOJOURNAL.

If your editing session ends abnormally, you can recover the changes made during the aborted session by invoking the ACL editor with the /RECOVER qualifier.

Examples

1. $ EDIT/ACL/JOURNAL=COMMONACL.SAV MECH1117.DAT

 With this command, you create a journal file named COMMONACL.SAV. The file contains a copy of the ACL and the editing commands used to create the ACL for the file MECH1117.DAT.

 If the editing session is interrupted, you can recover your edits by specifying the name COMMONACL.SAV with the /RECOVER qualifier.

2. $ EDIT/ACL/CLASS=RESOURCE/JOURNAL=ZERO_RESOURCE.TJL [0]

 If you edit an ACL for the resource domain [0], the ACL editor attempts to create the file [0].TJL on the default device and fails. To create an ACL for the resource [0], you must specify a different name for the journal file (as shown in this example) or suppress the creation of a journal file with the /NOJOURNAL qualifier.
/MODE

Specifies the use of prompting during the editing session.

Format

/MODE =option

Description

By default, the ACL editor prompts you for each ACE and provides values for some of the fields within an ACE (/MODE=PROMPT). To disable prompting, specify /MODE=NOPROMPT on the command line.

Examples

1. $ EDIT/ACL/MODE=NOPROMPT WEATHERTBL.DAT

 With this command, you initiate an ACL editing session to create an ACL for the file WEATHERTBL.DAT. The /MODE=NOPROMPT qualifier specifies that no assistance is required in entering the ACL entries.
The /OBJECT_TYPE qualifier is superseded by the /CLASS qualifier.
/RECOVER

Restores an ACL from a journal file at the beginning of an editing session.

Format

/RECOVER [=file-spec]
/NORECOVER

Description

The /RECOVER qualifier specifies that the ACL editor must restore the ACL from a journal file. The ACL editor restores the ACL to the state it was in when the last ACL editing session ended abnormally.

By default the journal file is given the name of the object and a .TJL file type. If you specify a more meaningful name for the journal file when you invoke the ACL editor (by using /JOURNAL), specify that file name with the /RECOVER qualifier.

Examples

1. $ EDIT/ACL/JOURNAL=SAVEACL MYFILE.DAT

 ...
 ...
 User creates ACL until system crashes
 ...
 ...
 $ EDIT/ACL/JOURNAL=SAVEACL/RECOVER=SAVEACL MYFILE.DAT
 ...
 ...
 ACL is restored and user proceeds with editing until done
 ...
 ...
 ^Z
 $

 The first command in this example starts the ACL editing session and specifies that the ACL editor must save the journal file SAVEACL.TJL if the session ends abnormally. The session proceeds until it is aborted by a system crash.

 The next command restores the lost session with the journal file SAVEACL.TJL. To end the session, press Ctrl/Z. The ACL editor saves the edits and deletes the journal file.
Accounting Utility
2.1 ACCOUNTING Description

The Accounting utility (ACCOUNTING) produces reports of system resource use. You can use ACCOUNTING qualifiers to:

- Produce a number of report formats
- Choose how the reports are organized
- Choose on which resources you want reports

You can use the reports to learn more about how the system is used and how it performs.

2.2 ACCOUNTING Usage Summary

Produces reports of resource use.

Format

ACCOUNTING [filespec[,...]]

Parameter

filespec[,...]

Specifies the accounting files you want to process.

Each file specification can include the percent (%) and asterisk (*) wildcard characters. If it does not include the device or directory, your current default device or directory is used. If it does not include the file name or file type, the values ACCOUNTNG and DAT are used respectively.

If you do not specify a file, the command processes the file SYS$MANAGER:ACCOUNTNG.DAT.

Description

Use this DCL command to run the Accounting utility:

$ ACCOUNTING [filespec[,...]]

You are returned to DCL level when the command has finished processing the specified accounting files.

By default, the command directs its output to the current SYS$OUTPUT device. If you want to direct the output to a file, use the /OUTPUT qualifier.

Requires READ access to the accounting files you specify, and to the directories containing them.

2.3 ACCOUNTING Qualifiers

This section describes and provides examples of each ACCOUNTING qualifier. The following table summarizes the ACCOUNTING qualifiers:

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ACCOUNT</td>
<td>Selects or rejects records for the specified account names</td>
</tr>
<tr>
<td>/ADDRESS</td>
<td>Selects or rejects records for DECnet for OpenVMS requests made by the specified nodes</td>
</tr>
</tbody>
</table>
2.3 ACCOUNTING Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BEFORE</td>
<td>Selects all records time-stamped before the specified time</td>
</tr>
<tr>
<td>/BINARY</td>
<td>Copies the selected records to a new file in binary format</td>
</tr>
<tr>
<td>/BRIEF</td>
<td>Produces a brief report of the selected records</td>
</tr>
<tr>
<td>/ENTRY</td>
<td>Selects or rejects records for print and batch jobs with the specified queue entry numbers</td>
</tr>
<tr>
<td>/FULL</td>
<td>Produces a full report of the selected records</td>
</tr>
<tr>
<td>/IDENT</td>
<td>Selects or rejects records for the specified processes</td>
</tr>
<tr>
<td>/IMAGE</td>
<td>Selects or rejects records for the specified images</td>
</tr>
<tr>
<td>/JOB</td>
<td>Selects or rejects records for print and batch jobs with the specified job names</td>
</tr>
<tr>
<td>/LOG</td>
<td>Outputs informational messages</td>
</tr>
<tr>
<td>/NODE</td>
<td>Selects or rejects records for DECnet for OpenVMS requests made by the specified nodes</td>
</tr>
<tr>
<td>/OUTPUT</td>
<td>Specifies the output file (Alpha only)</td>
</tr>
<tr>
<td>/OWNER</td>
<td>Selects or rejects records for subprocesses created by the specified processes</td>
</tr>
<tr>
<td>/PRIORITY</td>
<td>Selects or rejects records for the specified priority</td>
</tr>
<tr>
<td>/PROCESS</td>
<td>Selects or rejects records for the specified types of process</td>
</tr>
<tr>
<td>/QUEUE</td>
<td>Selects or rejects records for print or batch jobs executed by the specified queues</td>
</tr>
<tr>
<td>/REJECTED</td>
<td>Copies the rejected records to a new file</td>
</tr>
<tr>
<td>/REMOTE_ID</td>
<td>Selects or rejects records for DECnet for OpenVMS requests made by the specified remote IDs</td>
</tr>
<tr>
<td>/REPORT</td>
<td>Specifies the resources that you want to summarize in a summary report</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Selects all records time-stamped at or after the specified time</td>
</tr>
<tr>
<td>/SORT</td>
<td>Sorts the selected records</td>
</tr>
<tr>
<td>/STATUS</td>
<td>Selects or rejects records with the specified final exit status codes</td>
</tr>
<tr>
<td>/SUMMARY</td>
<td>Produces a summary report of the selected records</td>
</tr>
<tr>
<td>/TERMINAL</td>
<td>Selects or rejects records for interactive sessions at the specified terminals</td>
</tr>
<tr>
<td>/TITLE</td>
<td>Specifies the title shown on the first line of a summary report</td>
</tr>
<tr>
<td>/TYPE</td>
<td>Selects or rejects the specified types of record</td>
</tr>
<tr>
<td>/UIC</td>
<td>Selects or rejects records for the specified UICs</td>
</tr>
<tr>
<td>/USER</td>
<td>Selects or rejects records for the specified user names</td>
</tr>
<tr>
<td>/WIDE</td>
<td>Changes the width of Buffered I/O and Direct I/O fields in a report from 8 to 10 characters</td>
</tr>
</tbody>
</table>
/ACCOUNT

Selects or rejects records for the specified account names.

Format

/ACCOUNT=[[-]account[,...]]

Description

The /ACCOUNT qualifier uses the value of the account field to select records for processing. This field is present in all records except file backward link and file forward link records.

The /ACCOUNT qualifier selects only records that have the specified values in the account field. If you precede the values with a minus sign, it selects all records except those with the specified values.

The following table shows the values stored in the account field of login failure and system initialization records:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><batch></td>
<td>Batch job login failure</td>
</tr>
<tr>
<td><det></td>
<td>Detached process login failure</td>
</tr>
<tr>
<td><login></td>
<td>Interactive login failure</td>
</tr>
<tr>
<td><net></td>
<td>Network login failure</td>
</tr>
<tr>
<td><start></td>
<td>System startup</td>
</tr>
</tbody>
</table>

Note that when you specify these account field values as qualifier values, you must enclose them in quotes. Like all DCL commands, the ACCOUNTING command converts strings to uppercase unless they are enclosed in quotes.

Examples

1. $ ACCOUNTING /ACCOUNT=(SALES, QA)
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for the account names SALES and QA.

2. $ ACCOUNTING /ACCOUNT=(-SALES, QA) /FULL
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a full report of all records except for the account names SALES and QA.
ACCOUNTING

/ADDRESS

Selects or rejects records for DECnet for OpenVMS requests made by the specified nodes.

Format

/ADDRESS=([-]node_address[,...])

Description

The /ADDRESS qualifier uses the value of the remote node address field to select records for processing. This field is present in all records except file backward link and file forward link records. For records that contain information about DECnet for OpenVMS requests, it contains the address of the node that made the request.

The /ADDRESS qualifier selects only records with the specified values in the remote node address field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See also the /NODE and /REMOTE_ID qualifiers, which select or reject records for DECnet for OpenVMS requests made by specified node names and remote IDs respectively.

Example

$ ACCOUNTING /ADDRESS=19656

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for DECnet for OpenVMS requests made by the node with the address 19656. (The decimal equivalent of this address is 19.200.)
/BEFORE

Selects all records time-stamped before the specified time.

Format

/BEFORE[=time]

Description

All records in an accounting file are time-stamped with the time the record was logged in the file.

The /BEFORE qualifier selects only the records time-stamped before the specified time. You can specify an absolute time, a delta time, or a combination of the two. If you omit the time, 00:00 hours on the current day is used.

See also the /SINCE qualifier, which selects records time-stamped at or after a specified time.

Example

$ ACCOUNTING /SINCE=1-NOV-2002 /BEFORE=1-DEC-2002

This example produces a brief report of all records time-stamped in the file SYS$MANAGER:ACCOUNTNG.DAT during November 2002.
ACCOUNTING
/BINARY

/BINARY

Copies the selected records to a new file in binary format.

Format

/BINARY

Description

The /BINARY qualifier specifies that records are output in binary format to the file specified by the /OUTPUT qualifier. (/OUTPUT is Alpha-only, however.) Use the Accounting utility to process this file later.

See also the /BRIEF, /FULL, and /SUMMARY qualifiers, which process the selected records to produce a report.

You cannot use the /BINARY qualifier with the /BRIEF, /FULL, or /SUMMARY qualifiers.

Examples

1. $ ACCOUNTING /USER=SMITH /BINARY /OUTPUT=MYDISK:[ACCOUNTING]MYACC.DAT

 This example creates the file MYDISK:[ACCOUNTING]MYACC.DAT. It processes the file SYS$MANAGER:ACCOUNTNG.DAT, copying all records for the user SMITH to the new file in binary format.

2. $ ACCOUNTING /TYPE=PRINT -
 _$ /BINARY /OUTPUT=PRINT_INFO.DAT /REJECTED=NOT_PRINT_INFO.DAT

 This example creates two files in the default directory, PRINT_INFO.DAT and NOT_PRINT_INFO.DAT. It processes the file SYS$MANAGER:ACCOUNTNG.DAT, copying print records to PRINT_INFO.DAT and other records to NOT_PRINT_INFO.DAT. These records are in binary format.
/BRIEF

Produces a brief report of the selected records.

Format

/BRIEF (default)

Description

The /BRIEF qualifier is the default. It produces a brief report of the selected records. The report is directed to the current SYS$OUTPUT device, unless you use the /OUTPUT qualifier to write it to a file. (Note that /OUTPUT is Alpha-only.)

Each line of a brief report corresponds to a record in the accounting file. It does not show resources used, but gives the information shown in the following table about each record in the accounting file:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time</td>
<td>When the record was logged in the accounting file.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of the record.</td>
</tr>
<tr>
<td>Subtype</td>
<td>For records of type IMAGE, this is the name of the image (the file name portion of its file specification). For records of type PROCESS, it is the type of the process (BATCH, DETACHED, INTERACTIVE, NETWORK, or SUBPROCESS).</td>
</tr>
<tr>
<td>User name</td>
<td>The user name. For login failures where the user did not give a valid user name, this is shown as <login>.</td>
</tr>
<tr>
<td>ID</td>
<td>The process identifier (PID). For print jobs, this is the PID of the process that submitted the job.</td>
</tr>
<tr>
<td>Source</td>
<td>The terminal associated with an interactive process or, for DECnet for OpenVMS requests, the name of the node that issued the request.</td>
</tr>
<tr>
<td>Status</td>
<td>The final exit status code, expressed as a hexadecimal value.</td>
</tr>
</tbody>
</table>

To translate the final exit status code into the equivalent message text, use the F$MESSAGE lexical function, and precede the status code with %X, as in this example:

```
$ MESSAGE = F$MESSAGE(%X00000001)
$ SHOW SYMBOL MESSAGE
    MESSAGE = "%SYSTEM-S-NORMAL, normal successful completion"
```

See also the /BINARY qualifier, which copies the selected records to a file, and the /FULL and /SUMMARY qualifiers, which produce full and summary reports of the selected records.

You cannot use the /BRIEF qualifier with the /BINARY, /FULL, or /SUMMARY qualifiers.
Example

$ ACCOUNTING

This example produces a brief report of all records in the file SYS$MANAGER:ACCOUNTNG.DAT.

This is an example of the report that is produced:

<table>
<thead>
<tr>
<th>Date / Time</th>
<th>Type</th>
<th>Subtype</th>
<th>Username</th>
<th>ID</th>
<th>Source</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-JAN-2002 17:20:08</td>
<td>FILE_BL</td>
<td>00000000</td>
<td>JONES</td>
<td>516000E1</td>
<td>02DBA002</td>
<td></td>
</tr>
<tr>
<td>7-JAN-2002 17:22:05</td>
<td>PROCESS</td>
<td>DETACHED</td>
<td>JONES</td>
<td>516000DD TWA10:</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>7-JAN-2002 17:22:16</td>
<td>PROCESS</td>
<td>INTERACTIVE</td>
<td>JONES</td>
<td>51600104 TWA11:</td>
<td>0001C0F4</td>
<td></td>
</tr>
<tr>
<td>7-JAN-2002 17:22:20</td>
<td>PROCESS</td>
<td>DETACHED</td>
<td>JONES</td>
<td>51600103</td>
<td>12DBB821C</td>
<td></td>
</tr>
<tr>
<td>8-JAN-2002 01:06:36</td>
<td>PROCESS</td>
<td>SUBPROCESS</td>
<td>SYSTEM</td>
<td>51600106</td>
<td>10000001</td>
<td></td>
</tr>
<tr>
<td>8-JAN-2002 03:09:59</td>
<td>PROCESS</td>
<td>BATCH</td>
<td>SYSTEM</td>
<td>5160010F</td>
<td>10030001</td>
<td></td>
</tr>
<tr>
<td>8-JAN-2002 09:13:15</td>
<td>LOGFAIL</td>
<td></td>
<td>JONES</td>
<td>51600105</td>
<td>00D3803C</td>
<td></td>
</tr>
<tr>
<td>8-JAN-2002 09:14:40</td>
<td>IMAGE</td>
<td>LOGINOUT</td>
<td>JONES</td>
<td>51600110</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>8-JAN-2002 09:28:57</td>
<td>PROCESS</td>
<td>SUBPROCESS</td>
<td>SMITH</td>
<td>51600119</td>
<td>10000001</td>
<td></td>
</tr>
<tr>
<td>8-JAN-2002 09:50:18</td>
<td>PROCESS</td>
<td>SUBPROCESS</td>
<td>SMITH</td>
<td>5160011A</td>
<td>00000001</td>
<td></td>
</tr>
</tbody>
</table>
/ENTRY

Selects or rejects records for print and batch jobs with the specified queue entry numbers.

Format

/ENTRY=([-]entry_number[,...])

Description

The /ENTRY qualifier uses the value of the queue entry number field to select records for processing. This field is present in all records except file backward link and file forward link records. For records that contain information about print or batch jobs, it contains the unique entry number assigned to the job in the print or batch queue.

The /ENTRY qualifier selects only records that have the specified values in the queue entry number field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See also the /JOB and /QUEUE qualifiers, which select or reject records for print and batch jobs with specified job and queue names.

Examples

1. $ ACCOUNTING /ENTRY=(211,212,213)
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for print or batch jobs with a queue entry number of 211, 212, or 213.

2. $ ACCOUNTING /ENTRY=(-25,50)
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records except those for print or batch jobs with a queue entry number of 25 or 50.
/FULL

Produces a full report of the selected records.

Description

The /FULL qualifier produces a full report of the selected records. The report is directed to the current SYS$OUTPUT device, unless you use the /OUTPUT qualifier to write it to a file. (Note that /OUTPUT is Alpha-only.)

Full reports display one screen of information for each selected record. The information displayed, and the way that it is laid out, depend on the type of the record and the data it contains.

The first line shows the event that caused the record to be logged in the accounting file. For example, for a record that was logged when an interactive process terminated, the first line shows INTERACTIVE Process Termination.

For subprocesses, the Owner ID field shows the process identifier (PID) of the parent process.

For records that contain information about DECnet for OpenVMS requests, the three Remote fields identify the remote user and remote node.

The Processor time field shows the total CPU time used. This includes any vector CPU time used. The Vector CPU time field is shown only if vector CPU time has been used.

Vector CPU time is the time that the process was scheduled on a vector-present CPU while that process was a vector consumer. Note that:

• When a process is a vector consumer, it accrues vector CPU time when it is scheduled, even if it does not issue any vector instructions.

• Processes that are scalar consumers or marginal vector consumers do not accrue vector CPU time, even when they are scheduled on vector-present CPUs.

The privilege is shown as two hexadecimal numbers that represent the first and last 32 bits of the 64-bit privilege mask. To translate the privilege bit mask into privileges, refer to the definitions of the symbols that begin PRV$V_ in the $PRVDEF macro in the STARLET library. For example, the $PRVDEF macro defines the PRV$V_READALL symbol to equate to 35. This means that READALL privilege is represented by bit 35 set in the privilege mask.

If you are processing only one file and you are displaying it on your screen, when you do not want to look at any more records, press Ctrl/Z to return to the DCL prompt.

See also the /BINARY qualifier, which copies the selected records to a file, and the /BRIEF and /SUMMARY qualifiers, which produce brief and summary reports of the selected records.

You cannot use the /FULL qualifier with the /BINARY, /BRIEF, or /SUMMARY qualifiers.
Examples

1. $ ACCOUNTING /FULL

 This example displays a full report of all the records in the file
 SYS$MANAGER:ACCOUNTNG.DAT. This example screen shows a record
 that was logged when an interactive process terminated. The interactive
 process was created when the user JONES at the node HQ222 entered a SET
 HOST command to connect to the local node.

 INTERACTIVE Process Termination

 Username: FISH UIC: [DOC,FISH]
 Owner ID: Elapsed time: 0 00:02:15.55
 Terminal name: RTA2: Processor time: 0 00:00:04.14
 Remote node addr: 63576 Priority: 4
 Remote node name: HQ222 Privilege <31-00>: 00108000
 Remote ID: JONES Privilege <63-32>: 00000000
 Queue entry: Final status code: 00000001
 Queue name:
 Job name:
 Final status text: %SYSTEM-S-NORMAL, normal successful completion
 Page faults: 2043 Direct IO: 159
 Page fault reads: 68 Buffered IO: 228
 Peak working set: 852 Volumes mounted: 0
 Peak page file: 5512 Images executed: 10
 Vector CPU time: 0 00:00:0.54
 Press RETURN for Next Record >

2. $ ACCOUNTING /FULL /OUTPUT=MYACC

 This example creates the output file MYACC.LIS in the default directory. It
 processes the file SYS$MANAGER:ACCOUNTNG.DAT, writing a full report
 of all records to the new output file.
ACCOUNTING

/IDENT

/IDENT

Selects or rejects records for the specified processes.

Format

/IDENT=([-]pid[, ...])

Description

The /IDENT qualifier uses the value of the process identifier (PID) field to select records for processing. This field is present in all records except file backward link and file forward link records. For print job records, it contains the PID of the process that submitted the job.

The /IDENT qualifier selects only records that have the specified values in the PID field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See also the /OWNER qualifier, which selects or rejects records for subprocesses created by specified processes.

Examples

1. $ ACCOUNTING /IDENT=(25634,045A6B)
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for processes with a PID of 25634 or 045A6B.

2. $ ACCOUNTING /IDENT=(-25634,045A6B)
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records except those for processes with a PID of 25634 or 045A6B.
/IMAGE

Selects or rejects records for the specified images.

Format

/IMAGE=([-]image_name[,...])

Description

The /IMAGE qualifier uses the value of the image name field to select records for processing. This field is present only in records of type IMAGE, and contains the name of the image.

Note that the system does not track records of type IMAGE by default. To enable the tracking of IMAGE records, use the SET ACCOUNTING command.

The /IMAGE qualifier selects only records that have the specified values in the image name field. If you precede the values with a minus sign, it selects all records except those with the specified values.

Each image name is a string that gives the file name portion of the image file specification. Do not include the device, directory, or file type.

Examples

1. $ ACCOUNTING /IMAGE=DIRECTORY

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for the DIRECTORY.EXE image.

2. $ ACCOUNTING /IMAGE=-DIRECTORY

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records except those for the DIRECTORY.EXE image.
ACCOUNTING

/JOB

Selects or rejects records for print and batch jobs with the specified job names.

Format

/JOB=([-]job_name[,...])

Description

The /JOB qualifier uses the value of the job name field to select records for processing. This field is present in all records except file backward link and file forward link records. For records that contain information about print and batch jobs, it contains the name of the job.

The /JOB qualifier selects only records that have the specified values in the job name field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See also the /QUEUE and /ENTRY qualifiers, which select or reject records for print and batch jobs with specified queue names and queue entry numbers.

Examples

1. $ ACCOUNTING /JOB=(MYJOB1,MYJOB2)

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for print or batch jobs named MYJOB1 or MYJOB2.

2. $ ACCOUNTING /JOB=(-MYJOB1,MYJOB2) /FULL

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a full report of all records except those for print or batch jobs named MYJOB1 or MYJOB2.
ACCOUNTING

/LOG

Outputs informational messages.

Format

/LOG

Description

The /LOG qualifier outputs these informational messages to the current SYS$OUTPUT device:

- For each file processed, the name of the file and the number of records selected and rejected from that file
- If you use the /SORT qualifier, the total number of records merged in the sort (this is the total number of records selected from all the files that were processed)
- If you process more than one file, the total number of files that were processed, and the total number of records selected and rejected

Example

$ ACCOUNTING MYFILE1.DAT,MYFILE2.DAT /TYPE=PRINT /SORT=USER /OUTPUT=OUTFILE

%ACC-I-INPUT, SYSSYSROOT:(SYSMGR)MYFILE1.DAT;7, 297 selected, 16460 rejected
%ACC-I-INPUT, SYSSYSROOT:(SYSMGR)MYFILE2.DAT;13,302 selected, 16388 rejected
%ACC-I-MERGE, 599 records to be merged
%ACC-I-TOTAL, 599 selected, 32848 rejected, 2 input files

This example processes two accounting files. It writes a brief report of all the records for print jobs, sorted in user name order, to an output file and displays informational messages that tell you which files were processed and how many records were selected and rejected.
ACCOUNTING
/NODE

/NO\DE

Selects or rejects records for DECnet for OpenVMS requests made by the specified nodes.

Format

/NODE=([-\]node_name[,...])

Description

The /NODE qualifier uses the value of the remote node name field to select records for processing. This field is present in all records except file backward link and file forward link records. For records that contain information about DECnet for OpenVMS requests, it contains the name of the node that made the request.

The /NODE qualifier selects only records that have the specified values in the remote node name field. If you precede the values with a minus sign, it selects all records except those with the specified values.

Do not include the double colon (::) after the name of the node.

See also the /ADDRESS and /REMOTE_ID qualifiers, which select or reject records for DECnet for OpenVMS requests made by specified node addresses and remote IDs respectively.

Examples

1. $ ACCOUNTING /NODE=HQ291 /FULL

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a full report of all records for DECnet for OpenVMS requests made by the node HQ291.

2. $ ACCOUNTING /NODE=\(-HQ222, HQ223\)

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records except those for DECnet for OpenVMS requests made by the nodes HQ222 or HQ223.
ACCOUNTING
/OUTPUT (Alpha Only)

/OUTPUT (Alpha Only)

Specifies the output file.

Requires read and write access to the directory in which the output file is created.

Format

/OUTPUT[/=filespec]

Description

The /OUTPUT qualifier creates the specified output file and writes the report or copies the selected records to that file.

If you omit the /OUTPUT qualifier, or you use the /OUTPUT qualifier and omit the file specification, the report or selected records are output to the current SYS$OUTPUT device.

If the file specification does not include the device or directory name, your current default device or directory is used. If you omit the file name, the file name of the first input file is used (the first file listed in the parameter to the ACCOUNTING command). If you omit the file type, the default file type is .LIS if you are producing reports, and .DAT if you are copying records.

Examples

1. $ ACCOUNTING MYFILE1.DAT,MYFILE2.DAT /SORT=USER /BINARY /OUTPUT=.NEW

 This example creates the output file MYFILE1.NEW in the default directory. It processes two accounting files, MYFILE1.DAT and MYFILE2.DAT, sorting their records in user name order, then copies these records to the new output file.

2. $ ACCOUNTING MYFILE1.NEW /FULL
 /OUTPUT=MYDISK:[ACCOUNTING]STAT

 This example creates the output file MYDISK:[ACCOUNTING]STAT.LIS, and writes a full report of all the records in MYFILE1.NEW to the new output file.
ACCOUNTING

/OWNER

Selects or rejects records for subprocesses created by the specified processes.

Format

/OWNER=([-]owner_pid[,...])

Description

The /OWNER qualifier uses the value of the process owner field to select records for processing. This field is present in all records except file backward link and file forward link records. For a subprocess, this field contains the process identifier (PID) of the process that created it.

The /OWNER qualifier selects only records that have the specified values in the process owner field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See also the /IDENT qualifier, which selects or rejects records for specified processes.

Example

$ ACCOUNTING /OWNER=(25634,045A6B)

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for subprocesses created by processes with a PID of 25634 or 045A6B.
/PRIORITY

Selects or rejects records for the specified priority.

Format

/PRIORITY=([-]priority[,....])

Description

The /PRIORITY qualifier uses the value of the priority field to select records for processing. This field is present in all records except file backward link and file forward link records. For print and batch job records, this field contains the priority of the job in the print or batch queue. For other records, it contains the base process priority.

The /PRIORITY qualifier selects only records that have the specified values in the priority field. If you precede the values with a minus sign, it selects all records except those with the specified values.

Example

$ ACCOUNTING /PRIORITY=3

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for processes with a base priority of 3 and for print and batch jobs with a queue priority of 3.
/PROCESS

Selects or rejects records for the specified types of process.

Format

/PROCESS=([-]process_type[,...])

Keyword

process_type[,...]

Specifies which types of process you want to select or reject. The following table shows the keywords available:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Type of Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCH</td>
<td>Batch process</td>
</tr>
<tr>
<td>DETACHED</td>
<td>Detached process</td>
</tr>
<tr>
<td>INTERACTIVE</td>
<td>Interactive process</td>
</tr>
<tr>
<td>NETWORK</td>
<td>Network process</td>
</tr>
<tr>
<td>SUBPROCESS</td>
<td>Subprocess of any of the other process types</td>
</tr>
</tbody>
</table>

Description

The /PROCESS qualifier uses the value of the process type field to select records for processing. This field is present only in records of type IMAGE and type PROCESS. For records of type IMAGE, this field contains the type of the process in which the image was executed.

The /PROCESS qualifier selects only records that match the specified types of process. If you precede the list with a minus sign, it selects all records except those for the specified types of process.

See also the /TYPE qualifier, which selects or rejects specified types of record.

Example

$ ACCOUNTING /TYPE=IMAGE /PROCESS=INTERACTIVE /FULL

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a full report of the resources used by images running in interactive processes.
/QUEUE

Selects or rejects records for print or batch jobs executed by the specified queues.

Format

/QUEUE=([-]queue_name[,...])

Description

The /QUEUE qualifier uses the value of the queue name field to select records for processing. This field is present in all records except file backward link and file forward link records. For records that contain information about print or batch jobs, it contains the name of the queue that executed the job.

The /QUEUE qualifier selects only records that have the specified values in the queue name field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See also the /JOB and /ENTRY qualifiers.

Example

$ ACCOUNTING /QUEUE=SYS$MYNODE_Batch

This example processes the file SYS$MANAGER:ACCOUNTING.DAT. It produces a brief report of all records for jobs executed by the SYS$MYNODE_Batch queue.
ACCOUNTING
/REJECTED

/REJECTED

Copies the rejected records to a new file.

Requires read and write access to the directory in which the specified file is created.

Format

/REJECTED=filespec

Description

The /REJECTED qualifier creates the specified file, then copies the records that do not match your selection criteria to this file in binary format. Use the Accounting utility to process this file later.

If the file specification does not include the device or directory name, your current default device or directory is used. If you omit the file name, the file name of the first input file is used (the first file listed in the parameter to the ACCOUNTING command). If you omit the file type, .REJ is used.

Example

$ ACCOUNTING /TYPE=PRINT /BINARY /OUTPUT=PRINT_INFO.DAT -
 _$/REJECTED=NOT_PRINT_INFO.DAT

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It creates two files, PRINT_INFO.DAT and NOT_PRINT_INFO.DAT, in the default directory. It copies print job records to PRINT_INFO.DAT and all other records to NOT_PRINT_INFO.DAT.
/REMOTE_ID

Selects or rejects records for DECnet for OpenVMS requests made by the specified remote IDs.

Format

/REMOTE_ID=([-]remote_id[,...])

Description

The /REMOTE_ID qualifier uses the value of the remote ID field to select records for processing. This field is present in all records except file backward link and file forward link records. For records that contain information about DECnet for OpenVMS requests, this field contains a string that identifies the user who made the request. If the remote process was on an OpenVMS node, this is the user name of the user at the remote node.

The /REMOTE_ID qualifier selects only records that have the specified values in the remote ID field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See also the /NODE and /ADDRESS qualifiers, which select or reject records for DECnet for OpenVMS requests made by nodes with specified names and addresses respectively.

Example

$ ACCOUNTING /NODE=HQ223 /REMOTE_ID=SMITH /FULL

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a full report of all the records for DECnet for OpenVMS requests made by user SMITH at the node HQ223.
ACCOUNTING
/REPORT

/REPORT

Specifies the resources that you want to summarize in a summary report.

Format

/REPORT[=(resource[,...])]

Keyword

resource[,...]
Specifies the resources that you want to summarize in the report. The following table shows the keywords available:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>How Summarized</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFFERED_IO(^2)</td>
<td>Number of buffered I/Os</td>
<td>Total</td>
</tr>
<tr>
<td>DIRECT_IO(^2)</td>
<td>Number of direct I/Os</td>
<td>Total</td>
</tr>
<tr>
<td>ELAPSED(^1,(^2))</td>
<td>Elapsed time</td>
<td>Total</td>
</tr>
<tr>
<td>EXECUTION(^2)</td>
<td>Number of images run by the process</td>
<td>Total</td>
</tr>
<tr>
<td>FAULTS(^2)</td>
<td>Number of hard and soft page faults</td>
<td>Total</td>
</tr>
<tr>
<td>GETS(^1)</td>
<td>Number of GETs from the file that was printed</td>
<td>Total</td>
</tr>
<tr>
<td>PAGE_FILE(^2)</td>
<td>Page file usage</td>
<td>Maximum</td>
</tr>
<tr>
<td>PAGE_READS(^2)</td>
<td>Number of hard page faults</td>
<td>Total</td>
</tr>
<tr>
<td>PAGES(^1)</td>
<td>Number of pages printed</td>
<td>Total</td>
</tr>
<tr>
<td>PROCESSOR(^2)</td>
<td>Total CPU time used</td>
<td>Total</td>
</tr>
<tr>
<td>QIOS(^1)</td>
<td>Number of QIOs to the printer</td>
<td>Total</td>
</tr>
<tr>
<td>RECORDS</td>
<td>Number of accounting file records processed</td>
<td>Total</td>
</tr>
<tr>
<td>VOLUMES(^2)</td>
<td>Number of volumes mounted</td>
<td>Total</td>
</tr>
<tr>
<td>WORKING_SET(^2)</td>
<td>Working set size</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

\(^1\)Present in records of type PRINT
\(^2\)Present in records of type IMAGE, LOGFAIL, PROCESS, and SYSINIT

The RECORDS keyword is the default if you omit either the keywords or the /REPORT qualifier. It gives the total number of records for each summary key value.
Description

The /REPORT qualifier specifies the resources that you want to summarize in a summary report. The resources are summarized, either as totals or maximum values, for each summary key value specified by the /SUMMARY qualifier.

When a record is processed that does not contain the specified resource field, a default value of 0 is used. For example, if you use the PAGES keyword to summarize the total pages printed, the value of 0 is used for each record that is not of type PRINT.

Note that the resource usage data stored in records of type IMAGE is a subset of the data stored in records of type PROCESS. For example, the CPU time stored in a record of type PROCESS includes the CPU time used by the images executed by that process. To make sure that you do not count the same resource data twice when you are summarizing process resources by totals, use the /TYPE qualifier to exclude records of type IMAGE.

You cannot use the /REPORT qualifier without the /SUMMARY qualifier.

Examples

1. $ ACCOUNTING /SUMMARY=IMAGE /REPORT=(RECORDS,PROCESSOR)
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a summary report that shows for each image the number of times it was executed and the total CPU time consumed.

2. $ ACCOUNTING /TYPE=-IMAGE /SUMMARY=USER /REPORT=EXECUTION
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a summary report that shows the total number of images executed by each user. Notice the use of the /TYPE qualifier to exclude records of type IMAGE to avoid double counting.
/SINCE

Selects all records time-stamped at or after the specified time.

Format

/SINCE[=time]

Description

All records in an accounting file are time-stamped with the time the record was logged in the file.

The /SINCE qualifier selects only the records time-stamped on or after the specified time. You can specify an absolute time, delta time, or a combination of the two. If you omit the time, 00:00 hours on the current day is used.

See also the /BEFORE qualifier, which selects records time-stamped before a specified time.

Example

$ ACCOUNTING /SINCE=5-JAN-2002

This example produces a brief report of all records time-stamped at or after 5-JAN-2002 in the file SYS$MANAGER:ACCOUNTNG.DAT.
/SORT

Sorts the selected records.

Format

/SORT[=([-]sort_field[,...])]

Keyword

sort_field[,...]
Specifies the sort key.

The following table shows the keywords available. You can specify up to ten sort fields.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Sorts on This Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCOUNT</td>
<td>Account</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>Address of the node that made the DECnet for OpenVMS request</td>
</tr>
<tr>
<td>BUFFERED_IO</td>
<td>Number of buffered I/Os</td>
</tr>
<tr>
<td>DIRECT_IO</td>
<td>Number of direct I/Os</td>
</tr>
<tr>
<td>ELAPSED</td>
<td>Elapsed time</td>
</tr>
<tr>
<td>ENTRY</td>
<td>Print or batch job queue entry number</td>
</tr>
<tr>
<td>EXECUTION</td>
<td>Number of images run by the process</td>
</tr>
<tr>
<td>FAULTS</td>
<td>Number of hard and soft page faults</td>
</tr>
<tr>
<td>FINISHED</td>
<td>Time record was logged in the accounting file</td>
</tr>
<tr>
<td>GETS</td>
<td>Number of GETs from the file that was printed</td>
</tr>
<tr>
<td>IDENT</td>
<td>Process identifier (PID)</td>
</tr>
<tr>
<td>IMAGE</td>
<td>Image name (sorts only on file name portion of the image file specification)</td>
</tr>
<tr>
<td>JOB</td>
<td>Name of print or batch job</td>
</tr>
<tr>
<td>NODE</td>
<td>Name of the node that made the DECnet for OpenVMS request</td>
</tr>
<tr>
<td>OWNER</td>
<td>PID of parent process</td>
</tr>
<tr>
<td>PAGE_FILE</td>
<td>Peak page file usage</td>
</tr>
<tr>
<td>PAGE_READS</td>
<td>Number of hard page faults</td>
</tr>
<tr>
<td>PAGES</td>
<td>Number of pages printed</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>Base process priority, or print or batch queue priority</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Type of process</td>
</tr>
<tr>
<td>PROCESSOR</td>
<td>Total CPU time used</td>
</tr>
<tr>
<td>QIOS</td>
<td>Number of QIOs to the printer</td>
</tr>
<tr>
<td>QUEUE</td>
<td>Name of print or batch queue</td>
</tr>
<tr>
<td>QUEUED</td>
<td>Time print job was queued</td>
</tr>
<tr>
<td>STARTED</td>
<td>Start time</td>
</tr>
</tbody>
</table>
ACCOUNTING
/SORT

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Sorts on This Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS</td>
<td>Final exit status code</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>Terminal name</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type of record</td>
</tr>
<tr>
<td>UIC</td>
<td>User identification code</td>
</tr>
<tr>
<td>USER</td>
<td>User name at local node</td>
</tr>
<tr>
<td>VECTOR_PROCESSOR</td>
<td>Vector CPU time (see the description of the /FULL qualifier for further details)</td>
</tr>
<tr>
<td>VOLUMES</td>
<td>Number of volumes mounted</td>
</tr>
<tr>
<td>WORKING_SET</td>
<td>Peak working set size</td>
</tr>
</tbody>
</table>

For each keyword, see the description of the corresponding Accounting utility qualifier or the table in the /TYPE qualifier section for details of the types of record in which the corresponding field is present.

Description

The /SORT qualifier merges the selected records from each input file (each file listed in the parameter to the ACCOUNTING command) and sorts them using the specified sort key. The records are sorted according to the value of the first sort field in the list, and when two or more records have the same value in this field, they are sorted by the value of the second sort field in the list, and so on.

The records are sorted in ascending order of the sort field value. If the keyword is preceded by a minus sign, the records are sorted in descending order.

When you use the /SORT qualifier, records are rejected if they do not contain the sort field. For example, /SORT=IMAGE rejects all records that are not of type IMAGE, because the image name field is only present in records of type IMAGE. Similarly, /SORT=PAGES rejects all records except those for print jobs.

You cannot use the /SORT qualifier with the /SUMMARY qualifier.

Examples

1. $ ACCOUNTING /TYPE=PRINT /SORT=USER

 This example processes the file SYSS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all the records for print jobs and displays them in user name order.

 The following example shows the report that is produced:

<table>
<thead>
<tr>
<th>Date / Time</th>
<th>Type</th>
<th>Subtype</th>
<th>Username</th>
<th>ID</th>
<th>Source</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-JAN-2002 09:53:05</td>
<td>PRINT</td>
<td></td>
<td>BROWN</td>
<td>20A00193</td>
<td>00040001</td>
<td></td>
</tr>
<tr>
<td>13-JAN-2002 13:36:04</td>
<td>PRINT</td>
<td></td>
<td>BROWN</td>
<td>20A00442</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>13-JAN-2002 12:42:37</td>
<td>PRINT</td>
<td></td>
<td>BROWN</td>
<td>20A00442</td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>13-JAN-2002 14:43:56</td>
<td>PRINT</td>
<td>DECNET_MAIL</td>
<td>20A00456</td>
<td>00000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-JAN-2002 19:39:01</td>
<td>PRINT</td>
<td>DECNET_MAIL</td>
<td>20A00265</td>
<td>00000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-JAN-2002 20:09:03</td>
<td>PRINT</td>
<td>DECNET_MAIL</td>
<td>20A00127</td>
<td>00000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-JAN-2002 20:34:45</td>
<td>PRINT</td>
<td>DECNET_MAIL</td>
<td>20A00127</td>
<td>00000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-JAN-2002 11:23:34</td>
<td>PRINT</td>
<td></td>
<td>FISH</td>
<td>20A0032E</td>
<td>00040001</td>
<td></td>
</tr>
<tr>
<td>14-JAN-2002 16:43:16</td>
<td>PRINT</td>
<td></td>
<td>JONES</td>
<td>20A00070</td>
<td>00040001</td>
<td></td>
</tr>
<tr>
<td>14-JAN-2002 09:30:21</td>
<td>PRINT</td>
<td></td>
<td>SMITH</td>
<td>20A00530</td>
<td>00040001</td>
<td></td>
</tr>
</tbody>
</table>
2. ```$ ACCOUNTING MYFILE1.DAT,MYFILE2.DAT /SORT=IMAGE -
 $ /FULL /REJECTED=NON_IMAGE.DAT```

This example processes two files, MYFILE1.DAT and MYFILE2.DAT, to produce a full report of records of type IMAGE, sorted in image name order. It creates the file NON_IMAGE.DAT, and copies all records except those of type IMAGE to that file. Notice that no selection qualifiers are used, and so all records are selected for processing. When the records are sorted, records that do not contain an image name are rejected.
ACCOUNTING
/STATUS

/STATUS

Selects or rejects records with the specified final exit status codes.

Format

/STATUS=([-]status_code[,...])

Description

The /STATUS qualifier uses the value of the final status code field to select records for processing. This field is present in all records except records of type USER, file backward link records, and file forward link records.

The /STATUS qualifier selects only records that have the specified values in the final status code field. If you precede the values with a minus sign, it selects all records except those with the specified values.

See the description of the /BRIEF qualifier for details of how to convert a final exit status code to the equivalent message text.

Example

$ ACCOUNTING /STATUS=10D38064

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records with a final exit status code of 10D38064.
/SUMMARY

Produces a summary report of the selected records.

Format

/SUMMARY[=(summary_item[,...])]

Keyword

summary_item[,...]

Specifies the summary key. The following table lists keywords:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCOUNT</td>
<td>Account</td>
</tr>
<tr>
<td>DATE</td>
<td>Date</td>
</tr>
<tr>
<td>DAY</td>
<td>Day of month (1–31)</td>
</tr>
<tr>
<td>HOUR</td>
<td>Hour of day (0–23)</td>
</tr>
<tr>
<td>IMAGE</td>
<td>Image name (file name portion of image file specification)</td>
</tr>
<tr>
<td>JOB</td>
<td>Name of print or batch job</td>
</tr>
<tr>
<td>MONTH</td>
<td>Month of year (1–12)</td>
</tr>
<tr>
<td>NODE</td>
<td>Name of the node that issued the DECnet for OpenVMS request</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Process type</td>
</tr>
<tr>
<td>QUEUE</td>
<td>Print or batch job queue name</td>
</tr>
<tr>
<td>TERMINAL</td>
<td>Terminal name</td>
</tr>
<tr>
<td>TYPE</td>
<td>Record type</td>
</tr>
<tr>
<td>UIC</td>
<td>User identification code</td>
</tr>
<tr>
<td>USER</td>
<td>User name</td>
</tr>
<tr>
<td>WEEKDAY</td>
<td>Day of week (0=Sunday, 1=Monday, and so on)</td>
</tr>
<tr>
<td>YEAR</td>
<td>Year</td>
</tr>
</tbody>
</table>

If you omit these keywords, the user name is used as the summary key.

Description

The /SUMMARY qualifier produces a summary report of the selected records. The report is directed to the current SYS$OUTPUT device, unless you use the /OUTPUT qualifier to write it to a file.

Summary reports give statistical summaries of the resources specified by the /REPORT qualifier for each value of the summary key specified by the /SUMMARY qualifier. If you omit the /REPORT qualifier, the summary report gives the total number of records processed for each summary key value.

The first line of the summary report shows the time span of the data processed (when the first and last records processed were logged in the input files), with a title in the middle. You can use the /TITLE qualifier to specify your own title.
The next few lines of the report are column headings. There is one column for each summary item, then one column for each resource specified by the /REPORT qualifier. The columns are laid out in the same left-to-right sequence as the equivalent keywords in the /SUMMARY and /REPORT qualifiers.

The rest of the report uses one line for each summary key value. It gives a summary of the resources associated with that summary key value. The data is sorted in ascending order of the summary key value.

See also the /BINARY qualifier, which copies the selected records to a file, and the /BRIEF and /FULL qualifiers, which produce brief and full reports of the selected records.

You cannot use the /SUMMARY qualifier with the /BINARY, /BRIEF, or /FULL qualifiers.

Examples

1. $ ACCOUNTING /TYPE=PRINT /SUMMARY=USER /REPORT=(PAGES, Records)

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It processes all the print job records and produces a summary report that shows, for each user, the total number of pages printed and the number of records that were added together to produce this total. This is an example of the report that is produced:

 Username Pages Total
 Printed Records

 BROWN 115 2
 CROW 3 1
 CUTHBERT 20 4
 FOSTER 46 1
 SMITH 50 3
 WHITE 50 7

2. $ ACCOUNTING /SUMMARY=IMAGE /REPORT=(PROCESSOR, Records)

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a summary report that shows the total CPU time used by each image. This is an example of the report that is produced:

 Image name Processor Total
 Time Records

 ACC 0 00:09:09.83 51
 AUTHORIZE 0 00:01:36.72 99
 CDU 0 00:00:04.17 8
 COPY 0 00:00:33.25 21
 DELETE 0 00:00:05.97 30
 DIRECTORY 0 00:00:02.79 12
 DUMP 0 00:00:09.67 38
 EDT 0 00:00:04.51 3
 LOGINOUT 0 00:00:05.85 7
 NETSERVER 0 00:00:04.80 75
 SHOW 0 00:00:04.80 22
/TERMINAL

Selects or rejects records for interactive sessions at the specified terminals.

Format

/TERMINAL=([¬]terminal_name[,...])

Description

The /TERMINAL qualifier uses the value of the terminal name field to select records for processing. This field is present in all records except file backward link and file forward link records. For records that contain information about interactive sessions, this field contains the name of the terminal associated with the session.

The /TERMINAL qualifier selects only records that have the specified values in the terminal name field. If you precede the values with a minus sign, it selects all records except those with the specified values.

Give the terminal name as the standard device name and include the colon (:).

Example

$ ACCOUNTING /TERMINAL=TTB3:

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for interactive sessions at the terminal TTB3.
ACCOUNTING
/TITLE

/TITLE

Specifies the title shown on the first line of a summary report.

Format

/TITLE=title

Description

The /TITLE qualifier specifies the title shown in the center of the first line of summary reports. The title is truncated if it is too long. For reports displayed on your screen, the title is truncated if it is longer than \((W-56)\) characters, where \(W\) is the width (in characters) of your screen.

Example

$ ACCOUNTING /SUMMARY=IMAGE /TITLE="June Accounting Report"

This example processes the file SYS$MANAGER:ACCOUNTING.DAT. It produces a summary report that shows the number of times each image was executed. The title “June Accounting Report” appears at the top of the report.
/TYPE

Selects or rejects the specified types of record.

Format

/TYPE=[[-]record_type[,...]]

Keyword

record_type[,...]

Specifies the types of record that you want to select or reject. The following table shows the keywords available:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Type of Record</th>
<th>Description of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE</td>
<td>FILE_BL</td>
<td>File backward link. This is the first record in the accounting file. It is logged when the file is created, and contains the name of the previous accounting file.</td>
</tr>
<tr>
<td></td>
<td>FILE_FL</td>
<td>File forward link. This is the last record in the file. It is logged when the file is closed, and contains the name of the next accounting file.</td>
</tr>
<tr>
<td>IMAGE</td>
<td>IMAGE</td>
<td>Image termination. It contains details of the resources used by the image.</td>
</tr>
<tr>
<td>LOGFAIL</td>
<td>LOGFAIL</td>
<td>Failed attempt to log in. It contains details of the resources used by the login attempt.</td>
</tr>
<tr>
<td>PRINT</td>
<td>PRINT</td>
<td>Print job termination. It contains details of the resources used by the print job.</td>
</tr>
<tr>
<td>PROCESS</td>
<td>PROCESS</td>
<td>Process termination. It contains details of the resources used by the process. Note that this includes the resources used by the images executed by that process.</td>
</tr>
<tr>
<td>SYSINIT</td>
<td>SYSINIT</td>
<td>System booted. It contains details of resources used to boot the system.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>USER</td>
<td>Record not recognized as one of the other types in this table.</td>
</tr>
<tr>
<td>USER</td>
<td>USER</td>
<td>Record logged by a program calling the $SNDJBC system service to send an accounting message.</td>
</tr>
</tbody>
</table>

Description

All records in an accounting file contain a type field that contains the type of the record.

The /TYPE qualifier selects the specified types of record. If you precede the list with a minus sign, it selects all records except those specified.

See also the /PROCESS qualifier, which selects or rejects records for particular types of process.
ACCOUNTING
/TYPEx

Examples

1.
 $ ACCOUNTING /TYPE=PRINT
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for print jobs.

2.
 $ ACCOUNTING /TYPE=-PRINT
 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records except those for print jobs.
/UIC

Selects or rejects records for the specified UICs.

Format

/UIC=([-]uic[,...])

Description

The /UIC qualifier uses the value of the UIC field to select records for processing. This field is present in all records except file backward link and file forward link records. It contains the value [SYSTEM] for login failure records where the user did not give a valid user name.

The /UIC qualifier selects only records that have the specified values in the UIC field. If you precede the values with a minus sign, it selects all records except those with the specified values.

You can specify the UIC in numeric or alphanumeric format, and can use the asterisk (*) wildcard character.

Example

$ ACCOUNTING /UIC=((360,*),(ADMIN,COTTON))

This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for users in group number 360 or users whose UIC is [ADMIN,COTTON].
/USER

Selects or rejects records for the specified user names.

Format

/USER=([-]user name[,...])

Description

The /USER qualifier uses the value of the user name field to select records for processing. This field is present in all records except file backward link and file forward link records. It contains the value <login> for login failure records where the user did not give a valid user name.

The /USER qualifier selects only records that have the specified values in the user name field. If you precede the values with a minus sign, it selects all records except those with the specified values.

Examples

1. $ ACCOUNTING /USER=SMITH

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all records for the user SMITH.

2. $ ACCOUNTING /USER=(-SMITH,JONES)

 This example processes the file SYS$MANAGER:ACCOUNTNG.DAT. It produces a brief report of all the records except for those of the users SMITH and JONES.
Changes the width of Buffered I/O and Direct I/O fields in a report from 8 to 10 characters.

Format

/WIDE

Description

The /WIDE qualifier corrects a problem that users have had with ACCOUNTING reports: the Buffered I/O and Direct I/O fields were too small and displayed asterisks (*) when numbers exceeded 8 characters.

The /WIDE qualifier changes the widths of the Buffered I/O and Direct I/O fields in reports to 10 characters.

Example

$ ACCOUNTING /PROC=BATCH /TYP=PROC -
 /REPORT=(RECORDS,PROCESSOR,DIRECT_IO,BUFFER) -
 /SUMM=MONTH /SIN=1-JAN /WIDE

+------------+--------------------------------+--------+----------+----------+----------+----------+----------+
<table>
<thead>
<tr>
<th>MM</th>
<th>TOTAL RECORDS</th>
<th>PROCESSOR TIME</th>
<th>DIRECT I/O</th>
<th>BUFFERED I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2043</td>
<td>06:52:40.97</td>
<td>532675222</td>
<td>551986091</td>
</tr>
<tr>
<td>02</td>
<td>1767</td>
<td>00:14:34.00</td>
<td>183290432</td>
<td>420000532</td>
</tr>
</tbody>
</table>

Without the /WIDE qualifier, the Direct I/O or Buffered I/O fields print ***** if the field overflows. With the /WIDE qualifier, these fields print correctly.
Analyze/Disk Structure Utility
3.1 ANALYZE/DISK_STRUCTURE Description

You can use the Analyze/Disk_Structure utility (ANALYZE/DISK_STRUCTURE) in two important ways:

- Use the utility on a regular basis to check disks for inconsistencies and errors, and to recover lost files.
- Use the utility with the /SHADOW qualifier to examine the entire contents of a shadow set or a specified range of blocks in a shadow set.

These two uses are explained in the following sections.

Checking Disks

ANALYZE/DISK_STRUCTURE detects problems on On-Disk Structure (ODS) Levels 1, 2, and 5 Files–11 disks; hardware errors, system errors, or user errors can cause these problems. By using ANALYZE/DISK_STRUCTURE to identify and delete lost files and files marked for deletion, you can reclaim disk space.

ANALYZE/DISK_STRUCTURE performs the verification of a volume or volume set in eight distinct stages. During these stages, ANALYZE/DISK_STRUCTURE collects information used in reporting errors or performing repairs. However, ANALYZE/DISK_STRUCTURE repairs volumes only when you specify the /REPAIR qualifier. For a complete description of each of the eight stages, and an annotated example of an ANALYZE/DISK_STRUCTURE session, refer to Appendix D.

ANALYZE/DISK_STRUCTURE allocates virtual memory to hold copies of the index file and storage bitmaps. With larger bitmaps introduced in OpenVMS Version 7.2, the virtual memory requirements increase correspondingly. To use this utility on volumes with large bitmaps, you might need to increase your page file quota. On OpenVMS VAX systems, you might also need to increase the system parameter VIRTUALPAGECNT.

Virtual memory size requirements for the bitmaps are in VAX pages (or Alpha 512-byte pagelets) per block of bitmap. Note that the size of the index file bitmap in blocks is the maximum number of files divided by 4096. For ANALYZE/DISK_STRUCTURE, this requirement is the sum of the following across the entire volume set:

- 3 times all the storage bitmaps plus the largest bitmap in the volume set
- 117 times the index file bitmaps
- An additional 96 times the index file bitmaps if /USAGE was requested
- Approximately 600 pages additional fixed scratch space

Examining Shadow Sets

The ANALYZE/DISK_STRUCTURE/SHADOW command is especially useful if a shadow set was initialized with the INITIALIZE/SHADOW command but without the /ERASE qualifier.

Another use of the ANALYZE/DISK_STRUCTURE/SHADOW command is if an error is logged on a member device, and you do not know whether the error was caused by a disk error or by some other hardware component such as a disk controller or cable. When you use the ANALYZE/DISK_STRUCTURE/SHADOW command, every block of every member is read and compared.

Refer to the Section 3.1.2 and to the /SHADOW qualifier documentation for further details.
3.1 ANALYZE/DISK_STRUCTURE Description

3.1.1 Disk Error Reporting and Repair

You can invoke the Analyze/Disk_Structure utility to operate in any of the following three modes for disks errors:

- Error reporting with no repairs
- Error reporting with repairs
- User-controlled selective repairs

By default, ANALYZE/DISK_STRUCTURE reports errors, but does not make repairs. For example, use the following command to report all errors on device DBA1:

```
$ ANALYZE/DISK_STRUCTURE DBA1:
```

When you issue this command, ANALYZE/DISK_STRUCTURE runs through eight stages of data collection, then, by default, prints a list of all errors and lost files to your terminal. One type of problem that ANALYZE/DISK_STRUCTURE locates is an invalid directory backlink; a backlink is a pointer to the directory in which a file resides. If your disk has a file with an invalid directory backlink, ANALYZE/DISK_STRUCTURE displays the following message and the file specification to which the error applies:

```
%VERIFY-I-BACKLINK, incorrect directory back link [SYSEXE]SYSBOOT.EXE;1
```

To instruct ANALYZE/DISK_STRUCTURE to repair the errors that it detects, use the /REPAIR qualifier. For example, the following command reports and repairs all errors on the DBA1 device:

```
$ ANALYZE/DISK_STRUCTURE DBA1:/REPAIR
```

Notes

HP recommends using a colon (:) after device names in commands.

When you update the storage control block (SCB) within a BITMAP.SYS file, the VERIFY utility forces the volume to perform mount verification if the volume is controlled by host-based shadowing.

To select which errors ANALYZE/DISK_STRUCTURE repairs, use both the /REPAIR and /CONFIRM qualifiers:

```
$ ANALYZE/DISK_STRUCTURE DBA1:/REPAIR/CONFIRM
```

When you issue this command, ANALYZE/DISK_STRUCTURE displays a description of each error and prompts you for confirmation before making a repair. For example, the previous command might produce the following messages and prompts:

```
%VERIFY-I-BACKLINK, incorrect directory back link [SYS0]SYSMAINT.DIR;1
Repair this error? (Y or N): Y
%VERIFY-I-BACKLINK, incorrect directory back link [SYSEXE]SYSBOOT.EXE;1
Repair this error? (Y or N): N
```
Consider running ANALYZE/DISK_STRUCTURE twice for each volume. First, invoke the utility to report all errors. Evaluate the errors and decide on an appropriate action. Then invoke the utility again with the /REPAIR qualifier to repair all errors, or with the /REPAIR and /CONFIRM qualifiers to repair selected errors.

For message descriptions, use the online Help Message (MSGHLP) utility or refer to the OpenVMS system messages documentation.

Recovering Lost Files
A lost file is a file that is not linked to a directory. Under normal circumstances, files do not become lost. However, files occasionally become lost because of disk corruption, hardware problems, or user error. For example, in cleaning up files and directories, you might inadvertently delete directories that still point to files. When you delete a directory file (a file with the file type .DIR) without first deleting its subordinate files, the files referred to by that directory become lost files. Though lost, these files remain on the disk and consume space.

When you run ANALYZE/DISK_STRUCTURE specifying the /REPAIR qualifier, the utility places lost files in SYSLOST.DIR.

For example, to report and repair all errors and lost files found on the device DDA0, issue the following command:

```
$ ANALYZE/DISK_STRUCTURE/REPAIR/CONFIRM DDA0:
```

If it discovers lost files on your disk, ANALYZE/DISK_STRUCTURE issues messages similar to those that follow:

```
%VERIFY-W-LOSTHEADER, file (16,1,1) [ ]X.X;1 not found in a directory
%VERIFY-W-LOSTHEADER, file (17,1,1) [ ]Y.Y;1 not found in a directory
%VERIFY-W-LOSTHEADER, file (18,1,1) [ ]Z.Z;1 not found in a directory
%VERIFY-W-LOSTHEADER, file (19,1,1) [ ]X.X;2 not found in a directory
%VERIFY-W-LOSTHEADER, file (20,1,1) [ ]Y.Y;2 not found in a directory
%VERIFY-W-LOSTHEADER, file (21,1,1) [ ]Z.Z;1 not found in a directory
%VERIFY-W-LOSTHEADER, file (22,1,1) [ ]Z.Z;2 not found in a directory
%VERIFY-W-LOSTHEADER, file (23,1,1) LOGIN.COM;163 not found in a directory
%VERIFY-W-LOSTHEADER, file (24,1,1) MANYACL.COM;1 not found in a directory
```

All lost files in this example are automatically moved to SYSLOST.DIR.

Erasing Old Home Blocks
When you initialize a volume, the initialize operation might not erase old home blocks. These are blocks that were created by previous initialize operations. If a volume that has old home blocks is damaged, you may not be able to recover the volume without erasing the blocks.

You can erase old home blocks manually by using the /HOMEBLOCKS qualifier on the ANALYZE/DISK_STRUCTURE command as follows:

```
$ ANALYZE/DISK_STRUCTURE/REPAIR/HOMEBLOCKS
```

Note that this operation can take up to 30 minutes to complete.
3.1 ANALYZE/DISK_STRUCTURE Description

ANALYZE/DISK_STRUCTURE Output
By default, the Analyze/Disk_Structure utility directs all output to your terminal. If you prefer, you can use the /LIST qualifier to generate a file containing the following information for each file on the disk:

- File identification (FID)
- File name
- Owner
- Errors associated with the file

To generate a disk usage accounting file, use the /USAGE qualifier. The first record of the file, called the identification record, contains a summary of disk and volume characteristics. The identification record is followed by a series of summary records; one summary record is created for each file on the disk. A summary record contains the owner, size, and name of the file.

For more information about the disk usage accounting file, see Appendix E.

3.1.2 Detecting Shadow Set Errors
When you enter the ANALYZE/DISK_STRUCTURE/SHADOW command, the system checks for shadow set discrepancies—to ensure that every block on the disk is identical. A discrepancy is a block that should be the same on all members but is not. For example, when a WRITE is executed, it might not be written to all of the members when the ANALYZE/DISK/SHADOW processes it.

If a discrepancy is found, a clusterwide WRITE lock is taken on the shadow set, and the questionable blocks are reread. Then either one of two actions occurs:

- If a discrepancy is still present on the second read, the system displays the file name on the screen. The system also dumps the data block containing the discrepancy to the screen or to a file if you specify the /OUTPUT qualifier.
- If no discrepancy is found on the second read, the system considers the error to be a transient one (for example, if a WRITE to that disk block was in progress). The system then logs the transient error in the summary displayed on the user’s terminal. However, verification that all members contained the same information is considered a success—in other words, the data on the disk is actually the same, although for a brief period it was not.

3.2 ANALYZE/DISK_STRUCTURE Usage Summary

The Analyze/Disk_Structure utility checks the readability and validity of Files–11 Structure Levels 1, 2, and 5 disk volumes, and reports errors and inconsistencies. You can detect most classes of errors by invoking the utility once and using its defaults.

Format

ANALYZE/DISK_STRUCTURE device-name:[/qualifier]
Parameter
device-name

Specifies the disk volume or volume set to be verified. If you specify a volume set, all volumes of the volume set must be mounted as Files–11 volumes. For information about the Mount utility, refer to the MOUNT documentation in this manual.

Usage Summary

Use the following command to invoke the utility:

```
ANALYZE/DISK_STRUCTURE device-name: /qualifiers
```

To terminate an ANALYZE/DISK_STRUCTURE session, press Ctrl/C or Ctrl/Y while the utility executes. You cannot resume a session by using the DCL command CONTINUE.

By default, ANALYZE/DISK_STRUCTURE directs all output to your terminal. Use the /USAGE or /LIST qualifiers to direct output to a file.

To repair a disk effectively, you must have read, write, and delete access to all files on the disk. To effectively scan a disk (/NOREPAIR), you must have read access to all files on the disk. You must also have write access to INDEXF.SYS to force the flushing of the caches for this file. You must also have write access to BITMAP.SYS for the same reason: to force the flushing of the caches for this file. (You need write access to QUOTA.SYS only if the volume is running disk quotas.)

For a complete explanation of file access, refer to the *HP OpenVMS Guide to System Security*.

You can safely use ANALYZE/DISK_STRUCTURE on a disk that is concurrently being used for other file operations. If you specify /REPAIR, the utility locks the volume before performing any operations; this blocks volume modification. Because other users cannot create, delete, extend, or truncate files, repair operations are unimpeded and the volume is left in a consistent state.

If you specify /NOREPAIR, the volume is not locked; the utility does not attempt to write to the disk. However, if users perform file operations while you run the utility, you may receive error messages that incorrectly indicate file damage. To avoid this problem, HP recommends that you run ANALYZE/DISK_STRUCTURE when the disk is in a quiescent state.

3.3 ANALYZE/DISK_STRUCTURE Qualifiers

This section describes and provides examples of each ANALYZE/DISK_STRUCTURE qualifier. The following table summarizes the qualifiers:

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CONFIRM</td>
<td>Determines whether ANALYZE/DISK_STRUCTURE prompts you to confirm each repair</td>
</tr>
<tr>
<td>/HOMEBLOCKS</td>
<td>Erases damaged home blocks on an initialized volume</td>
</tr>
<tr>
<td>/LIST=filespec</td>
<td>Determines whether ANALYZE/DISK_STRUCTURE produces a listing of the index file</td>
</tr>
<tr>
<td>/LOCK_VOLUME</td>
<td>(Alpha only) Prevents updates to a volume while you are analyzing it</td>
</tr>
</tbody>
</table>
3.3 ANALYZE/DISK_STRUCTURE Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/OUTPUT[=filespec]</td>
<td>Specifies the output file to which ANALYZE/DISK_STRUCTURE writes the disk structure errors.</td>
</tr>
<tr>
<td>/READ_CHECK</td>
<td>Determines whether ANALYZE/DISK_STRUCTURE performs a read check of all allocated blocks on the specified disk.</td>
</tr>
<tr>
<td>/RECORD_ATTRIBUTES</td>
<td>Determines whether ANALYZE/DISK_STRUCTURE repairs files containing erroneous settings in the record attributes section of their associated file attribute block (FAT).</td>
</tr>
<tr>
<td>/REPAIR</td>
<td>Determines whether ANALYZE/DISK_STRUCTURE repairs errors that are detected in the file structure of the specified device.</td>
</tr>
<tr>
<td>/SHADOW</td>
<td>Causes the entire contents of a shadow set or a specified range of blocks in a shadow set to be checked for discrepancies.</td>
</tr>
<tr>
<td>/STATISTICS</td>
<td>Produces statistical information about the volume under verification and creates a file, STATS.DAT, which contains per-volume statistics.</td>
</tr>
<tr>
<td>/USAGE[=filespec]</td>
<td>Specifies that a disk usage accounting file should be produced, in addition to the other specified functions of ANALYZE/DISK_STRUCTURE.</td>
</tr>
</tbody>
</table>
/CONFIRM

Determines whether the Analyze/Disk_Structure utility prompts you to confirm each repair. If you respond with Y or YES, the utility performs the repair. Otherwise, the repair is not performed.

Format

/CONFIRM
/NOCONFIRM

Description

You can use the /CONFIRM qualifier only with the /REPAIR qualifier. The default is /NOCONFIRM.

Example

$ ANALYZE/DISK_STRUCTURE DBA0:/REPAIR/CONFIRM
%VERIFY-I-BACKLINK, incorrect directory back link [SYS0]SYSMAINT.DIR;1
Repair this error? (Y or N): Y
%VERIFY-I-BACKLINK, incorrect directory back link [SYSEXE]SYSBOOT.EXE;1
Repair this error? (Y or N): N

The command in this example causes the Analyze/Disk_Structure utility to prompt you for confirmation before performing the indicated repair operation.
Erases home blocks from a volume whose home blocks were not deleted during previous initialization operations.

Format

/HOMEBLOCKS

Description

You can use the /HOMEBLOCKS qualifier only with the /REPAIR qualifier. The operation can take 30 minutes to complete.

Example

$ ANALYZE/DISK_STRUCTURE DBA0:/REPAIR/HOMEBLOCKS

The command in this example causes the Analyze/Disk_Structure utility to erase home blocks on DBA0.
/LIST

Determines whether the Analyze/Disk_Structure utility produces a listing of the index file.

Format

/LIST[=filespec]
/NLIST

Description

If you specify /LIST, the utility produces a file that contains a listing of all file identifications (FIDs), file names, and file owners. If you omit the file specification, the default is SYS$OUTPUT. If you include a file specification without a file type, the default type is .LIS. You cannot use wildcard characters in the file specification.

The default is /NLIST.

Example

$ ANALYZE/DISK_STRUCTURE DLA2:/LIST=INDEX
$ TYPE INDEX
Listing of index file on DLA2:
31-OCT-2002 20:54:42.22
(00000001,0001,001) INDEXF.SYS;1
[1,1]
(00000002,00002,001) BITMAP.SYS;1
[1,1]
(00000003,00003,001) BADBLK.SYS;1
[1,1]
(00000004,00004,001) 000000.DIR;1
[1,1]
(00000005,00005,001) CORIMG.SYS;1
[1,1]
.
.
.
$

In this example, ANALYZE/DISK_STRUCTURE did not find errors on the device DLA2. Because the file INDEX was specified without a file type, the system assumes a default file type of .LIS. The subsequent TYPE command displays the contents of the file INDEX.LIS.
ANALYZE/DISK_STRUCTURE
/LOCK_VOLUME (Alpha only)

/LOCK_VOLUME (Alpha only)

Prevents updates to a volume while you are analyzing it.

Format

/LOCK_VOLUME
/NOLOCK_VOLUME

Description

/LOCK_VOLUME provides a way to prevent file system activity on a volume while you are using the ANALYZE/DISK_STRUCTURE utility on that volume. This qualifier operates the same way as /REPAIR does: it software write-locks the file structure while the utility is running. (The qualifier does not, however, affect any repairs on the volume.) The default is /NOLOCK_VOLUME.

Using this qualifier reduces the number of false error messages that might occur when you run the utility on an active volume. /LOCK_VOLUME stops the activity of applications that open, close, or modify files on the target volume for the period the utility is running.

Note

Be careful about using this qualifier, especially for volumes that contain active system files such as SYSUAF or RIGHTSLIST.

Example

$ ANALYZE/DISK_STRUCTURE DBA1:/LOCK_VOLUME

The command in this example stops file system activity on DBA1: while ANALYZE/DISK_STRUCTURE is running.
Specifies the output file to which the Analyze/Disk_Structure utility is to write the disk structure errors.

Format

/OUTPUT[=filespec]

/NOOUTPUT[=filespec]

Description

Specifies the output file for the disk structure errors. If you omit the /OUTPUT file specification, output is directed to SYS$OUTPUT. If /NOOUTPUT is specified, no disk structure errors are displayed. If the /CONFIRM qualifier is specified, output is forced to SYS$OUTPUT regardless of whether this qualifier is used.
/READ_CHECK

Determines whether the Analyze/Disk_Structure utility performs a read check of all allocated blocks on the specified disk. When the Analyze/Disk_Structure utility performs a read check, it reads the disk twice; this ensures that it reads the disk correctly. The default is /NOREAD_CHECK.

Format

/READ_CHECK
/NOREAD_CHECK

Example

$ ANALYZE/DISK_STRUCTURE DMA1:/READ_CHECK

The command in this example directs ANALYZE/DISK_STRUCTURE to perform a read check on all allocated blocks on the device DMA1.
ANALYZE/DISK_STRUCTURE
/RECORD_ATTRIBUTES

/RECORD_ATTRIBUTES

Determines whether the Analyze/Disk_Structure utility repairs files containing erroneous settings in the record attributes section of their associated file attribute block (FAT).

Format

/RECORD_ATTRIBUTES

Description

You can use the /RECORD_ATTRIBUTES qualifier with the /REPAIR qualifier. If attribute repair is enabled during the repair phase, erroneous bits are cleared from a file's record attributes. This action might not correctly set a file's record attributes as it is beyond the scope of this utility to determine their correct values.

HP recommends that system managers not perform an attribute repair; instead, they should notify the owners of the files about the inconsistencies and have the owners reset the files' attributes using the SET FILE/RECORD_ATTRIBUTES=({record-attributes}) command.

Example

$ ANALYZE/DISK_SYS$SYSDEVICE:
%ANALDISK-I-BAD_RECATTR, file (2930,1,1) [USER]ATTRIBUTES.DAT;13
file record format: Variable
inconsistent file attributes: Bit 5
%ANALDISK-I-BAD_RECATTR, file (2931,1,1) [USER]ATTRIBUTES.DAT;14
file record format: Variable
inconsistent file attributes: FORTRAN carriage control, Bit 5
%ANALDISK-I-BAD_RECATTR, file (2932,1,1) [USER]ATTRIBUTES.DAT;15
file record format: Variable
inconsistent file attributes: Implied carriage control, Bit 5
%ANALDISK-I-BAD_RECATTR, file (2933,1,1) [USER]ATTRIBUTES.DAT;16
file record format: Variable
inconsistent file attributes: Non-spanned, Bit 5
%ANALDISK-I-BAD_RECATTR, file (2934,1,1) [USER]ATTRIBUTES.DAT;17
file record format: Variable
inconsistent file attributes: FORTRAN carriage control, Non-spanned, Bit 5
ANALYZE/DISK_STRUCTURE
/REPAIR

/REPAIR

Determines whether the Analyze/Disk_Structure utility repairs errors that are detected in the file structure of the specified device.

Format

/REPAIR
/NOREPAIR

Description

The Analyze/Disk_Structure utility does not perform any repair operation unless you specify the /REPAIR qualifier. The file structure is software write-locked during a repair operation. The default is /NOREPAIR.

To effectively scan a disk (/NOREPAIR), you must have read access to all files on the disk. You must also have write access to INDEXF.SYS to force the flushing of the caches for this file. You must also have write access to BITMAP.SYS for the same reason: to force the flushing of the caches for this file. (You need write access to QUOTA.SYS only if the volume is running disk quotas.)

Example

$ ANALYZE/DISK_STRUCTURE DBA1:/REPAIR

The command in this example causes ANALYZE/DISK_STRUCTURE to perform a repair on all errors found in the file structure of device DBA1.
/SHADOW

Examines the entire contents of a shadow set or a specified range of blocks in a shadow set for discrepancies.

Format

/SHADOW

Parameters

None.

Qualifiers

/BLOCKS={(START:n, COUNT:x, END:y), FILE_SYSTEM, ALL}

Directs the system to compare only the range specified. The options are the following:

START:n Number of the first block to be analyzed. The default is the first block.
COUNT:x Number of blocks to be analyzed. You can use this option in combination with or instead of the END option.
END:y Number of the last block to be analyzed. The default is the last block of the volume.
FILE_SYSTEM Blocks currently in use by valid files on the disk. This is the default.
ALL All blocks on the disk.

You can specify START, END, COUNT and either ALL or FILE_SYSTEM. For example, if you specify /BLOCKS=(START, END, COUNT:100, ALL), the software checks the first 100 blocks on the disk, whether or not the file system is using them.

If you specify /BLOCKS=(START, END, COUNT:100, FILE_SYSTEM), the software checks only those blocks that valid files on the disk are using.

/BRIEF

Displays only the logical block number (LBN) if the data in a block is found to be different. Without this qualifier, if differences exist for an LBN, the hexadecimal data of that block will be displayed for each member.

/IGNORE

(NO)IGNORE

Ignore “special” files that are likely to have some blocks with different data. These differences, however, are not unusual and can, therefore, be ignored.

Other special files are the following:

 SWAPFILE*.*
 PAGEFILE*.*
 SYSDUMP: DMP
 SYS$ERRLOG: DMP

IGNORE is the default.
ANALYZE/DISK_STRUCTURE
/SHADOW

/OUTPUT=filename
Output the information to the specified file.

/STATISTICS
Display only the file header and footer. The best use of this qualifier is with the
/OUTPUT qualifier.

Description

When you enter the ANALYZE/DISK_STRUCTURE/SHADOW command, the system checks for shadow set discrepancies. If a discrepancy is found, a clusterwide WRITE lock is taken on the shadow set, and the questionable blocks are reread. Then either one of two actions occurs:

- If a discrepancy is still present on the second read, the system displays the file name on the screen. The system also dumps the data block containing the discrepancy to the screen or to a file if you specify the /OUTPUT qualifier.
- If no discrepancy is found on the second read, the system considers the error to be a transient one (for example, a WRITE to that disk block was in progress).

See Section 3.1.2 for more details.

Example

$ ANALYZE/DISK_STRUCTURE/SHADOW/BRIEF/BLOCKS=COUNT:1000 dsa716:
Starting to check DSA716: at 14-MAY-2002 13:42:52.43
Members of shadow set _DSA716: are 252MDAO: 252DUA716:
and the number of blocks to be compared is 1000.
Checking LBN #0 (approx 0%) Checking LBN #127 (approx 12%)
Checking LBN #254 (approx 25 %) Checking LBN #381 (approx 38%)
Checking LBN #508 (approx 50%) Checking LBN #635 (approx 63%)
Checking LBN #762 (approx 76%) Checking LBN #889 (approx 88%)
Run statistics for _DSA716: are as follows:
 Finish Time = 14-MAY-2002 13:42:52.73
 ELAPSED TIME = 00:00:00.29
 CPU TIME = 0:00:00.02
 BUFFERED I/O COUNT = 10
 DIRECT I/O COUNT = 16
 Failed LBNs = 0
 Transient LBN compare errors = 0
$

The command in this example causes ANALYZE/DISK_STRUCTURE/SHADOW to examine the first 1000 blocks of the DSA716: virtual unit to ensure that the device 252MDAO: and 252DUA716: have identical data in those blocks.
/STATISTICS

Produces statistical information about the volume under verification and creates a file, STATS.DAT, which contains per-volume statistics.

Format

/STATISTICS

Description

The following information is placed in the STATS.DAT file:

- The number of ODS-2 and ODS-5 headers on the volume
- The number of special headers on ODS-5 volumes
- The distribution of file name lengths
- The distribution of extension header chain lengths
- The distribution of header identification area free space
- The distribution of header map area and ACL area free space
- The totals of header space that is in use and header space that is not in use

Example

$ ANALYZE/DISK_STRUCTURE MDA2000: /STATISTICS

The OpenVMS Alpha volume in this example, which is on device MDA2000:, has been converted from ODS-2 to ODS-5 using the SET VOLUME command. The STATS.DAT file created contains the following information:

********** Statistics for volume 001 of 001 **********

Volume is ODS level 5.
Volume has 00000004 ODS-2 primary headers.
Volume has 00000003 ODS-5 primary headers.
Volume has 00000000 ODS-5 -1 segnum headers.
00000001 filenames of length 009 bytes.
00000002 filenames of length 011 bytes.
00000001 filenames of length 013 bytes.
00000001 filenames of length 015 bytes.
00000001 filenames of length 073 bytes.
00000007 extension header chains of length 00000.
00000001 ODS-2 headers have 071 ident area free bytes.
00000001 ODS-2 headers have 073 ident area free bytes.
00000001 ODS-2 headers have 075 ident area free bytes.
00000001 ODS-2 headers have 077 ident area free bytes.
Total ODS-2 ident area free bytes is 00000296.
00000001 ODS-5 headers have 001 ident area free bytes.
00000001 ODS-5 headers have 029 ident area free bytes.
00000001 ODS-5 headers have 033 ident area free bytes.
Total ODS-5 ident area free bytes is 00000063.
ANALYZE/DISK_STRUCTURE
/STATISTICS

00000001 headers have 277 free bytes in total.
00000001 headers have 335 free bytes in total.
00000001 headers have 339 free bytes in total.
00000001 headers have 377 free bytes in total.
00000001 headers have 379 free bytes in total.
00000001 headers have 381 free bytes in total.
00000001 headers have 383 free bytes in total.

Total header area in bytes is 00003584.
Total header area free bytes is 00002791.
Total header area used bytes is 00000793.
Analyze/Disk_Structure Utility

/USAGE[=filespec]

Specifies that a disk usage accounting file should be produced, in addition to the other specified functions of the Analyze/Disk_Structure utility.

Format

/USAGE[=filespec]

Description

If all or part of the file specification is omitted, ANALYZE/DISK_STRUCTURE assumes a default file specification of USAGE.DAT. The file is placed in the current default directory.

Example

$ ANALYZE/DISK_STRUCTURE DBA1:/USAGE
$ DIRECTORY USAGE

Directory DISK$DEFAULT:[ACCOUNT]

USAGE.DAT;1

Total of 1 file.

The first command in this example causes ANALYZE/DISK_STRUCTURE to produce a disk usage accounting file. Because a file specification was not provided in the command line, ANALYZE/DISK_STRUCTURE uses both the default file name and directory [ACCOUNT]USAGE.DAT. The DIRECTORY command instructs the system to display all files with a file name of usage in the current directory. The OpenVMS Alpha device in this example, MDA2000:, has been converted from ODS-2 to ODS-5 using the SET VOLUME command.
Audit Analysis Utility
4.1 ANALYZE/AUDIT Description

The Audit Analysis utility (ANALYZE/AUDIT) is a system management tool that enables system managers or site security administrators to produce reports from security audit log files.

The OpenVMS operating system automatically audits a limited number of events, such as changes to the authorization database and use of the SET AUDIT command. Depending on your site’s requirements, you may want to enable other forms of reporting. However, collecting security audit messages is useful only if you develop and implement a procedure to periodically review the audit log file for suspicious activity. Use ANALYZE/AUDIT to examine the data in security audit log files or security archive files.

The ANALYZE/AUDIT command’s different qualifiers allow you to specify the type of information the utility extracts from the security audit log file. The utility can produce an audit report in a variety of formats and direct a report to a file or a terminal.

A description of the format of the auditing messages written to the security auditing file appears in Appendix F.

In a mixed-version cluster, an audit log file contains entries from systems running different versions of the operating system. To analyze the log file, you must invoke the Audit Analysis utility (ANALYZE/AUDIT) from a node running Version 6.1 or later.

For information about how to generate audit messages records and how to use ANALYZE/AUDIT, refer to the HP OpenVMS Guide to System Security.

4.2 ANALYZE/AUDIT Usage Summary

The Audit Analysis utility (ANALYZE/AUDIT) processes event messages in security audit log files to produce reports of security-related events on the system.

Format

ANALYZE/AUDIT [file-spec[,...]]

Parameter

file-spec[,...]

Specifies one or more security audit log files as input to ANALYZE/AUDIT. If you specify more than one file name, separate the names with commas.

If you omit the file-spec parameter, the utility searches for the default audit log file SECURITY.AUDIT$JOURNAL.

The default audit log file is created in the SYS$COMMON:[SYSMGR] directory. To use the file, specify SYS$MANAGER on the ANALYZE/AUDIT command line. If you do not specify a directory, the utility searches for the file in the current directory.

You can include wildcard characters, such as the asterisk (*) or percent sign (%), in the file specification.

The audit log file can be located in any directory. To display the current location, use the DCL command SHOW AUDIT/ALL.
Description

Use the DCL command ANALYZE/AUDIT to analyze security audit log files or
security archive files. An ANALYZE/AUDIT command line can specify the name
of one or more log files, as follows:

ANALYZE/AUDIT [file-spec,...]

You can also use the ANALYZE/AUDIT command to extract security event
messages from security archive files or from binary files (created with previous
ANALYZE/AUDIT commands).

Each ANALYZE/AUDIT request runs until the log file is completely processed.
You can interrupt the processing to modify the display or to change position in
the report if you activate command mode by pressing Ctrl/C. To terminate an
ANALYZE/AUDIT request before completion, press Ctrl/Z.

You can direct ANALYZE/AUDIT output to any supported terminal device or
to a disk or tape file by specifying the file specification as an argument to the
/OUTPUT qualifier. By default, the output is directed to SYS$OUTPUT.

Use of ANALYZE/AUDIT requires no special privileges other than access to the
files specified in the command line.

4.3 ANALYZE/AUDIT Qualifiers

This section describes ANALYZE/AUDIT and provides examples of each qualifier.
The following table summarizes the ANALYZE/AUDIT qualifiers:

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BEFORE</td>
<td>Controls whether records dated earlier than the specified time are selected</td>
</tr>
<tr>
<td>/BINARY</td>
<td>Controls whether output is a binary file</td>
</tr>
<tr>
<td>/BRIEF</td>
<td>Controls whether a brief, single-line record format is used in ASCII displays</td>
</tr>
<tr>
<td>/EVENT_TYPE</td>
<td>Selects the classes of events to be extracted from the security log file</td>
</tr>
<tr>
<td>/FULL</td>
<td>Controls whether a full format is used in ASCII displays</td>
</tr>
<tr>
<td>/IGNORE</td>
<td>Excludes records from the report that match the specified criteria</td>
</tr>
<tr>
<td>/INTERACTIVE</td>
<td>Controls whether interactive command mode is enabled when ANALYZE/AUDIT is invoked</td>
</tr>
<tr>
<td>/OUTPUT</td>
<td>Specifies where to direct output from ANALYZE/AUDIT</td>
</tr>
<tr>
<td>/PAUSE</td>
<td>Specifies the length of time each record is displayed in a full format display</td>
</tr>
<tr>
<td>/SELECT</td>
<td>Specifies the criteria for selecting records</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Indicates that the utility must operate on records dated with the specified time or after the specified time</td>
</tr>
<tr>
<td>/SUMMARY</td>
<td>Specifies that a summary of the selected records be produced after all records are processed</td>
</tr>
</tbody>
</table>
/BEFORE

Controls whether records dated earlier than the specified time are selected.

Format

/BEFORE[=time]
/NOBEFORE

Keyword

time
Specifies the time used to select records. Records dated earlier than the specified
time are selected. You can specify an absolute time, delta time, or a combination
of the two. Observe the syntax rules for date and time described in the OpenVMS

Description

By default, all records in the security audit log file may be examined. You must
specify /BEFORE to exclude records created after a specific point in time.

Examples

1. $ ANALYZE/AUDIT /BEFORE=25-NOV-2002 -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL
 The command in this example selects all records dated earlier than November
 25, 2002.

2. $ ANALYZE/AUDIT /BEFORE=14:00/SINCE=12:00 -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL
 The command in this example selects all records generated between noon and
 2 P.M. today.
/BINARY

Controls whether output is a binary file.

Format

/BINARY
/NOBINARY

Keywords

None.

Description

When you use /BINARY, the output file you specify with the /OUTPUT qualifier contains image copies of the selected input records. If you specify /NOBINARY or omit the qualifier, the output file contains ASCII records.

By default, if you specify /BINARY and do not include the /OUTPUT qualifier, an output file named AUDIT.AUDIT$JOURNAL is created.

The /BINARY, /BRIEF, and /FULL qualifiers cannot be used in combination.

Example

$ ANALYZE/AUDIT /BINARY/SINCE=TODAY/OUTPUT=25OCT00.AUDIT -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example selects all audit records generated today and writes the records in binary format to 25OCT00.AUDIT.
/BRIEF

Controls whether a brief, single-line record format is used in ASCII displays.

Format

/BRIEF (default)

Keywords

None.

Description

By default, records are displayed in the brief format. You must specify /FULL to have the full contents of each selected audit event record displayed.

The /BINARY, /BRIEF, and /FULL qualifiers cannot be used in combination.

Example

$ ANALYZE/AUDIT /OUTPUT=AUDIT.LIS -
 $ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example produces an ASCII file in brief format by default. The report is written to the AUDIT.LIS file.
ANALYZE/AUDIT
/EVENT_TYPE

/EVENT_TYPE

Selects the classes of events to be extracted from the security log file. If you omit the qualifier or specify the ALL keyword, the utility includes all enabled event classes in the report.

Format

/EVENT_TYPE=(event-type[,...])

Keyword

event type[,...]

Specifies the classes of events used to select records. You can specify any of the following event types:

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NO]ACCESS</td>
<td>Access to an object, such as a file</td>
</tr>
<tr>
<td>[NO]ALL</td>
<td>All event types</td>
</tr>
<tr>
<td>[NO]AUDIT</td>
<td>Use of the SET AUDIT command</td>
</tr>
<tr>
<td>[NO]AUTHORIZATION</td>
<td>Change to the authorization database</td>
</tr>
<tr>
<td>(SYSUAF.DAT,RIGHTSLIST.DAT, NETPROXY.DAT, or NET$PROXY.DAT)</td>
<td></td>
</tr>
<tr>
<td>[NO]BREAKIN</td>
<td>Break-in detection</td>
</tr>
<tr>
<td>[NO]CONNECTION</td>
<td>Establishment of a network connection through the System Management utility (SYSMAN), DECwindows, or interprocess communication (IPC) software or DECnet Phase IV (VAX only)</td>
</tr>
<tr>
<td>[NO]CREATE</td>
<td>Creation of an object</td>
</tr>
<tr>
<td>[NO]DEACCESS</td>
<td>Completion of access to an object</td>
</tr>
<tr>
<td>[NO]DELETE</td>
<td>Deletion of an object</td>
</tr>
<tr>
<td>[NO]INSTALL</td>
<td>Modification of the known file list with the Install utility (INSTALL)</td>
</tr>
<tr>
<td>[NO]LOGFAIL</td>
<td>Unsuccessful login attempt</td>
</tr>
<tr>
<td>[NO]LOGIN</td>
<td>Successful login</td>
</tr>
<tr>
<td>[NO]LOGOUT</td>
<td>Successful logout</td>
</tr>
<tr>
<td>[NO]MOUNT</td>
<td>Execution of DCL commands MOUNT or DISMOUNT</td>
</tr>
<tr>
<td>[NO]NCP</td>
<td>Modification of the DECnet network configuration databases</td>
</tr>
<tr>
<td>[NO]NETPROXY</td>
<td>Modification of the network proxy authorization file (NETPROXY.DAT or NET$PROXY.DAT)</td>
</tr>
<tr>
<td>[NO]PRIVILEGE</td>
<td>Privilege auditing</td>
</tr>
<tr>
<td>[NO]PROCESS</td>
<td>Use of one or more of the process control system services: $CREPRC, $DELPRC, $SCHDWK, $CANWAK, $WAKE, $SUSPND, $RESUME, $GRANTID, $REVOKID, $GETJPI, $FORCEX, $SETPRI</td>
</tr>
</tbody>
</table>
[NO]RIGHTSDB Modification of the rights database
 (RIGHTSLIST.DAT)

[NO]SYSGEN Modification of system parameters through
 the System Generation utility (SYSGEN) or
 AUTOGEN

[NO]SYSUAF Modification of the system user authorization file
 (SYSUAF.DAT)

[NO]TIME Change in system or cluster time

Specifying the negated form of an event class (for example, NOLOGFAIL)
excludes the specified event class from the audit report.

Examples

1. $ ANALYZE/AUDIT(EVENT_TYPE=LOGFAIL -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL
 The command in this example extracts all records of unsuccessful login
 attempts, which match the LOGFAIL class, and compiles a brief report.

2. $ ANALYZE/AUDIT(EVENT_TYPE=(NOLOGIN,NOLOGOUT) -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL
 The command in this example builds a report in brief format of all audit
 records except those in the LOGIN and LOGOUT event classes.
/FULL

Controls whether a full format is used in ASCII displays. If you specify /NOFULL or omit the qualifier, records are displayed in the brief format.

Format

/FULL
/NOFULL (default)

Keywords

None.

Description

By default, records are displayed in the brief format. You must specify /FULL (or enter command mode by pressing Ctrl/C) to have the full contents of each selected record displayed.

The /BINARY, /BRIEF, and /FULL qualifiers cannot be used in combination.

Example

$ ANALYZE/AUDIT /FULL -
$_$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example displays the full contents of each selected record.
/IGNORE

Excludes records from the report that match the specified criteria.

Format

/IGNORE=criteria[,...]

Keyword

criteria[,...]
Specifies that all records are selected except those matching any of the specified exclusion criteria. See the /SELECT qualifier description for a list of the possible criteria to use with the /IGNORE qualifier.

Description

Use the /IGNORE qualifier to exclude specific groups of audit records from the audit report. When more than one keyword from the list of possible exclusion criteria are specified, records that meet any of these criteria are excluded by default.

Examples

1. $ ANALYZE/AUDIT/IGNORE=(SYSTEM=NAME=WIPER,USERNAME=MILANT) - $ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

 The command in this example excludes from the audit analysis report all records in the audit log file generated from node WIPER or from user MILANT (on any node).

2. $ ANALYZE/AUDIT/IGNORE=SUBTYPE=(DIALUP,REMOTE)

 The command in this example excludes dialup and remote processes.
/INTERACTIVE

Controls whether interactive command mode is enabled when ANALYZE/AUDIT is invoked.

Format

/INTERACTIVE (default)
/NOINTERACTIVE

Keywords

None.

Description

Interactive command mode, which is enabled by default, allows you to interrupt the audit report being displayed on the terminal and to enter commands either to modify the criteria used to select records for the report or to reposition the display.

To interrupt a full or brief audit report, press Ctrl/C and enter commands at the COMMAND> prompt. Once in command mode, the utility displays the current record in full format. Note that the record might not match the selection or exclusion criteria specified in the previous ANALYZE/AUDIT command.

The NEXT RECORD command is the default when you enter command mode. When ANALYZE/AUDIT reaches the end of the log file, it prompts for the next command. To verify the current log file name and your position within the file, press Ctrl/T.

Enter the CONTINUE command to leave interactive command mode and to resume display of the audit report. Enter the EXIT command to terminate the session. See the ANALYZE/AUDIT Commands section for a description of each interactive command.

To disable interactive mode, specify /NOINTERACTIVE. In this mode, the utility displays audit records one at a time and prompts you to advance the display by pressing the Return key.

Examples

1. $ ANALYZE/AUDIT/FULL -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

 The command in this example produces a full format display of the selected records. New records are displayed every 3 seconds. (See the /PAUSE qualifier description to find how to modify the duration of each record display.) Press Ctrl/C to interrupt the display and to enter interactive commands.

2. $ ANALYZE/AUDIT/FULL/NOINTERACTIVE -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

 The command in this example invokes the utility in noninteractive mode. It displays the first record selected and prompts you to press the Return key to display each additional selected record. Control returns to the DCL command level when all selected records have been displayed.
/OUTPUT

Specifies where to direct output from ANALYZE/AUDIT. If you omit the qualifier, the report is sent to SYS$OUTPUT.

Format

/OUTPUT[=file-spec]
/NOOUTPUT

Keyword

file-spec[....]
Specifies the name of the file that is to contain the selected records. If you omit the device and directory specification, the utility uses the current device and directory specification. If you omit the file name and type, the default file name AUDIT.LIS is used. If the output is binary (/BINARY) and you omit the /OUTPUT qualifier, the binary information is written to the file AUDIT.AUDIT$JOURNAL.

Example

$ ANALYZE/AUDIT /BINARY/OUTPUT=BIN122588.DAT -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example selects audit records from the system audit log file and writes them to the binary file BIN122588.DAT.
/PAUSE

Specifies the length of time each record is displayed in a full-format display.

Format

/PAUSE=seconds

Keyword

seconds

Specifies the duration (in seconds) of the full-screen display. A value of 0 specifies that the system should not pause before displaying the next record. By default, the utility displays a record for 3 seconds.

Description

The /PAUSE qualifier can be used only with full-format (/FULL) displays to specify the length of time each record is displayed. By default, each record is displayed for a period of 3 seconds. A value of 0 results in a continuous display of audit records.

Example

$ ANALYZE/AUDIT /FULL/PAUSE=1 -
__$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example displays a selected record in full format every second. You can interrupt the display and enter interactive commands at any time by pressing Ctrl/C. (See the ANALYZE/AUDIT Commands section for more information.)
/SELECT

Specifies the criteria for selecting records from the audit log file. Refer to the *HP OpenVMS Guide to System Security* for a description of how to generate audit records.

Format

/SELECT=criteria[,...]

/NOSELECT

Keyword

criteria[,...]

Specifies the criteria for selecting records. For each specified criterion, ANALYZE/AUDIT has two selection requirements:

- The packet corresponding to the criterion must be present in the record.
- One of the specified values must match the value in that packet.

For example, if you specify (USER=(PUTNAM,WU),SYSTEM=DBASE) as the criteria, ANALYZE/AUDIT selects an event record containing the SYSTEM=DBASE packet and a USER packet with either the PUTNAM value or the WU value.

If you omit the /SELECT qualifier, all event records selected through the /EVENT_TYPE qualifier are extracted from the audit log file and included in the report.

You can specify any of the following criteria:

ACCESS=(type,...)

Specifies the type of object access upon which the selection is based. Access is object-specific and includes the following types:

- Associate
- Control
- Create
- Delete
- Execute
- Lock
- Logical
- Manage
- Physical
- Read
- Submit
- Use
- Write

The *HP OpenVMS Guide to System Security* describes each of these types.

ACCOUNT=(name,...)

Specifies the account name upon which selection is based. You can use wildcards, such as an asterisk (*) or percent sign (%), to represent all or part of the name.

ALARM_NAME=(alarm-name,...)

Specifies the alarm journal name on which selection is based. You can use wildcards to represent all or part of the alarm name.

ASSOCIATION_NAME=(IPC-name,...)

Specifies the name of the interprocess communication (IPC) association.
ANALYZE/AUDIT
/SELECT

AUDIT_NAME=(journal-name,...)
Specifies the audit journal name on which selection is based. You can use
wildcards to represent all or part of the audit journal name.

COMMAND_LINE=(command,...)
Specifies the command line that the user entered.

CONNECTION_IDENTIFICATION=(IPC-name,...)
Specifies the name for the interprocess communication (IPC) connection.

DECNET_LINK_IDENTIFICATION=(value,...)
Specifies the number of the DECnet logical link.

DECNET_OBJECT_NAME=(object-name,...)
Specifies the name of the DECnet object.

DECNET_OBJECT_NUMBER=(value,...)
Specifies the number of the DECnet object.

DEFAULT_USERNAME=(username,...)
Specifies the default local user name for incoming network proxy requests.

DEVICE_NAME=(device-name,...)
Specifies the name of a device in audit records that have a DEVICE_NAME
packet. Note that this does not select the device name when it occurs in other
packet types, such as in a file name or in the TARGETDEVICE_NAME packet.

DIRECTORY_ENTRY=(directory,...)
Specifies the directory entry associated with file system operation.

DIRECTORY_NAME=(directory,...)
Specifies the name of the directory file.

DISMOUNT_FLAGS=(flag-name,...)
Identifies the names of the volume dismounting flags to be used in selecting
records. Specify one or more of the following flag names: Abort, Cluster,
Nounload, and Unit.

EVENT_CLUSTER_NAME=(event-flag-cluster-name,...)
Specifies the name of the event flag cluster.

FACILITY=(facility-name,...)
Specifies that only events audited by the named facility be selected. Provide a
name or a number but, in either case, the facility has to be defined through the
logical AUDSERV$FACILITY_NAME as a decimal number; the system uses the
number 0.

FIELD_NAME=(field-name,...)
Specifies the name of the field that was modified. ANALYZE/AUDIT uses the
FIELD_NAME criterion with packets containing the original data and the new
data (specified by the NEW_DATA criterion).

A FIELD_NAME is a character string that describes the content of the field.
A search for “NEW:” in a full audit report will display records that contain the
FIELD_NAME values that can be specified for this option. Examples of FIELD_-
NAME values are Account, Default Directory, Flags, and Password Date.

For sensitive information, see SENSITIVE_FIELD_NAME.
FILE_NAME=(file-name)
Specifies the name of the file that caused the audit. Describes audit records for
the specified file by using a slightly different display format than is provided by
the /OBJECT=NAME=object-name keyword.

FILE_IDENTIFICATION=(identification-value)
Specifies the value of the file's identification. To calculate the value, start with
the value listed for File ID when you use the FILE_NAME keyword. For example,
the display lists the File ID as:

File ID: (3024,5,0)

Use the following formula to calculate the value:

\((0 \times 65536) + 5 \times 65536) + 3024 = 330704\)

FLAGS=(flag-name,....)
Identifies the names of the audit event flags associated with the audited event.
These names should be used in selecting records. Specify one or more of the
following flags: ACL, Alarm, Audit, Flush, Foreign, Internal, and Mandatory.
(For a description of these flags, see Table F–3.)

HOLDER=keyword(,...)
Specifies the characteristics of the identifier holder to be used when selecting
event records. Choose from the following keywords:

NAME=username Specifies the name of the holder. You can
represent all or part of the name with a
wildcard.

OWNER=uic Specifies the user identification code (UIC)
of the holder.

IDENTIFIER=keyword(,...)
Identifies which attributes of an identifier should be used when selecting event
records. Choose from the following keywords:

ATTRIBUTES=name Specifies the name of the particular
attribute. Valid attribute names are
as follows: Dynamic, Holder_Hidden,
Name_Hidden, NoAccess, Resource, and
Subsystem.

NAME=identifier Specifies the original name of the identifier.
You can represent all or part of the name
with a wildcard.

NEW_NAME=identifier Specifies the new name of the identifier.
You can represent all or part of the name
with a wildcard.

NEW_ATTRIBUTES=name Specifies the name of the new attribute.
Valid attribute names are Dynamic,
Holder_Hidden, Name_Hidden, NoAccess,
Resource, and Subsystem.

VALUE=value Specifies the original value of the identifier.
NEW_VALUE=value Specifies the new value of the identifier.

IDENTIFIERS_MISSING=(identifier,...)
Specifies the identifiers missing in a failure to access an object.
ANALYZE/AUDIT
/SELECT

IDENTIFIERS_USED=(identifier,...)
Specifies the identifiers used to gain access to an object. An event record matches if the specified list is a subset of the identifiers recorded in the event record.

IMAGE_NAME=(image-name,...)
Identifies the name of the image to be used when selecting event records. You can represent all or part of the image name with a wildcard.

INSTALL=keyword(,...)
Specifies that installation event packets are to be considered when selecting event records. Choose from the following keywords:

FILE=filename
Specifies the name of the installed file. You can represent all or part of the name with a wildcard.
Note that on Alpha systems prior to Version 6.1 and on VAX systems prior to Version 6.0, audit log files record the installed file name within an object name packet. To select the installed file, you must use the expression OBJECT=(NAME=object-name) instead of FILE=filename.

FLAGS=flag-name
Specifies the names of the flags, which correspond to qualifiers of the Install utility (INSTALL); for example, OPEN corresponds to /OPEN.

PRIVILEGES=privilege-name
Specifies the names of the privileges with which the file was installed.

LNMPARENT_NAME=(table-name,...)
Specifies the name of the parent logical name table.

LNMTABLE_NAME=(table-name,...)
Specifies the name of the logical name table.

LOCAL=(characteristic,...)
Specifies the characteristics of the local (proxy) account to be used when selecting event records. The following characteristic is supported:

USERNAME=username
Specifies the name of the local account. You can represent all or part of the name with a wildcard.

LOGICAL_NAME=(logical-name,...)
Specifies the logical name of the mounted (or dismounted) volume upon which selection is based. You can represent all or part of the logical name with a wildcard.

MAILBOX_UNIT=(number,...)
Specifies the number of the mailbox unit.

MOUNT_FLAGS=(flag-name,...)
Specifies the names of the volume mounting flags upon which selection is based. Possible flag names include the following names:

CACHE=(NONE,WRITETHROUGH)
The names NOLABEL and FOREIGN each point to the FOREIGN flag. The reason for this is that the MOUNT/NOLABEL and MOUNT/FOREIGN commands each set the FOREIGN flag. Therefore, if you used MOUNT/NOLABEL, and you use ANALYZE/AUDIT/SELECT/MOUNT_FLAGS=NOLABEL, the audit record will display the FOREIGN flag.

NEW_DATA=(value,...)
Specifies the value to use after the event occurs. Use this criterion with the FIELD_NAME criterion.

For sensitive information, see SENSITIVE_NEW_DATA.

NEW_IMAGE_NAME=(image-name,...)
Specifies the name of the image to be activated in the newly created process, as supplied to the $CREPRC system service.
NEW_OWNER=(uic,...)
Specifies the user identification code (UIC) to be assigned to the created process, as supplied to the $CREPRC system service.

OBJECT=keyword(....)
Specifies which characteristics of an object should be used when selecting event records. Choose any of the following keywords:

CLASS=class-name Specifies the general object class as one of the following classes:
- Capability
- Device
- Event_cluster
- File
- Group_global_section
- Logical_name_table
- Queue
- Resource_domain
- Security_class
- System_global_section
- Volume
You must enter the full class name (for example, CLASS=logical_name_table) or use wildcard characters to supply a portion of the class name (for example, CLASS=log*).

NAME=object-name Specifies the name of the object. You can represent all or part of the name with a wildcard. If you do not use a wildcard, specify the full object name (for example, BOSTON$DUA0:[RWOODS]MEMO.MEM;1).

OWNER=value Specifies the UIC or general identifier of the object.

TYPE=type Specifies the general object class (type of object). The available classes are as follows:
- Capability
- Device
- File
- Group_global_section
- Logical_name_table
- Queue
- System_global_section
The CLASS keyword supersedes the TYPE keyword. However, TYPE is required to select audit records in files created prior to OpenVMS Alpha Version 6.1 and OpenVMS VAX Version 6.0.

PARENT=keyword(....)
Specifies which characteristics of the parent process are used when selecting event records generated by a subprocess. Choose from the following keywords:
IDENTIFICATION=value Specifies the process identifier (PID) of the parent process.

NAME=process-name Specifies the name of the parent process. You can represent all or part of the name with a wildcard.

OWNER=value Specifies the owner (identifier value) of the parent process.

USERNAME=username Specifies the user name of the parent process. You can represent all or part of the name with a wildcard.

PASSWORD=(password,...) Specifies the password used when the system detected a break-in attempt.

PRIVILEGES_MISSING=(privilege-name,...) Specifies privileges the caller needed to perform the operation successfully. Specify any of the system privileges, as described in the *HP OpenVMS Guide to System Security*.

PRIVILEGES_USED=(privilege-name,...) Specifies the privileges of the process to be used when selecting event records. Specify any of the system privileges, as described in the *HP OpenVMS Guide to System Security*. Also include the STATUS keyword in the selection criteria so the report can demonstrate whether the privilege was involved in a successful or an unsuccessful operation.

PROCESS=(characteristic,...) Specifies the characteristics of the process to be used when selecting event records. Choose from the following characteristics:

 IDENTIFICATION=value Specifies the PID of the process.

 NAME=process-name Specifies the name of the process. You can represent all or part of the name with a wildcard.

REMOTE=keyword(...) Specifies that some characteristic of the network request is to be used when selecting event records. Choose from the following keywords:

 ASSOCIATION_NAME=IPC-name Specifies the interprocess communication (IPC) association name.

 LINK_IDENTIFICATION=value Specifies the number of the DECnet logical link.
ANALYZE/AUDIT /SELECT

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFICATION=value</td>
<td>Specifies the DECnet node address.</td>
</tr>
<tr>
<td>NODENAME=node-name</td>
<td>Specifies the DECnet node name. You can represent all or part of the name with a wildcard.</td>
</tr>
<tr>
<td>USERNAME=USERNAME</td>
<td>Specifies the remote user name. You can represent all or part of the remote user name with a wildcard.</td>
</tr>
<tr>
<td>REQUEST_NUMBER=(value,...)</td>
<td>Specifies the request number associated with the DCL command REQUEST/REPLY.</td>
</tr>
<tr>
<td>SECTION_NAME=(global-section-name,...)</td>
<td>Specifies the name of the global section.</td>
</tr>
<tr>
<td>SENSITIVE_FIELD_NAME=(field-name,...)</td>
<td>Specifies the name of the field that was modified. ANALYZE/AUDIT uses the SENSITIVE_FIELD_NAME criterion, such as PASSWORD, with packets containing the original data and the new data (specified by the SENSITIVE_NEW_DATA criterion).</td>
</tr>
<tr>
<td>SENSITIVE_NEW_DATA=(value,...)</td>
<td>Specifies the value to use after the event occurs. Use this criterion with the SENSITIVE_FIELD_NAME criterion.</td>
</tr>
<tr>
<td>SNAPSHOT_BOOTFILE=(filename,...)</td>
<td>Specifies the name of the file containing a snapshot of the system.</td>
</tr>
<tr>
<td>SNAPSHOT_SAVE_FILENAME=(filename,...)</td>
<td>Specifies the name of the system snapshot file for a save operation that is in progress.</td>
</tr>
<tr>
<td>STATUS=type(,...)</td>
<td>Specifies the type of success status to be used when selecting event records. Choose from the following status types:</td>
</tr>
<tr>
<td>SUCCESSFUL</td>
<td>Specifies any success status.</td>
</tr>
<tr>
<td>FAILURE</td>
<td>Specifies any failure status.</td>
</tr>
<tr>
<td>CODE=(value,...)</td>
<td>Specifies a specific completion status.</td>
</tr>
<tr>
<td>SUBJECT_OWNER=(uic,...)</td>
<td>Specifies the owner (UIC) of the process causing the event.</td>
</tr>
<tr>
<td>SUBTYPE=(subtype,...)</td>
<td>Specifies that the criteria be limited to the value or values specified as a subtype.</td>
</tr>
</tbody>
</table>

Refer to Table F–2 for valid subtype values.
SYSTEM=keyword(,...)
Specifies the characteristics of the system to be used when selecting event records. Choose from the following keywords:

IDENTIFICATION=value Specifies the numeric identification of the system.
NAME=nodename Specifies the node name of the system.

SYSTEMSERVICE_NAME=(service-name,....)
Specifies the name of the system service associated with the event.

TARGET_DEVICE_NAME=(device-name,....)
Specifies the target device name used by a process control system service.

TARGET_PROCESS_IDENTIFICATION=(value,....)
Specifies the target process identifier (PID) used by a process control system service.

TARGET_PROCESS_NAME=(process-name,....)
Specifies the target process name used by a process control system service.

TARGET_PROCESS_OWNER=(uic,....)
Specifies the target process owner (UIC) used by a process control system service.

TARGET_USERNAME=(username,....)
 Specifies the target user name used by a process control system service.

TERMINAL=(device-name,....)
Specifies the name of the terminal to be used when selecting event records. You can represent all or part of the terminal name with a wildcard.

TRANSPORT_NAME=(transport-name,....)
Specifies the name of the transport: interprocess communication (IPC) or System Management Integrator (SMI), which handles requests from the System Management utility.

On VAX systems, it also can specify the DECnet transport name (NSP).

USERNAME=(username,....)
Specifies the user name to be used when selecting event records. You can represent all or part of the user name with a wildcard.

VOLUME_NAME=(volume-name,....)
Specifies the name of the mounted (or dismounted) volume to be used when selecting event records. You can represent all or part of the volume name with a wildcard.

VOLUME_SET_NAME=(volume-set-name,....)
Specifies the name of the mounted (or dismounted) volume set to be used when selecting event records. You can represent all or part of the volume set name with a wildcard.
Examples

1. $ ANALYZE/AUDIT /FULL/SELECT=USERNAME=JOHNSON -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example selects all records written to the security audit log file that were generated by user JOHNSON.

2. $ ANALYZE/AUDIT/FULL/SELECT=PRIVILEGES_USED=(SYSPRV,-
 _$ BYPASS) SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example selects all records written to the security audit log file that were generated by events through the use of either SYSPRV or BYPASS privilege.

3. $ ANALYZE/AUDIT/FULL/EVENT=SYSUAF/SELECT= -
 _$ IMAGE=("*:\[SYS*SYSEXE\]SETP0.EXE","*:\[SYS*SYSEXE\]LOGINOUT.EXE") -
 _$ SYS$MANAGER:SECURITY

The command in this example selects all records that involve password changes written to the security audit log file.

The following example is a command procedure that you could run at midnight to select all SYSUAF, AUDIT, and BREAKIN events (excluding password changes) and mail the result to the system manager:

$! DAILY_AUDIT.COM
$
$ mail_list = "SYSTEM"
$ audsrv$_noselect = %X003080A0
$ audit_events = "SYSUAF,BREAKIN,AUDIT"
$
$ analyze /audit /full -
 /event=('audit_events') -
 /output=audit.tmp -
 /ignore=image="*:\[SYS*SYSEXE\]SETP0.EXE","*:\[SYS*SYSEXE\]LOGINOUT.EXE" -
 sys$manager:SECURITY.AUDIT$JOURNAL
$
$ status = $status
$ if (status.and.%XFFFFFFF) .eq. audsrv$_noselect then goto no_records
$ if .not. status then goto error_analyze
$ if $file("audit.tmp","eof") .eq. 0 then goto no_records
$ mail /subject="'audit_events' listing from 'f$time()'" -
 audit.tmp 'mail_list'
$ goto new_log
$
$ no_records:
$ mail /subject="No interesting security events" nl: 'mail_list'
$
$ new_log:
$ if fsearch("audit.tmp") .nes. "" then delete audit.tmp;*
$ set audit /server=new_log
$ rename sys$manager:SECURITY.AUDIT$JOURNAL;-1 -
 sys$common:[sysmgr]‘f$element(0," ','f$edit(f$time(),"TRIM")’
$ exit
$
$ error_analyze:
$ mail/subj="Error analyzing auditing information" nl: 'mail_list'
$ exit
/SINCE

Indicates the utility must operate on records dated with the specified time or after the specified time.

Format

/SINCE[=time]
/NOSINCE

Keyword

time

Specifies the time used to select records. Records dated the same or later than the specified time are selected. You can specify an absolute time, a delta time, or a combination of the two. Observe the syntax rules for date and time described in the OpenVMS User's Manual.

If you specify /SINCE without the time, the utility uses the beginning of the current day.

Examples

1. $ ANALYZE/AUDIT /SINCE=25-NOV-2002 -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

 The command in this example selects records dated later than November 25, 2002.

2. $ ANALYZE/AUDIT /SINCE=25-NOV-2002:15:00 -
 _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

 The command in this example selects records written after 3 P.M. on November 25, 2002.
ANALYZE/AUDIT
/SUMMARY

/SUMMARY

Specifies that a summary of the selected records be produced after all records are processed.

You can use the /SUMMARY qualifier alone or in combination with the /BRIEF, the /BINARY, or the /FULL qualifier.

Format

/SUMMARY=presentation
/NOSUMMARY

Keyword

presentation

Specifies the presentation of the summary. If you do not specify a presentation criterion, ANALYZE/AUDIT summarizes the number of audits.

You can specify either of the following presentations:

COUNT

Lists the total number of audit messages for each class of security event that have been extracted from the security audit log file. This is the default.

PLOT

Displays a plot showing the class of the audit event, the time of day when the audit was generated, and the name of the system where the audit was generated.

Examples

1. $ ANALYZE/AUDIT/SUMMARY SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example generates a summary report of all records processed.

 Total records read: 9701 Records selected: 9701
 Record buffer size: 1031
 Successful logins: 542 Object creates: 1278
 Successful logouts: 531 Object accesses: 3761
 Login failures: 35 Object deaccesses: 2901
 Breakin attempts: 2 Object deletes: 301
 System UAF changes: 10 Volume (dis)mounts: 50
 Rights db changes: 8 System time changes: 0
 Netproxy changes: 5 Server messages: 0
 Audit changes: 7 Connections: 0
 Installed db changes: 50 Process control audits: 0
 Sysgen changes: 9 Privilege audits: 91
 NCP command lines: 120

2. $ ANALYZE/AUDIT/FULL/EVENT_TYPE=(BREAKIN,LOGFAIL)/SUMMARY - _$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

The command in this example generates a full format listing of all logged audit messages that match the break-in or log failure event classes. A summary report is included at the end of the listing.
3. $ ANALYZE/AUDIT/FULL/EVENT_TYPE=(BREAKIN,LOGFAIL)/SUMMARY=PLOT - $ SYS$MANAGER:SECURITY.AUDIT$JOURNAL

This command generates a histogram that you can display on a character-cell terminal.

<table>
<thead>
<tr>
<th>Date</th>
<th>Node: ATHENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0100</td>
</tr>
<tr>
<td>06−JAN</td>
<td>129</td>
</tr>
<tr>
<td>07−JAN</td>
<td>6</td>
</tr>
<tr>
<td>11−JAN</td>
<td>138</td>
</tr>
<tr>
<td>15−JAN</td>
<td>12</td>
</tr>
<tr>
<td>17−JAN</td>
<td>109</td>
</tr>
<tr>
<td>18−JAN</td>
<td>5</td>
</tr>
<tr>
<td>19−JAN</td>
<td>386</td>
</tr>
<tr>
<td>20−JAN</td>
<td>37</td>
</tr>
<tr>
<td>21−JAN</td>
<td></td>
</tr>
</tbody>
</table>

Audit Analysis Utility 4–27
4.4 ANALYZE/AUDIT Commands

This section describes the interactive commands available with the Audit Analysis utility (ANALYZE/AUDIT). The qualifiers for this section follow the standard rules of DCL grammar.

The utility runs interactively by default; you disable the feature with the /NOINTERACTIVE qualifier to the ANALYZE/AUDIT command. To enter interactive commands, press Ctrl/C at any time during the processing of a full or brief interactive display. At the COMMAND> prompt, you can enter any command listed in this section. Use the CONTINUE command to resume processing of the event records, or use the EXIT command to terminate the session.
CONTINUE

Resumes processing of event records.

Format

CONTINUE

Parameters

None.

Qualifiers

None.

Example

COMMAND> DISPLAY/SINCE=25-JAN-2002/SELECT=USERNAME=JOHNSON
COMMAND> CONTINUE

The first command in this example selects only event records generated by user JOHNSON after January 25, 2002. The second command in the example displays a report based on the new selection criteria.
DISPLAY

Changes the criteria used to select event records.

Format

DISPLAY

Parameters

None.

For a more complete description of any one of the following qualifiers, refer to the description of the qualifier in the preceding ANALYZE/AUDIT Qualifiers section.

Qualifiers

/BEFORE=time
Controls whether only those records dated earlier than the specified time are selected.

/BRIEF
Controls whether a brief (one-line-per-record) format is used in ASCII displays.

/EVENT_TYPE=event-type[,...]
Controls whether only those records matching the specified event type are selected.

/FULL
Controls whether a full format for each record is used in ASCII displays.

/IGNORE=criteria[,...]
Controls whether records matching the specified criteria are excluded. If you specify /IGNORE two or more times, the criteria are combined. To specify a new set of exclusion criteria, include the /REMOVE qualifier with the /IGNORE qualifier.

/PAUSE=seconds
For full-format displays (/FULL), specifies the length of time each record is displayed.

/REMOVE
Controls whether the criteria specified by the /IGNORE and the /SELECT qualifiers are no longer to be used to select event records to be displayed.

/SELECT=criteria[,...]
Controls whether only those records matching the specified criteria are selected. If you specify /SELECT two or more times, the criteria are combined. To specify a new set of selection criteria, include the /REMOVE qualifier with the /SELECT qualifier.

/SINCE[=time]
Controls whether only those records dated the same or later than the specified time are selected.
Examples

1. COMMAND> DISPLAY/EVENT_TYPE=sysuaf
 COMMAND> CONTINUE

 The first command in this example selects records that were generated as a result of a modification to the system user authorization file (SYSUAF). The second command displays the selected records.

2. COMMAND> DISPLAY/SELECT=USERNAME=crick
 COMMAND> CONTINUE
 .
 .
 .
 CRICK

 COMMAND> DISPLAY/SELECT=USERNAME=watson
 COMMAND> CONTINUE

 The first DISPLAY command in this example selects records that were generated by user CRICK. The second command displays the selected records. The next DISPLAY command selects records that were generated by user WATSON. The last command in the example displays all records generated by users CRICK and WATSON.
EXIT

Terminates the session.

Format

EXIT

Parameters

None.

Qualifiers

None.
HELP

Provides online help information for using ANALYZE/AUDIT commands.

Format

HELP [topic]

Parameter

topic
Specifies the command for which help information is to be displayed. If you omit the keyword, HELP displays a list of available help topics and prompts you for a particular keyword.

Qualifiers

None.

Example

COMMAND> HELP DISPLAY

The command in this example displays help information about the DISPLAY command.
LIST

Changes the criteria used to select event records. The LIST command is synonymous with the DISPLAY command.

Format

LIST

Parameters

None.

Qualifiers

See the description of the DISPLAY command.

Example

COMMAND> LIST/EVENT_TYPE(SYSUAF
COMMAND> CONTINUE

The first command in this example selects records that were generated as a result of a modification to the system user authorization file (SYSUAF). The second command displays the selected records.
NEXT FILE

Controls whether the current security audit log file is closed and the next log file opened. The command is useful when you supply a wildcard file specification to the ANALYZE/AUDIT command; for example *.AUDIT$JOURNAL. If there are no other audit log files to open, the audit analysis session terminates and control returns to DCL.

Format

NEXT FILE

Parameters

None.

Qualifiers

None.
NEXT RECORD

Controls whether the next audit record is displayed. The NEXT RECORD command is the default for interactive mode.

This command is synonymous with the POSITION command.

Format

NEXT RECORD

Parameters

None.

Qualifiers

None.
POSITION

Moves the full-format display forward or backward the specified number of event records.

Format

POSITION number

Parameter

number
For positive numbers, displays the record that is the specified number of records after the current record. For negative numbers, displays the record that is the specified number of records before the current record.

Qualifiers

None.

Examples

1. COMMAND> POSITION 100
 The command in this example moves the display forward 100 event records.

2. COMMAND> POSITION -100
 The command in this example moves the display back 100 event records.
SHOW

Displays information about the selection or exclusion criteria currently being used to select event records.

Format

SHOW option[,...]

Parameter

option[,...] Displays information about selection or exclusion criteria currently being used to select records. Specify one or more of the following options:

ALL Displays all criteria being used to select event records.

EXCLUSION_CRITERIA Displays the criteria being used to exclude event records.

SELECTION_CRITERIA Displays the criteria being used to select event records.

Qualifiers

None.

Example

COMMAND> SHOW SELECTION_CRITERIA

The command in this example displays the selection criteria currently in use to select records.
Authorize Utility
5.1 AUTHORIZE Description

The Authorize utility (AUTHORIZE) is a system management tool used to control access to the system and to allocate resources to users.

AUTHORIZE creates new records or modifies existing records in the following files:

- **System user authorization file (SYSUAF.DAT)**

 You can use AUTHORIZE to assign values to various fields within each SYSUAF record. The values you assign identify the user and the user’s work environment, and control use of system resources.

 You can redirect SYSUAF logical access by defining a logical in your local process logical table; for example:

  ```
  $ DEFINE/PROCESS/EXEC SYSUAF DISK$USER:[MYPROCESSTABLE]SYSUAF.DAT
  ```

 You can, if you like, define the SYSUAF logical in user mode.

 If you move the SYSUAF.DAT file, be sure the logical name SYSUAF is defined and points to an existing file. If AUTHORIZE is unable to locate the SYSUAF.DAT file, it displays the following error message:

  ```
  %UAF-E-NAOFIL, unable to open SYSUAF.DAT
  -RMS-E-FNF, file not found
  Do you want to create a new file?
  ```

 A response of YES results in creation of a new SYSUAF file containing a SYSTEM record and a DEFAULT record. These records are initialized with the same values set when the system was installed.

- **Network proxy authorization file**

 The default network proxy authorization file is NET$PROXY.DAT. However, AUTHORIZE maintains the file NETPROXY.DAT for compatibility.

 In a mixed-version cluster where systems are running OpenVMS Alpha or a version of OpenVMS VAX earlier than Version 6.1, you must make all proxy modifications on an OpenVMS VAX Version 6.1 or later system.

 You can redirect NETPROXY logical access by defining a logical in your local process logical table; for example:

  ```
  $ DEFINE/PROCESS/EXEC NETPROXY DISK$USER:[MYPROCESSTABLE]NETPROXY.DAT
  ```

- **Rights database file (RIGHTSLIST.DAT)**

 You can redirect RIGHTSLIST logical access by defining a logical in your local process logical table; for example:

  ```
  $ DEFINE/PROCESS/EXEC RIGHTSLIST DISK$USER:[MYPROCESSTABLE]RIGHTSLIST.DAT
  ```

These files store system authorization information. By default, they are owned by the system (UIC of [SYSTEM]) and are created with the following protection:

- **SYSUAF.DAT**

 S:RWED, O:RWED, G, W

- **NETPROXY.DAT**

 S:RWED, O:RWED, G, W

- **NET$PROXY.DAT**

 S, O, G, W

- **RIGHTSLIST.DAT**

 S:RWED, O:RWED, G, W

To use AUTHORIZE, you must have write access to all three of these files (you must have an account with the user identification code (UIC) of [SYSTEM] or the SYSPRV privilege).
Note that you must have read access to the RIGHTSLIST.DAT file (or sufficient privileges) to display the rights identifiers held by other users.

Because certain images (such as MAIL and SET) require access to the system user authorization file (UAF) and are normally installed with the SYSPRV privilege, ensure that you always grant system access to SYSUAF.DAT.

When you install a new system, the software distribution kit provides the following records in the system user authorization file in SYS$SYSTEM:

On VAX systems:
- DEFAULT
- FIELD
- SYSTEM
- SYSTEST
- SYSTEST_CLIG

On Alpha systems:
- DEFAULT
- SYSTEM

If the SYSUAF.DAT becomes corrupted or is accidentally deleted, you can use the template file SYSUAF.TEMPLATE in the SYS$SYSTEM directory to recreate the file, as follows:

$ SET DEFAULT SYS$SYSTEM
$ COPY SYSUAF.TEMPLATE SYSUAF.DAT

The file SYSUAF.TEMPLATE contains records that are identical to those defined when the system was installed.

To make an emergency backup for the system SYSUAF file, you can create a private copy of SYSUAF.DAT. To affect future logins, copy a private version of SYSUAF.DAT to the appropriate directory, as shown in the following example:

$ COPY MYSYSUAF.DAT SYS$COMMON:[SYSEXE]:SYSUAF.DAT-_$_$ /PROTECTION=(S:RWED,O:RWED,G,W)

5.2 AUTHORIZE Usage Summary

The Authorize utility (AUTHORIZE) is a system management tool that enables you to control access to the system and to allocate resources to users.

Format

RUN SYS$SYSTEM:AUTHORIZE

Parameters

None.

Description

To invoke AUTHORIZE, set your default device and directory to SYS$SYSTEM and enter RUN AUTHORIZE at the DCL command prompt.

At the UAF> prompt, you can enter any AUTHORIZE command described in the following section.

To exit from AUTHORIZE, enter the EXIT command at the UAF> prompt or press Ctrl/Z.
5.3 AUTHORIZE Commands

This section describes the AUTHORIZE commands and provides examples of their use. You can abbreviate any command, keyword, or qualifier as long as the abbreviation is not ambiguous. The asterisk (*) and the percent sign (%) can be used as wildcard characters to specify user names, node names, and UICs.

AUTHORIZE commands fall into the following four categories:

- Commands that allow you to manage user authorization records. By specifying appropriate qualifiers, you can use these commands to act upon individual fields of SYSUAF records. You can identify the user and the user’s work environment and control use of system resources.

- Commands that build and maintain the network proxy authorization file (NETPROXY.DAT or NET$PROXY.DAT).

- Commands that create and maintain the rights database (RIGHTSLIST.DAT).

- Commands that perform general utility functions or modify the system password.

The following table summarizes the AUTHORIZE commands according to these categories:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Adds a user record to the SYSUAF and corresponding identifiers to the rights database.</td>
</tr>
<tr>
<td>COPY</td>
<td>Creates a new SYSUAF record that duplicates an existing record.</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>Modifies the default SYSUAF record.</td>
</tr>
<tr>
<td>LIST</td>
<td>Writes reports for selected UAF records to a listing file, SYSUAF.LIS.</td>
</tr>
<tr>
<td>MODIFY</td>
<td>Changes values in a SYSUAF user record. Qualifiers not specified in the command remain unchanged.</td>
</tr>
<tr>
<td>REMOVE</td>
<td>Deletes a SYSUAF user record and corresponding identifiers in the rights database. The DEFAULT and SYSTEM records cannot be deleted.</td>
</tr>
<tr>
<td>RENAME</td>
<td>Changes the user name of the SYSUAF record (and, if specified, the corresponding identifier) while retaining the characteristics of the old record.</td>
</tr>
<tr>
<td>SHOW</td>
<td>Displays reports for selected SYSUAF records.</td>
</tr>
</tbody>
</table>
5.3 AUTHORIZE Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Network Proxies with NETPROXY.DAT or NET$PROXY.DAT</td>
<td></td>
</tr>
<tr>
<td>ADD/PROXY</td>
<td>Adds proxy access for the specified user.</td>
</tr>
<tr>
<td>CREATE/PROXY</td>
<td>Creates a network proxy authorization file.</td>
</tr>
<tr>
<td>LIST/PROXY</td>
<td>Creates a listing file of all proxy accounts and all remote users with proxy access to the accounts.</td>
</tr>
<tr>
<td>MODIFY/PROXY</td>
<td>Modifies proxy access for the specified user.</td>
</tr>
<tr>
<td>REMOVE/PROXY</td>
<td>Deletes proxy access for the specified user.</td>
</tr>
<tr>
<td>SHOW/PROXY</td>
<td>Displays proxy access allowed for the specified user.</td>
</tr>
<tr>
<td>Managing Identifiers with RIGHTSLIST.DAT</td>
<td></td>
</tr>
<tr>
<td>ADD/IDENTIFIER</td>
<td>Adds an identifier name to the rights database.</td>
</tr>
<tr>
<td>CREATE/RIGHTS</td>
<td>Creates a new rights database file.</td>
</tr>
<tr>
<td>GRANT/IDENTIFIER</td>
<td>Grants an identifier name to a UIC identifier.</td>
</tr>
<tr>
<td>LIST/IDENTIFIER</td>
<td>Creates a listing file of identifier names and values.</td>
</tr>
<tr>
<td>LIST/RIGHTS</td>
<td>Creates a listing file of all identifiers held by the specified user.</td>
</tr>
<tr>
<td>MODIFY/IDENTIFIER</td>
<td>Modifies the named identifier in the rights database.</td>
</tr>
<tr>
<td>REMOVE/IDENTIFIER</td>
<td>Removes an identifier from the rights database.</td>
</tr>
<tr>
<td>RENAME/IDENTIFIER</td>
<td>Renames an identifier in the rights database.</td>
</tr>
<tr>
<td>REVOKE/IDENTIFIER</td>
<td>Revokes an identifier name from a UIC identifier.</td>
</tr>
<tr>
<td>SHOW/IDENTIFIER</td>
<td>Displays identifier names and values on the current output device.</td>
</tr>
<tr>
<td>SHOW/RIGHTS</td>
<td>Displays on the current output device the names of all identifiers held by the specified user.</td>
</tr>
<tr>
<td>General Commands</td>
<td></td>
</tr>
<tr>
<td>EXIT</td>
<td>Returns the user to DCL command level.</td>
</tr>
<tr>
<td>HELP</td>
<td>Displays HELP text for AUTHORIZE commands.</td>
</tr>
<tr>
<td>MODIFY/SYSTEM_PASSWORD</td>
<td>Sets the system password (equivalent to the DCL command SET PASSWORD/SYSTEM).</td>
</tr>
</tbody>
</table>
ADD

Adds a user record to the SYSUAF and corresponding identifiers to the rights database.

Note

ADD/IDENTIFIER and ADD/PROXY are documented as separate commands.

Format

ADD newusername

Parameter

newusername
Specifies the name of the user record to be included in the SYSUAF. The newusername parameter is a string of 1 to 12 alphanumeric characters and can contain underscores. Although dollar signs are permitted, they are usually reserved for system names.

Avoid using fully numeric user names (for example, 89560312). A fully numeric user name cannot receive a corresponding identifier because fully numeric identifiers are not permitted.

Qualifiers

/ACCESS[(range[,...])] /NOACCESS=(range[,...])]
Specifies hours of access for all modes of access. The syntax for specifying the range is:

/[NO]ACCESS=[(PRIMARY), [n-m], [n], [...],(SECONDARY), [n-m], [n], [...])

Specify hours as integers from 0 to 23, inclusive. You can specify single hours (n) or ranges of hours (n-m). If the ending hour of a range is earlier than the starting hour, the range extends from the starting hour through midnight to the ending hour. The first set of hours after the keyword PRIMARY specifies hours on primary days; the second set of hours after the keyword SECONDARY specifies hours on secondary days. Note that hours are inclusive; that is, if you grant access during a given hour, access extends to the end of that hour.

By default, a user has full access every day. See the DCL command SET DAY in the HP OpenVMS DCL Dictionary for information about overriding the defaults for primary and secondary day types.

All the list elements are optional. Unless you specify hours for a day type, access is permitted for the entire day. By specifying an access time, you prevent access at all other times. Adding NO to the qualifier denies the user access to the system for the specified period of time. See the following examples.

/ACCESS Allows unrestricted access
/NOACCESS=SECONDARY Allows access on primary days only
ALLOWED

/ACCESS=(9-17) Allows access from 9 A.M. to 5:59 P.M. on all days
/NOACCESS=(PRIMARY, 9-17, SECONDARY, 18-8) Disallows access between 9 A.M. to 5:59 P.M. on primary days but allows access during these hours on secondary days

To specify access hours for specific types of access, see the /BATCH, /DIALUP, /INTERACTIVE, /LOCAL, /NETWORK, and /REMOTE qualifiers.

Refer to HP OpenVMS Guide to System Security for information about the effects of login class restrictions.

/ACCOUNT=account-name
Specifies the default name for the account (for example, a billing name or number). The name can be a string of 1 to 8 alphanumeric characters. By default, AUTHORIZE does not assign an account name.

/ADD_IDENTIFIER (default)
/NOADD_IDENTIFIER
Adds a user (user name and account name) to the rights database. The /NOADD_IDENTIFIER does not create a rights list identifier (user name and account name). The AUTHORIZE command ADD/IDENTIFIER is quite different: it adds a record to the AUTHORIZE database UAF file.

/ALGORITHM=keyword=type [=value]
Sets the password encryption algorithm for a user. The keyword VMS refers to the algorithm used in the operating system version that is running on your system, whereas a customer algorithm is one that is added through the $HASH_PASSWORD system service by a customer site, by a layered product, or by a third party. The customer algorithm is identified in $HASH_PASSWORD by an integer in the range of 128 to 255. It must correspond with the number used in the AUTHORIZE command MODIFY/ALGORITHM. By default, passwords are encrypted with the VMS algorithm for the current version of the operating system.

The following table lists password encryption algorithms:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTH</td>
<td>Set the algorithm for primary and secondary passwords.</td>
</tr>
<tr>
<td>CURRENT</td>
<td>Set the algorithm for the primary, secondary, both, or no passwords, depending on account status. CURRENT is the default value.</td>
</tr>
<tr>
<td>PRIMARY</td>
<td>Set the algorithm for the primary password only.</td>
</tr>
<tr>
<td>SECONDARY</td>
<td>Set the algorithm for the secondary password only.</td>
</tr>
</tbody>
</table>

The following example selects the VMS algorithm for Sontag’s primary password:
If you select a site-specific algorithm, you must give a value to identify the algorithm, as follows:

UAF> MODIFY SONTAG/ALGORITHM=PRIMARY=VMS

/ASTLM=value
Specifies the AST queue limit, which is the total number of asynchronous system trap (AST) operations and scheduled wake-up requests that the user can have queued at one time. The default is 40 on VAX systems and 250 on Alpha systems.

/BATCH=[(range[,...])]
Specifies the hours of access permitted for batch jobs. For a description of the range specification, see the /ACCESS qualifier. By default, a user can submit batch jobs any time.

/BIOLM=value
Specifies a buffered I/O count limit for the BIOLM field of the UAF record. The buffered I/O count limit is the maximum number of buffered I/O operations, such as terminal I/O, that can be outstanding at one time. The default is 40 on VAX systems and 150 on Alpha systems.

/BYTLTLM=value
Specifies the buffered I/O byte limit for the BYTLM field of the UAF record. The buffered I/O byte limit is the maximum number of bytes of nonpaged system dynamic memory that a user’s job can consume at one time. Nonpaged dynamic memory is used for operations such as I/O buffering, mailboxes, and file-access windows. The default is 32768 on VAX systems and 64000 on Alpha systems.

/CLI=cli-name
Specifies the name of the default command language interpreter (CLI) for the CLI field of the UAF record. The cli-name is a string of 1 to 31 alphanumeric characters and should be DCL, which is the default. This setting is ignored for network jobs.

/CLITABLES=filespec
Specifies user-defined CLI tables for the account. The filespec can contain 1 to 31 characters. The default is SYS$LIBRARY:DCLTABLES. Note that this setting is ignored for network jobs to guarantee that the system-supplied command procedures used to implement network objects function properly.

/CPUTIME=time
Specifies the maximum process CPU time for the CPU field of the UAF record. The maximum process CPU time is the maximum amount of CPU time a user’s process can take per session. You must specify a delta time value. For a discussion of delta time values, refer to the OpenVMS User’s Manual. The default is 0, which means an infinite amount of time.

/DEFPRIVILEGES=[(NO]privname[,...])
Specifies default privileges for the user; that is, those enabled at login time. A NO prefix removes a privilege from the user. By specifying the keyword [NO]ALL with the /DEFPRIVILEGES qualifier, you can disable or enable all user privileges. The default privileges are TMPMBX and NETMBX. Privname is the name of the privilege.
AUTHORIZE
ADD

/DEVICE=device-name
Specifies the name of the user’s default device at login. The device-name is a string of 1 to 31 alphanumeric characters. If you omit the colon from the device-name value, AUTHORIZE appends a colon. The default device is SYS$SYSDISK.

If you specify a logical name as the device-name (for example, DISK1: for DUA1:), you must make an entry for the logical name in the LNM$SYSTEM_TABLE in executive mode by using the DCL command DEFINE/SYSTEM/EXEC.

/DIALUP=[(range[,...])]
Specifies hours of access permitted for dialup logins. For a description of the range specification, see the /ACCESS qualifier. The default is full access.

/DIOLM=value
Specifies the direct I/O count limit for the DIOLM field of the UAF record. The direct I/O count limit is the maximum number of direct I/O operations (usually disk) that can be outstanding at one time. The default is 40 on VAX systems and 150 on Alpha systems.

/DIRECTORY=directory-name
Specifies the default directory name for the DIRECTORY field of the UAF record. The directory-name can be 1 to 39 alphanumeric characters. If you do not enclose the directory name in brackets, AUTHORIZE adds the brackets for you. The default directory name is [USER].

/ENQLM=value
Specifies the lock queue limit for the ENQLM field of the UAF record. The lock queue limit is the maximum number of locks that can be queued by the user at one time. The default is 200 on VAX systems and 2000 on Alpha systems.

/EXPIRATION=time (default)
/NOEXPIRATION
Specifies the expiration date and time of the account. The /NOEXPIRATION qualifier removes the expiration date on the account. If you do not specify an expiration time when you add a new account, AUTHORIZE copies the expiration time from the DEFAULT account. (The expiration time on the DEFAULT account is "none" by default.)

/FILLM=value
Specifies the open file limit for the FILLM field of the UAF record. The open file limit is the maximum number of files that can be open at one time, including active network logical links. The default is 300 on VAX systems and 100 on Alpha systems.

/FLAGS=(NO)option[,...])
Specifies login flags for the user. The prefix NO clears the flag. The options are as follows:

AUDIT Enables or disables mandatory security auditing for a specific user. By default, the system does not audit the activities of specific users (NOAUDIT).
AUTOLOGIN Restricts the user to the automatic login mechanism when logging in to an account. When set, the flag disables login by any terminal that requires entry of a user name and password. The default is to require a user name and password (NOAUTOLOGIN).

CAPTIVE Prevents the user from changing any defaults at login, for example, /CLI or /LGICMD. It prevents the user from escaping the captive login command procedure specified by the /LGICMD qualifier and gaining access to the DCL command level. Refer to “Guidelines for Captive Command Procedures” in the HP OpenVMS Guide to System Security. The CAPTIVE flag also establishes an environment where Ctrl/Y interrupts are initially turned off; however, command procedures can still turn on Ctrl/Y interrupts with the DCL command SET CONTROL=Y. By default, an account is not captive (NOCAPTIVE).

DEFCLI Restricts the user to the default command interpreter by prohibiting the use of the /CLI qualifier at login. By default, a user can choose a CLI (NODEFCLI).

DISCTLY Establishes an environment where Ctrl/Y interrupts are initially turned off and are invalid until a SET CONTROL=Y is encountered. This could happen in SYLOGIN.COM or in a procedure called by SYLOGIN.COM. Once a SET CONTROL=Y is executed (which requires no privilege), a user can enter a Ctrl/Y and reach the DCL prompt ($). If the intent of DISCTLY is to force execution of the login command files, then SYLOGIN.COM should issue the DCL command SET CONTROL=Y to turn on Ctrl/Y interrupts before exiting. By default, Ctrl/Y is enabled (NODISCTLY).

DISFORCE_PWD_CHANGE Removes the requirement that a user must change an expired password at login. By default, a person can use an expired password only once (NODISFORCE_PWD_CHANGE) and then is forced to change the password after logging in. If the user does not select a new password, the user is locked out of the system.

To use this feature, set a password expiration date with the /PWDLIFETIME qualifier.

DISIMAGE Prevents the user from executing RUN and foreign commands. By default, a user can execute RUN and foreign commands (NODISIMAGE).

DISMAIL Disables mail delivery to the user. By default, mail delivery is enabled (NODISMAIL).

DISNEWMAIL Suppresses announcements of new mail at login. By default, the system announces new mail (NODISNEWMAIL).

DISPWDDIC Disables automatic screening of new passwords against a system dictionary. By default, passwords are automatically screened (NODISPWDDIC).
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPWDHIS</td>
<td>Disables automatic checking of new passwords against a list of the user's old passwords. By default, the system screens new passwords (NODISPWDHIS).</td>
</tr>
<tr>
<td>DISPWDSYNCH</td>
<td>Suppresses synchronization of the external password for this account. See bit 9 in the SECURITY_POLICY system parameter for systemwide password synchronization control.</td>
</tr>
<tr>
<td>DISRECONNECT</td>
<td>Disables automatic reconnection to an existing process when a terminal connection has been interrupted. By default, automatic reconnection is enabled (NODISRECONNECT).</td>
</tr>
<tr>
<td>DISREPORT</td>
<td>Suppresses reports of the last login time, login failures, and other security reports. By default, login information is displayed (NODISREPORT).</td>
</tr>
<tr>
<td>DISUSER</td>
<td>Disables the account so the user cannot log in. For example, the DEFAULT account is disabled. By default, an account is enabled (NODISUSER).</td>
</tr>
<tr>
<td>DISWELCOME</td>
<td>Suppresses the welcome message (an informational message displayed during a local login). This message usually indicates the version number of the operating system that is running and the name of the node on which the user is logged in. By default, a system login message appears (NODISWELCOME).</td>
</tr>
<tr>
<td>EXTAUTH</td>
<td>Considers user to be authenticated by an external user name and password, not by the SYSUAF user name and password. (The system still uses the SYSUAF record to check a user’s login restrictions and quotas and to create the user’s process profile.)</td>
</tr>
<tr>
<td>GENPWD</td>
<td>Restricts the user to generated passwords. By default, users choose their own passwords (NOGENPWD).</td>
</tr>
<tr>
<td>LOCKPWD</td>
<td>Prevents the user from changing the password for the account. By default, users can change their passwords (NOLOCKPWD).</td>
</tr>
<tr>
<td>PWD_EXPIRED</td>
<td>Marks a password as expired. The user cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user's password expires. A system manager can clear this flag. By default, passwords are not expired after login (NOPWD_EXPIRED).</td>
</tr>
<tr>
<td>PWD2_EXPIRED</td>
<td>Marks a secondary password as expired. Users cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user's password expires. A system manager can clear this flag. By default, passwords are not set to expire after login (NOPWD2_EXPIRED).</td>
</tr>
</tbody>
</table>
PWDMIX Enables case-sensitive and extended-character passwords. After PWDMIX is specified, you can then use mixed-case and extended characters in passwords. Be aware that before the PWDMIX flag is enabled, the system stores passwords in all upper-case. Therefore, until you change passwords, you must enter your pre-PWDMIX passwords in upper-case.

To change the password after PWDMIX is enabled:

- You (the user) can use the DCL command SET PASSWORD, specifying the new mixed-case password (omitting quotation marks).
- You (the system manager) can use the AUTHORIZE command MODIFY/PASSWORD, and enclose the user’s new mixed-case password in quotation marks " ".

RESTRICTED Prevents the user from changing any defaults at login (for example, by specifying /LGICMD) and prohibits user specification of a CLI with the /CLI qualifier. The RESTRICTED flag establishes an environment where Ctrl/Y interrupts are initially turned off; however, command procedures can still turn on Ctrl/Y interrupts with the DCL command SET CONTROL=Y. Typically, this flag is used to prevent an applications user from having unrestricted access to the CLI. By default, a user can change defaults (NORESTRICTED).

VMSAUTH Allows account to use standard (SYSUAF) authentication when the EXTAUTH flag would otherwise require external authentication. This depends on the application. An application specifies the VMS domain of interpretation when calling SYSSACM to request standard VMS authentication for a user account that normally uses external authentication.

/GENERATE_PASSWORD[=keyword]
/NOGENERATE_PASSWORD (default)
Invokes the password generator to create user passwords. Generated passwords can consist of 1 to 10 characters. Specify one of the following keywords:

- BOTH Generate primary and secondary passwords.
- CURRENT Do whatever the DEFAULT account does (for example, generate primary, secondary, both, or no passwords). This is the default keyword.
- PRIMARY Generate primary password only.
- SECONDARY Generate secondary password only.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, users are forced to change their passwords (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.
/INTERACTIVE[=(range[,...])]
/NOINTERACTIVE
Specifies the hours of access for interactive logins. For a description of the
range specification, see the /ACCESS qualifier. By default, there are no access
restrictions on interactive logins.

/JTQUOTA=value
Specifies the initial byte quota with which the jobwide logical name table is to
be created. By default, the value is 4096 on VAX systems and 4096 on Alpha
systems.

/LGICMD=filespec
Specifies the name of the default login command file. The file name defaults to
the device specified for /DEVICE, the directory specified for /DIRECTORY, a file
name of LOGIN, and a file type of .COM. If you select the defaults for all these
values, the file name is SYS$SYSTEM:[USER]LOGIN.COM.

/LOCAL[=(range[,...])]
Specifies hours of access for interactive logins from local terminals. For a
description of the range specification, see the /ACCESS qualifier. By default,
there are no access restrictions on local logins.

/MAXACCTJOBS=value
Specifies the maximum number of batch, interactive, and detached processes that
can be active at one time for all users of the same account. By default, a user has
a maximum of 0, which represents an unlimited number.

/MAXDETACH=value
Specifies the maximum number of detached processes with the cited user name
that can be active at one time. To prevent the user from creating detached
processes, specify the keyword NONE. By default, a user has a value of 0, which
represents an unlimited number.

/MAXJOBS=value
Specifies the maximum number of processes (interactive, batch, detached, and
network) with the cited user name that can be active simultaneously. The first
four network jobs are not counted. By default, a user has a maximum value of 0,
which represents an unlimited number.

/NETWORK[=(range[,...])]
Specifies hours of access for network batch jobs. For a description of how to
specify the range, see the /ACCESS qualifier. By default, network logins have no
access restrictions.

/OWNER=owner-name
Specifies the name of the owner of the account. You can use this name for billing
purposes or similar applications. The owner name is 1 to 31 characters. No
default owner name exists.

/PASSWORD=(password1[,password2])
/NOPASSWORD
Specifies up to two passwords for login. Passwords can be from 0 to 32
alphabetic characters in length. The dollar sign ($) and underscore (_)
are also permitted.
Uppercase and lowercase characters are equivalent. All lowercase characters are converted to uppercase before the password is encrypted. Avoid using the word password as the actual password.

Use the /PASSWORD qualifier as follows:

- To set only the first password and clear the second, specify /PASSWORD=password.
- To set both the first and second password, specify /PASSWORD=(password1, password2).
- To change the first password without affecting the second, specify /PASSWORD=(password, "").
- To change the second password without affecting the first, specify /PASSWORD=("", password).
- To set both passwords to null, specify /NOPASSWORD.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, the user is forced to change the password (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.

By default, the ADD command assigns the password USER. When you create a new UAF record with the COPY or RENAME command, you must specify a password. Avoid using the word password as the actual password.

/PBYTLM
This flag is reserved for HP.

/PGFLQUOTA=value
Specifies the paging file limit. This is the maximum number of pages that the person's process can use in the system paging file. By default, the value is 32768 pages on VAX systems and 50000 pagelets on Alpha systems.

If decompressing libraries, make sure to set PGFLQUOTA to twice the size of the library.

/PRCLM=value
Specifies the subprocess creation limit. This is the maximum number of subprocesses that can exist at one time for the specified user's process. By default, the value is 2 on VAX systems and 8 on Alpha systems.

/PRIMEDAYS=(NO)day[,...]
Defines the primary and secondary days of the week for logging in. Specify the days as a list separated by commas, and enclose the list in parentheses. To specify a secondary day, prefix the day with NO (for example, NOFRIDAY). To specify a primary day, omit the NO prefix.

By default, primary days are Monday through Friday and secondary days are Saturday and Sunday. If you omit a day from the list, AUTHORIZE uses the default value. (For example, if you omit Monday from the list, AUTHORIZE defines Monday as a primary day.)

Use the primary and secondary day definitions in conjunction with such qualifiers as /ACCESS, /INTERACTIVE, and /BATCH.
/PRIORITY=value
Specifies the default base priority. The value is an integer in the range of 0 to 31 on VAX systems and 0 to 63 on Alpha systems. By default, the value is set to 4 for timesharing users.

/PRIVILEGES=([NO]privname[,...])
Specifies which privileges the user is authorized to hold, although these privileges are not necessarily enabled at login. (The /DEFPRIVILEGES qualifier determines which ones are enabled.) A NO prefix removes the privilege from the user. The keyword NOALL disables all user privileges. Many privileges have varying degrees of power and potential system impact (see the HP OpenVMS Guide to System Security for a detailed discussion). By default, a user holds TMPMBX and NETMBX privileges. Privname is the name of the privilege.

/PWDEXPIRED (default)
/NOPWDEXPIRED
Specifies the password is valid for only one login. A user must change a password immediately after login or be locked out of the system. The system warns users of password expiration. A user can either specify a new password, with the DCL command SET PASSWORD, or wait until expiration and be forced to change. By default, a user must change a password when first logging in to an account. The default is applied to the account only when the password is being modified.

/PWDLIFETIME=time (default)
/NOPWDLIFETIME
Specifies the length of time a password is valid. Specify a delta time value in the form [dddd-] [hh:mm:ss.cc]. For example, for a lifetime of 120 days, 0 hours, and 0 seconds, specify /PWDLIFETIME="120-". For a lifetime of 120 days 12 hours, 30 minutes and 30 seconds, specify /PWDLIFETIME="120-12:30:30". If a period longer than the specified time elapses before the user logs in, the system displays a warning message. The password is marked as expired. To prevent a password from expiring, specify the time as NONE. By default, a password expires in 90 days.

/PWDMINIMUM=value
Specifies the minimum password length in characters. Note that this value is enforced only by the DCL command SET PASSWORD. It does not prevent you from entering a password shorter than the minimum length when you use AUTHORIZE to create or modify an account. By default, a password must have at least 6 characters. The value specified by the /PWDMINIMUM qualifier conflicts with the value used by the /GENERATE_PASSWORD qualifier or the DCL command SET PASSWORD/GENERATE, the operating system chooses the lesser value. The maximum value for generated passwords is 10.

/QUEPRIO=value
Reserved for future use.

/REMOTE[=(range[,...])]}
Specifies hours during which access is permitted for interactive logins from network remote terminals (with the DCL command SET HOST). For a description of the range specification, see the /ACCESS qualifier. By default, remote logins have no access restrictions.
/SHRFILLM=value
Specifies the maximum number of shared files that the user can have open at one time. By default, the system assigns a value of 0, which represents an infinite number.

/TQELM
Specifies the total number of entries in the timer queue plus the number of temporary common event flag clusters that the user can have at one time. By default, a user can have 10.

/UIC=value
Specifies the user identification code (UIC). The UIC value is a group number in the range from 1 to 37776 (octal) and a member number in the range from 0 to 177776 (octal), which are separated by a comma and enclosed in brackets. HP reserves group 1 and groups 300–377 for its own use.

Each user must have a unique UIC. By default, the UIC value is [200,200].

/WSDEFAULT=value
Specifies the default working set limit. This represents the initial limit to the number of physical pages the process can use. (The user can alter the default quantity up to WSQUOTA with the DCL command SET WORKING_SET.) By default, a user has 256 pages on VAX systems and 2000 pagelets on Alpha systems.

The value cannot be greater than WSMAX. This quota value replaces smaller values of PQL_MWSDEFAULT.

/WSEXTENT=value
Specifies the working set maximum. This represents the maximum amount of physical memory allowed to the process. The system provides memory to a process beyond its working set quota only when it has excess free pages. The additional memory is recalled by the system if needed.

The value is an integer equal to or greater than WSQUOTA. By default, the value is 1024 pages on VAX systems and 16384 pagelets on Alpha systems. The value cannot be greater than WSMAX. This quota value replaces smaller values of PQL_MWSEXTENT.

/WSQUOTA=value
Specifies the working set quota. This is the maximum amount of physical memory a user process can lock into its working set. It also represents the maximum amount of swap space that the system reserves for this process and the maximum amount of physical memory that the system allows the process to consume if the systemwide memory demand is significant.

The value cannot be greater than the value of WSMAX and cannot exceed 64K pages. This quota value replaces smaller values of PQL_MWSQUOTA.

Description
When you do not specify a value for a field, AUTHORIZE uses values from the DEFAULT record (excluding the default password, which is always USER). The DEFAULT account serves as a template for creating user records in the system user authorization file.
On Alpha systems, the DEFAULT account is as follows:

Username: DEFAULT
Account:
Owner:
CLI: DCL
Tables: DCLTABLES
Default: SYSSYSDEVICE:[USER]
LGICMD: LOGIN
Flags: DisUser
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiry: (none)
Pwdminimum: 6
Login Fails: 0
Pwddelimtime: 90 00:00
Pwddelaychange: (pre-expired)
Last Login: (none) (interactive), (none) (non-interactive)
Maxjobs: 0 Fillm: 100 Bytlm: 64000
Maxacctjobs: 0 Shrfillm: 0 Ptytlm: 0
Maxdetach: 0 BIOLm: 150 JTquota: 4096
Prclm: 8 DIOlm: 150 WSdef: 2000
Prio: 4 ASTlm: 250 WSSquo: 4000
Queprio: 0 TQElm: 10 WSExtent: 16384
CPU: (none) Enqlm: 2000 Pgflquo: 50000
Authorized Privileges:
TMPMBX NETMBX
Default Privileges:
TMPMBX NETMBX

On VAX systems, the DEFAULT account is as follows:

Username: DEFAULT
Account:
Owner:
CLI: DCL
Tables: DCLTABLES
Default: SYSSYSDEVICE:[USER]
LGICMD: LOGIN
Flags: DisUser
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiry: (none)
Pwdminimum: 6
Login Fails: 0
Pwddelimtime: 90 00:00
Pwddelaychange: (pre-expired)
Last Login: (none) (interactive), (none) (non-interactive)
Maxjobs: 0 Fillm: 300 Bytlm: 32768
Maxacctjobs: 0 Shrfillm: 0 Ptytlm: 0
Maxdetach: 0 BIOLm: 40 JTquota: 4096
Prclm: 2 DIOlm: 40 WSdef: 256
Prio: 4 ASTlm: 40 WSSquo: 512
Queprio: 0 TQElm: 10 WSExtent: 1024
CPU: (none) Enqlm: 2000 Pgflquo: 32768
Authorized Privileges:
TMPMBX NETMBX
Default Privileges:
TMPMBX NETMBX

When you add a new account, specify values for fields that you want to be different. Typically, changing the default values for limits priority, privileges, or the command interpreter is not necessary. As a result, you enter only the password, UIC, directory, owner, account, and device.

Note

Limits are also set by system parameters. To be effective, the limits you set through AUTHORIZE must be within the minimum limits determined...
by the corresponding system parameters (particularly those beginning with the PQL prefix).

When you add a record to the UAF, create a directory for the new user. Specify the device name, directory name, and UIC in the UAF record. The following DCL command creates a directory for user ROBIN:

$ CREATE/DIRECTORY SYS$USER:[ROBIN] /OWNER_UIC=[ROBIN]

Note

When you add a new record to the UAF and a rights database exists, an identifier with the user name is added to the rights database automatically (unless you specify the /NOADD_IDENTIFIER qualifier). Similarly, when you specify an account name (other than the user name) that does not yet have an identifier, AUTHORIZE creates a group identifier in the rights database.

Examples

1. UAF> ADD ROBIN /PASSWORD=SP0152/UIC=[014,006] -
 /DEVICE=SYS$USER/DIRECTORY=[ROBIN]/OWNER="JOSEPH ROBIN" /ACCOUNT=INV
 %UAF-I-ADDMSG, user record successfully added
 %UAF-I-RDBADDMGU, identifier ROBIN value: [000014,000006] added to
 RIGHTSLIST.DAT
 %UAF-I-RDBADDMGU, identifier INV value: [000014,177777] added to
 RIGHTSLIST.DAT

 This example illustrates the typical ADD command and qualifiers. The resulting record from this command appears in the description of the SHOW command.

2. UAF> ADD WELCH /PASSWORD=SP0158/UIC=[014,051] -
 /DEVICE=SYS$USER/DIRECTORY=[WELCH]/OWNER="ROB WELCH"/FLAGS=DISUSER -
 /ACCOUNT=INV/LOGCMD=SECUREIN
 %UAF-I-ADDMSG, user record successfully added
 %UAF-I-RDBADDMGU, identifier WELCH value: [000014,000051] added to
 RIGHTSLIST.DAT
 UAF> MODIFY WELCH/FLAGS=(RESTRICTED,DISNEWMAIL,DISWELCOME, -
 NODISUSER,EXTAUTH)/NODIALUP=SECONDARY/NONETWORK=PRIMARY -
 /CLITABLES=DCLTABLES/NOACCESS=(PRIMARY, 9-16, SECONDARY, 18-8)
 %UAF-I-MDFYMSG, user records updated

 The commands in this example add a record for a restricted account. Because of the number of qualifiers required, a MODIFY command is used in conjunction with the ADD command. This helps to minimize the possibility of typing errors.

 In the ADD command line, setting the DISUSER flag prevents the user from logging in until all the account parameters are set up. In the MODIFY command line, the DISUSER flag is disabled (by specifying NODISUSER) to allow access to the account. The EXTAUTH flag causes the system to consider the user as authenticated by an external user name and password, not by the SYSUAF user name and password.
The record that results from these commands and an explanation of the restrictions the record imposes appear in the description of the SHOW command.
AUTHORIZE
ADD/IDENTIFIER

ADD/IDENTIFIER

Adds only an identifier to the rights database. It does not add a user account.

Format

ADD/IDENTIFIER [id-name]

Parameter

id-name
Specifies the name of the identifier to be added to the rights database. If you omit the name, you must specify the /USER qualifier. The identifier name is a string of 1 to 31 alphanumeric characters. The name can contain underscores and dollar signs. It must contain at least one nonnumeric character.

Qualifiers

/ATTRIBUTES=(keyword[,...])
Specifies attributes to be associated with the new identifier. The following keywords are valid:

DYNAMIC Allows unprivileged holders of the identifier to remove and to restore the identifier from the process rights list by using the DCL command SET RIGHTS_LIST.

HOLDER_HIDDEN Prevents people from getting a list of users who hold an identifier, unless they own the identifier themselves.

NAME_HIDDEN Allows holders of an identifier to have it translated, either from binary to ASCII or from ASCII to binary, but prevents unauthorized users from translating the identifier.

NOACCESS Makes any access rights of the identifier null and void. If a user is granted an identifier with the No Access attribute, that identifier has no effect on the user’s access rights to objects. This attribute is a modifier for an identifier with the Resource or Subsystem attribute.

RESOURCE Allows holders of an identifier to charge disk space to the identifier. Used only for file objects.

SUBSYSTEM Allows holders of the identifier to create and maintain protected subsystems by assigning the Subsystem ACE to the application images in the subsystem. Used only for file objects.

By default, none of these attributes is associated with the new identifier.

/USER=user-spec
Scans the UAF record for the specified user and creates the corresponding identifier. Specify user-spec by user name or UIC. You can use the asterisk wildcard to specify multiple user names or UICs. Full use of the asterisk and percent wildcards is permitted for user names; UICs must be in the form [*,*], [n,*], [*], or [n,n]. A wildcard user name specification (*) creates identifiers alphabetically by user name; a wildcard UIC specification ([*,*]) creates them in numerical order by UIC.
/VALUE=value-specifier
Specifies the value to be attached to the identifier. The following formats are valid for the value-specifier:

IDENTIFIER:n An integer value in the range of 65,536 to 268,435,455. You can also specify the value in hexadecimal (precede the value with %X) or octal (precede the value with %O). The system displays this type of identifier in hexadecimal. To differentiate general identifiers from UIC identifiers, the system adds %X80000000 to the value you specify.

GID:n GID is the POSIX group identifier. It is an integer value in the range 0 to 16,777,215 (%XFFFFFF). The system will add %XA400.0000 to the value you specify and then enter this new value into the system RIGHTSLIST as an identifier.

UIC:uic A UIC value in standard UIC format consists of a member name and, optionally, a group name enclosed in brackets. For example, [360,031]. In numeric UICs, the group number is an octal number in the range of 1 to 37776; the member number is an octal number in the range of 0 to 17776. You can omit leading zeros when you are specifying group and member numbers.

Regardless of the UIC format you use, the system translates a UIC to a 32-bit numeric value. Alphanumeric UICs are not allowed.

Examples

1. UAF> ADD/IDENTIFIER/VALUE=UIC:[300,011] INVENTORY
 %UAF-I-RDBADDMSGU, identifier INVENTORY value: [000300,000011] added to RIGHTSLIST.DAT

 The command in this example adds an identifier named INVENTORY to the rights database. By default, the identifier is not marked as a resource.

2. UAF> ADD/IDENTIFIER/ATTRIBUTES=(RESOURCE) -
 /VALUE=IDENTIFIER:%X80011 PAYROLL
 %UAF-I-RDBADDMSGU, identifier PAYROLL value: %X80080011 added to RIGHTSLIST.DAT

 This command adds the identifier PAYROLL and marks it as a resource. To differentiate identifiers with integer values from identifiers with UIC values, %X80000000 is added to the specified code.
ADD/PROXY

Adds an entry to the network proxy authorization files, NETPROXY.DAT and NET$PROXY.DAT, and signals DECnet to update its volatile database. Proxy additions take effect immediately on all nodes in a cluster that share the proxy database.

Format

ADD/PROXY node::remote-user local-user[,...]

Parameters

node
Specifies a DECnet node name. If you provide a wildcard character (*), the specified remote user on all nodes is served by the account defined as local-user.

remote-user
Specifies the user name of a user at a remote node. If you specify an asterisk, all users at the specified node are served by the local user.

For systems that are not OpenVMS and that implement DECnet, specifies the UIC of a user at a remote node. You can specify a wildcard character (*) in the group and member fields of the UIC.

local-user
Specifies the user names of 1 to 16 users on the local node. If you specify an asterisk, a local-user name equal to remote-user name will be used.

Positional Qualifier

/DEFAULT
Establishes the specified user name as the default proxy account. The remote user can request proxy access to an authorized account other than the default proxy account by specifying the name of the proxy account in the access control string of the network operation.

Description

The ADD/PROXY command adds an entry to the network proxy authorization files, NETPROXY.DAT and NET$PROXY.DAT, and signals DECnet to update its volatile database. Proxy additions take effect immediately on all nodes in a cluster that share the proxy database.

You can grant a remote user access to one default proxy account and up to 15 other local accounts. To access proxy accounts other than the default proxy account, remote users specify the requested account name in an access control string. To change the default proxy account, use the AUTHORIZE command MODIFY/PROXY.

Proxy login is an effective way to avoid specifying (and, possibly, revealing) passwords in command lines. However, you must use caution in granting access to remote users. While logged in to the local system, remote users can apply the full DCL command set (with the exception of SET HOST). A remote user receives the default privileges of the local user and, therefore, becomes the owner of the local user’s files when executing any DCL commands.
To avoid potential security compromises, HP recommends that you create proxy accounts on the local node that are less privileged than a user's normal account on the remote node. By adding an extension such as _N, you can identify the account as belonging to a remote user, while distinguishing it from a native account with the same name on the local node. For example, the following command creates a JONES_N proxy account on the local node that allows the user JONES to access the account from the remote node SAMPLE:

UAF> ADD/PROXY SAMPLE::JONES JONES_N/DEFAULT
%UAF-I-NAFADDMSG, record successfully added to NETPROXY.DAT

For more information about creating proxy accounts, refer to the *HP OpenVMS Guide to System Security*.

Examples

1. **UAF> ADD/PROXY SAMPLE::WALTER ROBIN/DEFAULT**
 %UAF-I-NAFADDMSG, record successfully added to NETPROXY.DAT

 Specifies that user WALTER on remote node SAMPLE has proxy access to user ROBIN's account on local node AXEL. Through proxy login, WALTER receives the default privileges of user ROBIN when he accesses node AXEL remotely.

2. **UAF> ADD/PROXY MISHA::* MARCO/DEFAULT, OSCAR**
 %UAF-I-NAFADDMSG, record successfully added to NETPROXY.DAT

 Specifies that any user on the remote node MISHA can, by default, use the MARCO account on the local node for DECnet tasks such as remote file access. Remote users can also access the OSCAR proxy account by specifying the user name OSCAR in the access control string.

3. **UAF> ADD/PROXY MISHA::MARCO */DEFAULT**
 %UAF-I-NAFADDMSG, record successfully added to NETPROXY.DAT

 Specifies that user MARCO on the remote node MISHA can use only the MARCO account on the local node for remote file access.

4. **UAF> ADD/PROXY TAO::MARTIN MARTIN/D,SALES_READER**
 %UAF-I-NAFADDMSG, proxy from TAO::TWA.RAN::MARTIN to MARTIN added
 %UAF-I-NAFADDMSG, proxy from TAO::TWA.RAN::MARTIN to SALES_READER added

 Adds a proxy from TAO::MARTIN to the local accounts MARTIN (the default) and SALES_READER on a system running DECnet-Plus.
COPY

Creates a new SYSUAF record that duplicates an existing UAF record.

Format

COPY oldusername newusername

Parameters

oldusername
Name of an existing user record to serve as a template for the new record.

newusername
Name for the new user record. The user name is a string of 1 to 12 alphanumeric characters.

Qualifiers

/ACCESS=[(range[,...])]
/NOACCESS=[(range[,...])]

Specifies hours of access for all modes of access. The syntax for specifying the range is:

/[NO]ACCESS=[(PRIMARY), [n-m], [n], [...], [SECONDARY], [n-m], [n], [...]]

Specify hours as integers from 0 to 23, inclusive. You can specify single hours (n) or ranges of hours (n-m). If the ending hour of a range is earlier than the starting hour, the range extends from the starting hour through midnight to the ending hour. The first set of hours after the keyword PRIMARY specifies hours on primary days; the second set of hours after the keyword SECONDARY specifies hours on secondary days. Note that hours are inclusive; that is, if you grant access during a given hour, access extends to the end of that hour.

By default, a user has full access every day. See the DCL command SET DAY in the HP OpenVMS DCL Dictionary for information about overriding the defaults for primary and secondary day types.

All the list elements are optional. Unless you specify hours for a day type, access is permitted for the entire day. By specifying an access time, you prevent access at all other times. Adding NO to the qualifier denies the user access to the system for the specified period of time. See the following examples.

/ACCESS Allows unrestricted access
/NOACCESS=SECONDARY Allows access on primary days only
/ACCESS=(9-17) Allows access from 9 A.M. to 5:59 P.M. on all days
/NOACCESS=(PRIMARY, 9-17, SECONDARY, 18-8) Disallows access between 9 A.M. to 5:59 P.M. on primary days but allows access during these hours on secondary days

To specify access hours for specific types of access, see the /BATCH, /DIALUP, /INTERACTIVE, /LOCAL, /NETWORK, and /REMOTE qualifiers.

Refer to HP OpenVMS Guide to System Security for information about the effects of login class restrictions.
/ACCOUNT=account-name
Specifies the default name for the account (for example, a billing name or number). The name can be a string of 1 to 8 alphanumeric characters. By default, AUTHORIZE does not assign an account name.

/ADD_IDENTIFIER (default)
/NOADD_IDENTIFIER
Adds a user (user name and account name) to the rights database. The /NOADD_IDENTIFIER does not create a rights list identifier (user name and account name). The AUTHORIZE command ADD/IDENTIFIER is quite different: it adds a record to the AUTHORIZE database UAF file.

/ALGORITHM=keyword=type [=value]
Sets the password encryption algorithm for a user. The keyword VMS refers to the algorithm used in the operating system version that is running on your system, whereas a customer algorithm is one that is added through the $HASH_PASSWORD system service by a customer site, by a layered product, or by a third party. The customer algorithm is identified in $HASH_PASSWORD by an integer in the range of 128 to 255. It must correspond with the number used in the AUTHORIZE command MODIFY/ALGORITHM. By default, passwords are encrypted with the VMS algorithm for the current version of the operating system.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTH</td>
<td>Set the algorithm for primary and secondary passwords.</td>
</tr>
<tr>
<td>CURRENT</td>
<td>Set the algorithm for the primary, secondary, both, or no passwords, depending on account status. CURRENT is the default value.</td>
</tr>
<tr>
<td>PRIMARY</td>
<td>Set the algorithm for the primary password only.</td>
</tr>
<tr>
<td>SECONDARY</td>
<td>Set the algorithm for the secondary password only.</td>
</tr>
</tbody>
</table>

The following table lists password encryption algorithms:

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMS</td>
<td>The algorithm used in the version of the operating system that is running on your system.</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>A numeric value in the range of 128 to 255 that identifies a customer algorithm.</td>
</tr>
</tbody>
</table>

The following example selects the VMS algorithm for Sontag’s primary password:

UAF> MODIFY SONTAG/ALGORITHM=PRIMARY=VMS

If you select a site-specific algorithm, you must give a value to identify the algorithm, as follows:

UAF> MODIFY SONTAG/ALGORITHM=CURRENT=CUSTOMER=128

/ASTLM=value
Specifies the AST queue limit, which is the total number of asynchronous system trap (AST) operations and scheduled wake-up requests that the user can have queued at one time. The default is 40 on VAX systems and 250 on Alpha systems.
/BATCH[=(range[,...])]
Specifies the hours of access permitted for batch jobs. For a description of the
range specification, see the /ACCESS qualifier. By default, a user can submit
batch jobs any time.

/BIOLM=value
Specifies a buffered I/O count limit for the BIOLM field of the UAF record. The
buffered I/O count limit is the maximum number of buffered I/O operations, such
as terminal I/O, that can be outstanding at one time. The default is 40 on VAX
systems and 150 on Alpha systems.

/BYTL=value
Specifies the buffered I/O byte limit for the BYTLM field of the UAF record. The
buffered I/O byte limit is the maximum number of bytes of nonpaged system
dynamic memory that a user's job can consume at one time. Nonpaged dynamic
memory is used for operations such as I/O buffering, mailboxes, and file-access
windows. The default is 32768 on VAX systems and 64000 on Alpha systems.

/CLI=cli-name
Specifies the name of the default command language interpreter (CLI) for the
CLI field of the UAF record. The cli-name is a string of 1 to 31 alphanumeric
characters and should be DCL, which is the default. This setting is ignored for
network jobs.

/CLITABLES=filespec
Specifies user-defined CLI tables for the account. The filespec can contain 1 to 31
characters. The default is SYS$LIBRARY:DCLTABLES. Note that this setting
is ignored for network jobs to guarantee that the system-supplied command
procedures used to implement network objects function properly.

/CPUTIME=time
Specifies the maximum process CPU time for the CPU field of the UAF record.
The maximum process CPU time is the maximum amount of CPU time a
user's process can take per session. You must specify a delta time value. For a
discussion of delta time values, refer to the OpenVMS User's Manual. The default
is 0, which means an infinite amount of time.

/DEFPRIVILEGES=[[NO]privname[,...]]
Specifies default privileges for the user; that is, those enabled at login time.
A NO prefix removes a privilege from the user. By specifying the keyword
[NO]ALL with the /DEFPRIVILEGES qualifier, you can disable or enable all user
privileges. The default privileges are TMPMBX and NETMBX. Privname is the
name of the privilege.

/DEVICE=device-name
Specifies the name of the user's default device at login. The device-name is a
string of 1 to 31 alphanumeric characters. If you omit the colon from the device-
name value, AUTHORIZE appends a colon. The default device is SYS$SYSDISK.

If you specify a logical name as the device-name (for example, DISK1: for DUA1:),
you must make an entry for the logical name in the LNM$SYSTEM_TABLE in
executive mode by using the DCL command DEFINE/SYSTEM/EXEC.

/DIALUP[=(range[,...])]
Specifies hours of access permitted for dialup logins. For a description of the
range specification, see the /ACCESS qualifier. The default is full access.
/DIOLM=value
Specifies the direct I/O count limit for the DIOLM field of the UAF record. The
direct I/O count limit is the maximum number of direct I/O operations (usually
disk) that can be outstanding at one time. The default is 40 on VAX systems and
150 on Alpha systems.

/DIRECTORY=directory-name
Specifies the default directory name for the DIRECTORY field of the UAF record.
The directory-name can be 1 to 39 alphanumeric characters. If you do not enclose
the directory name in brackets, AUTHORIZE adds the brackets for you. The
default directory name is [USER].

/ENQLM=value
Specifies the lock queue limit for the ENQLM field of the UAF record. The lock
queue limit is the maximum number of locks that can be queued by the user at
one time. The default is 200 on VAX systems and 2000 on Alpha systems.

/EXPIRATION=time (default)
/NOEXPIRATION
Specifies the expiration date and time of the account. The /NOEXPIRATION
qualifier removes the expiration date on the account. If you do not specify an
expiration time when you add a new account, AUTHORIZE copies the expiration
time from the DEFAULT account. (The expiration time on the DEFAULT account
is "none" by default.)

/FILLM=value
Specifies the open file limit for the FILLM field of the UAF record. The open file
limit is the maximum number of files that can be open at one time, including
active network logical links. The default is 300 on VAX systems and 100 on Alpha
systems.

/FLAGS=(NO)option[,...]
Specifies login flags for the user. The prefix NO clears the flag. The options are
as follows:

AUDIT
Enables or disables mandatory security auditing for a
specific user. By default, the system does not audit the
activities of specific users (NOAUDIT).

AUTOLOGIN
Restricts the user to the automatic login mechanism when
logging in to an account. When set, the flag disables login
by any terminal that requires entry of a user name and
password. The default is to require a user name and
password (NOAUTOLOGIN).
CAPTIVE Prevents the user from changing any defaults at login, for example, /CLI or /LGICMD. It prevents the user from escaping the captive login command procedure specified by the /LGICMD qualifier and gaining access to the DCL command level. Refer to “Guidelines for Captive Command Procedures” in the HP OpenVMS Guide to System Security. The CAPTIVE flag also establishes an environment where Ctrl/Y interrupts are initially turned off; however, command procedures can still turn on Ctrl/Y interrupts with the DCL command SET CONTROL=Y. By default, an account is not captive (NOCAPTIVE).

DEFCLI Restricts the user to the default command interpreter by prohibiting the use of the /CLI qualifier at login. By default, a user can choose a CLI (NODEFCLI).

DISCTLY Establishes an environment where Ctrl/Y interrupts are initially turned off and are invalid until a SET CONTROL=Y is encountered. This could happen in SYLOGIN.COM or in a procedure called by SYLOGIN.COM. Once a SET CONTROL=Y is executed (which requires no privilege), a user can enter a Ctrl/Y and reach the DCL prompt ($). If the intent of DISCTLY is to force execution of the login command files, then SYLOGIN.COM should issue the DCL command SET CONTROL=Y to turn on Ctrl/Y interrupts before exiting. By default, Ctrl/Y is enabled (NODISCTLY).

DISFORCE_PWD_CHANGE Removes the requirement that a user must change an expired password at login. By default, a person can use an expired password only once (NODISFORCE_PWD_CHANGE) and then is forced to change the password after logging in. If the user does not select a new password, the user is locked out of the system.

To use this feature, set a password expiration date with the /PWDLIFETIME qualifier.

DISIMAGE Prevents the user from executing RUN and foreign commands. By default, a user can execute RUN and foreign commands (NODISIMAGE).

DISMAIL Disables mail delivery to the user. By default, mail delivery is enabled (NODISMAIL).

DISNEWMAIL Suppresses announcements of new mail at login. By default, the system announces new mail (NODISNEWMAIL).

DISPWDDIC Disables automatic screening of new passwords against a system dictionary. By default, passwords are automatically screened (NODISPWDDIC).

DISPWDHIS Disables automatic checking of new passwords against a list of the user’s old passwords. By default, the system screens new passwords (NODISPWDHIS).
<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPWDSYNCH</td>
<td>Suppresses synchronization of the external password for this account. See bit 9 in the SECURITY_POLICY system parameter for systemwide password synchronization control.</td>
</tr>
<tr>
<td>DISRECONNECT</td>
<td>Disables automatic reconnection to an existing process when a terminal connection has been interrupted. By default, automatic reconnection is enabled (NODISRECONNECT).</td>
</tr>
<tr>
<td>DISREPORT</td>
<td>Suppresses reports of the last login time, login failures, and other security reports. By default, login information is displayed (NODISREPORT).</td>
</tr>
<tr>
<td>DISUSER</td>
<td>Disables the account so the user cannot log in. For example, the DEFAULT account is disabled. By default, an account is enabled (NODISUSER).</td>
</tr>
<tr>
<td>DISWELCOME</td>
<td>Suppresses the welcome message (an informational message displayed during a local login). This message usually indicates the version number of the operating system that is running and the name of the node on which the user is logged in. By default, a system login message appears (NODISWELCOME).</td>
</tr>
<tr>
<td>EXTAUTH</td>
<td>Considers user to be authenticated by an external user name and password, not by the SYSUAF user name and password. (The system still uses the SYSUAF record to check a user’s login restrictions and quotas and to create the user’s process profile.)</td>
</tr>
<tr>
<td>GENPWD</td>
<td>Restricts the user to generated passwords. By default, users choose their own passwords (NOGENPWD).</td>
</tr>
<tr>
<td>LOCKPWD</td>
<td>Prevents the user from changing the password for the account. By default, users can change their passwords (NOLOCKPWD).</td>
</tr>
<tr>
<td>PWD_EXPIRED</td>
<td>Marks a password as expired. The user cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user’s password expires. A system manager can clear this flag. By default, passwords are not expired after login (NOPWD_EXPIRED).</td>
</tr>
<tr>
<td>PWD2_EXPIRED</td>
<td>Marks a secondary password as expired. Users cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user’s password expires. A system manager can clear this flag. By default, passwords are not set to expire after login (NOPWD2_EXPIRED).</td>
</tr>
</tbody>
</table>
PWDMIX Enables case-sensitive and extended-character passwords. After PWDMIX is specified, you can then use mixed-case and extended characters in passwords. Be aware that before the PWDMIX flag is enabled, the system stores passwords in all upper-case. Therefore, until you change passwords, you must enter your pre-PWDMIX passwords in upper-case.

To change the password after PWDMIX is enabled:
- You (the user) can use the DCL command SET PASSWORD, specifying the new mixed-case password (omitting quotation marks).
- You (the system manager) can use the AUTHORIZE command MODIFY/PASSWORD, and enclose the user’s new mixed-case password in quotation marks " ".

RESTRICTED Prevents the user from changing any defaults at login (for example, by specifying /LGICMD) and prohibits user specification of a CLI with the /CLI qualifier. The RESTRICTED flag establishes an environment where Ctrl/Y interrupts are initially turned off; however, command procedures can still turn on Ctrl/Y interrupts with the DCL command SET CONTROL=Y. Typically, this flag is used to prevent an applications user from having unrestricted access to the CLI. By default, a user can change defaults (NORESTRICTED).

VMSAUTH Allows account to use standard (SYSUAF) authentication when the EXTAUTH flag would otherwise require external authentication. This depends on the application. An application specifies the VMS domain of interpretation when calling SYSSACM to request standard VMS authentication for a user account that normally uses external authentication.

/GENERATE_PASSWORD[=keyword] /NOGENERATE_PASSWORD (default)
Invokes the password generator to create user passwords. Generated passwords can consist of 1 to 10 characters. Specify one of the following keywords:

- BOTH Generate primary and secondary passwords.
- CURRENT Do whatever the DEFAULT account does (for example, generate primary, secondary, both, or no passwords). This is the default keyword.
- PRIMARY Generate primary password only.
- SECONDARY Generate secondary password only.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, users are forced to change their passwords (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.
/INTERACTIVE[={range[,...]}]
/NOINTERACTIVE
Specifies the hours of access for interactive logins. For a description of the
range specification, see the /ACCESS qualifier. By default, there are no access
restrictions on interactive logins.

/JTQUOTA=value
Specifies the initial byte quota with which the jobwide logical name table is to
be created. By default, the value is 4096 on VAX systems and 4096 on Alpha
systems.

/LGICMD=filespec
Specifies the name of the default login command file. The file name defaults to
the device specified for /DEVICE, the directory specified for /DIRECTORY, a file
name of LOGIN, and a file type of .COM. If you select the defaults for all these
values, the file name is SYS$SYSTEM:[USER]LOGIN.COM.

/LOCAL[={range[,...]}]
Specifies hours of access for interactive logins from local terminals. For a
description of the range specification, see the /ACCESS qualifier. By default,
there are no access restrictions on local logins.

/MAXACCTJOBS=value
Specifies the maximum number of batch, interactive, and detached processes that
can be active at one time for all users of the same account. By default, a user has
a maximum of 0, which represents an unlimited number.

/MAXDETACH=value
Specifies the maximum number of detached processes with the cited user name
that can be active at one time. To prevent the user from creating detached
processes, specify the keyword NONE. By default, a user has a value of 0, which
represents an unlimited number.

/MAXJOBS=value
Specifies the maximum number of processes (interactive, batch, detached, and
network) with the cited user name that can be active simultaneously. The first
four network jobs are not counted. By default, a user has a maximum value of 0,
which represents an unlimited number.

/NETWORK[={range[,...]}]
Specifies hours of access for network batch jobs. For a description of how to
specify the range, see the /ACCESS qualifier. By default, network logins have no
access restrictions.

/OWNER=owner-name
Specifies the name of the owner of the account. You can use this name for billing
purposes or similar applications. The owner name is 1 to 31 characters. No
default owner name exists.

/PASSWORD=(password1[,password2])
/NOPASSWORD
Specifies up to two passwords for login. Passwords can be from 0 to 32
alphanumeric characters in length. The dollar sign ($) and underscore (_) are also permitted.
Uppercase and lowercase characters are equivalent. All lowercase characters are converted to uppercase before the password is encrypted. Avoid using the word password as the actual password.

Use the /PASSWORD qualifier as follows:

- To set only the first password and clear the second, specify /PASSWORD=password.
- To set both the first and second password, specify /PASSWORD=(password1, password2).
- To change the first password without affecting the second, specify /PASSWORD=(password, "").
- To change the second password without affecting the first, specify /PASSWORD="", password).
- To set both passwords to null, specify /NOPASSWORD.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, the user is forced to change the password (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.

When you create a new UAF record with the COPY command, you must specify a password.

/PBYTLM
This flag is reserved for HP.

/PGFLQUOTA=value
Specifies the paging file limit. This is the maximum number of pages that the person’s process can use in the system paging file. By default, the value is 32768 pages on VAX systems and 50000 pagelets on Alpha systems.

If decompressing libraries, make sure to set PGFLQUOTA to twice the size of the library.

/PRCLM=value
Specifies the subprocess creation limit. This is the maximum number of subprocesses that can exist at one time for the specified user’s process. By default, the value is 2 on VAX systems and 8 on Alpha systems.

/PRIMEDAYS=[(NO]day[,...])
Defines the primary and secondary days of the week for logging in. Specify the days as a list separated by commas, and enclose the list in parentheses. To specify a secondary day, prefix the day with NO (for example, NOFRIDAY). To specify a primary day, omit the NO prefix.

By default, primary days are Monday through Friday and secondary days are Saturday and Sunday. If you omit a day from the list, AUTHORIZE uses the default value. (For example, if you omit Monday from the list, AUTHORIZE defines Monday as a primary day.)

Use the primary and secondary day definitions in conjunction with such qualifiers as /ACCESS, /INTERACTIVE, and /BATCH.
/PRIORIT Y=value
Specifies the default base priority. The value is an integer in the range of 0 to 31 on VAX systems and 0 to 63 on Alpha systems. By default, the value is set to 4 for timesharing users.

/PRIVILEGES=(\[NO\]privname[,...])
Specifies which privileges the user is authorized to hold, although these privileges are not necessarily enabled at login. (The /DEFPRIVILEGES qualifier determines which ones are enabled.) A NO prefix removes the privilege from the user. The keyword NOALL disables all user privileges. Many privileges have varying degrees of power and potential system impact (see the HP OpenVMS Guide to System Security for a detailed discussion). By default, a user holds TMPMBX and NETMBX privileges. Privname is the name of the privilege.

/PWDEXPIRED (default)
/NOPWDEXPIRED
Specifies the password is valid for only one login. A user must change a password immediately after login or be locked out of the system. The system warns users of password expiration. A user can either specify a new password, with the DCL command SET PASSWORD, or wait until expiration and be forced to change. By default, a user must change a password when first logging in to an account. The default is applied to the account only when the password is being modified.

/PWDLIFETIME=time (default)
/NOPWDLIFETIME
Specifies the length of time a password is valid. Specify a delta time value in the form [dd:] [hh:mm:ss.cc]. For example, for a lifetime of 120 days, 0 hours, and 0 seconds, specify /PWDLIFETIME="120-". For a lifetime of 120 days 12 hours, 30 minutes and 30 seconds, specify /PWDLIFETIME="120-12:30:30". If a period longer than the specified time elapses before the user logs in, the system displays a warning message. The password is marked as expired.

To prevent a password from expiring, specify the time as NONE. By default, a password expires in 90 days.

/PWDMINIMUM=value
Specifies the minimum password length in characters. Note that this value is enforced only by the DCL command SET PASSWORD. It does not prevent you from entering a password shorter than the minimum length when you use AUTHORIZE to create or modify an account. By default, a password must have at least 6 characters. The value specified by the /PWDMINIMUM qualifier conflicts with the value used by the /GENERATE_PASSWORD qualifier or the DCL command SET PASSWORD/GENERATE, the operating system chooses the lesser value. The maximum value for generated passwords is 10.

/QUEPRIO=value
Reserved for future use.

/REMOTE[=(range[,...])] specifies hours during which access is permitted for interactive logins from network remote terminals (with the DCL command SET HOST). For a description of the range specification, see the /ACCESS qualifier. By default, remote logins have no access restrictions.
/SHRFILLM=value
Specifies the maximum number of shared files that the user can have open at one
time. By default, the system assigns a value of 0, which represents an infinite
number.

/TQELM
Specifies the total number of entries in the timer queue plus the number of
temporary common event flag clusters that the user can have at one time. By
default, a user can have 10.

/UIC=value
Specifies the user identification code (UIC). The UIC value is a group number in
the range from 1 to 37776 (octal) and a member number in the range from 0 to
177776 (octal), which are separated by a comma and enclosed in brackets. HP
reserves group 1 and groups 300–377 for its own use.

Each user must have a unique UIC. By default, the UIC value is [200,200].

/WSDEFAULT=value
Specifies the default working set limit. This represents the initial limit to the
number of physical pages the process can use. (The user can alter the default
quantity up to WSQUOTA with the DCL command SET WORKING_SET.) By
default, a user has 256 pages on VAX systems and 2000 pagelets on Alpha
systems.

The value cannot be greater than WSMAX. This quota value replaces smaller
values of PQL_MWSDEFAULT.

/WSEXTENT=value
Specifies the working set maximum. This represents the maximum amount
of physical memory allowed to the process. The system provides memory to a
process beyond its working set quota only when it has excess free pages. The
additional memory is recalled by the system if needed.

The value is an integer equal to or greater than WSQUOTA. By default, the value
is 1024 pages on VAX systems and 16384 pagelets on Alpha systems. The value
cannot be greater than WSMAX. This quota value replaces smaller values of
PQL_MWSEXTENT.

/WSQUOTA=value
Specifies the working set quota. This is the maximum amount of physical
memory a user process can lock into its working set. It also represents the
maximum amount of swap space that the system reserves for this process and
the maximum amount of physical memory that the system allows the process to
consume if the systemwide memory demand is significant.

The value cannot be greater than the value of WSMAX and cannot exceed 64K
pages. This quota value replaces smaller values of PQL_MWSQUOTA.

Description
The COPY command creates a new SYSUAF record that duplicates an existing
SYSUAF record. The command requires the /PASSWORD qualifier. If you do not
specify additional qualifiers to the COPY command, the fields in the record you
create are the same as those in the record being copied.
For example, you could add a record for a new user named Thomas Sparrow that is identical to that of Joseph Robin (but presumably different from the default record), as follows:

UAF> COPY ROBIN SPARROW /PASSWORD=SP0152

However, to add a record for Thomas Sparrow that differs from Joseph Robin’s in the UIC, directory name, password, and owner, specify the following command:

UAF> COPY ROBIN SPARROW /UIC=[200,13]/DIRECTORY=[SPARROW] - _/PASSWORD=THOMAS/OWNER="THOMAS SPARROW"

You can also use the COPY command to create a set of template records to meet the specific needs of various user groups. For example, if you have programmers, administrators, and data entry personnel working on the same system, you can create records such as PROGRAMMER, ADMINISTRATOR, and DATA_ENTRY, each tailored to the needs of a particular group. To add an account for a new user in one of these groups, copy the appropriate template record and specify a new user name, password, UIC, directory, and owner.

If you omit the /PASSWORD qualifier when you create an account, AUTHORIZE displays the following error message:

%UAF-W-DEFPWD, copied or renamed records must receive new password

To specify a password for the account, use the MODIFY command with the /PASSWORD qualifier.

Examples

1. UAF> COPY ROBIN SPARROW /PASSWORD=SP0152
 %UAF-I-COPMSG, user record copied
 %UAF-E-RDBADDERRU, unable to add SPARROW value: [000014,000006] to
 RIGHTSLIST.DAT -SYSTEM-F-DUPIDENT, duplicate identifier

 The command in this example adds a record for Thomas Sparrow that is identical, except for the password, to that of Joseph Robin. Note that because the UIC value has no change, no identifier is added to RIGHTSLIST.DAT. AUTHORIZE issues a “duplicate identifier” error message.

2. UAF> COPY ROBIN SPARROW /UIC=[200,13]/DIRECTORY=[SPARROW] - _/PASSWORD=THOMAS/OWNER="THOMAS SPARROW"
 %UAF-I-COPMSG, user record copied
 %UAF-I-RDBADDMSGU, identifier SPARROW value: [000200,000013] added to
 RIGHTSLIST.DAT

 The command in this example adds a record for Thomas Sparrow that is the same as Joseph Robin’s except for the UIC, directory name, password, and owner. Note that you could use a similar command to copy a template record when adding a record for a new user in a particular user group.
CREATE/PROXY

Creates and initializes the network proxy authorization files. The primary network proxy authorization file is NET$PROXY.DAT. The file NETPROXY.DAT is maintained for compatibility.

Note

Do not delete NETPROXY.DAT because DECnet Phase IV and many layered products still use it.

Format

CREATE/PROXY

Parameters

None.

Qualifiers

None.

Description

NETPROXY.DAT is created with no records and is assigned the following protection:

\((S:RWED,O:RWED,G,W)\)

NET$PROXY.DAT is created with no records and is assigned the following protection:

\((S:RWED,O,G,W)\)

If NETPROXY.DAT or NET$PROXY.DAT already exist, AUTHORIZE reports the following error message:

%UAF-W-NAPAEX, NETPROXY.DAT already exists

To create a new file, you must either delete or rename the old one.

Example

```
UAF> CREATE/PROXY
UAF>
```

The command in this example creates and initializes the network proxy authorization file.
CREATE/RIGHTS

Creates and initializes the rights database, RIGHTSLIST.DAT.

Format

CREATE/RIGHTS

Parameters

None.

Qualifiers

None.

Description

RIGHTSLIST.DAT is created with no records and is assigned the following protection:

(S:RWED,O:RWED,G:R,W:)

Note that the file is created only if the file does not already exist.

Example

UAF> CREATE/RIGHTS
%UAF-E-RDBCREERR, unable to create RIGHTSLIST.DAT
-RMS-E-FEX, file already exists, not superseded

You can use the command in this example to create and initialize a new rights database. Note, however, that RIGHTSLIST.DAT is created automatically during the installation process. Thus, you must delete or rename the existing file before creating a new one. For more information about rights database management, refer to the *HP OpenVMS Guide to System Security*.
DEFAULT

Modifies the SYSUAF's DEFAULT record.

Format

DEFAULT

Parameters

None.

Qualifiers

/ACCESS=([range[,...]])
/NOACCESS=([range[,...]])

Specifies hours of access for all modes of access. The syntax for specifying the range is:

/[NO]ACCESS=((PRIMARY), [n-m], [n], [...],[SECONDARY], [n-m], [n], [...])

Specify hours as integers from 0 to 23, inclusive. You can specify single hours (n) or ranges of hours (n-m). If the ending hour of a range is earlier than the starting hour, the range extends from the starting hour through midnight to the ending hour. The first set of hours after the keyword PRIMARY specifies hours on primary days; the second set of hours after the keyword SECONDARY specifies hours on secondary days. Note that hours are inclusive; that is, if you grant access during a given hour, access extends to the end of that hour.

By default, a user has full access every day. See the DCL command SET DAY in the HP OpenVMS DCL Dictionary for information about overriding the defaults for primary and secondary day types.

All the list elements are optional. Unless you specify hours for a day type, access is permitted for the entire day. By specifying an access time, you prevent access at all other times. Adding NO to the qualifier denies the user access to the system for the specified period of time. See the following examples.

/ACCESS Allows unrestricted access
/NOACCESS=SECONDARY Allows access on primary days only
/ACCESS=(9-17) Allows access from 9 A.M. to 5:59 P.M. on all days
/NOACCESS=(PRIMARY, 9-17, SECONDARY, 18-8) Disallows access between 9 A.M. to 5:59 P.M. on primary days but allows access during these hours on secondary days

To specify access hours for specific types of access, see the /BATCH, /DIALUP, /INTERACTIVE, /LOCAL, /NETWORK, and /REMOTE qualifiers.

Refer to HP OpenVMS Guide to System Security for information about the effects of login class restrictions.

/ACCOUNT=account-name

Specifies the default name for the account (for example, a billing name or number). The name can be a string of 1 to 8 alphanumeric characters. By default, AUTHORIZE does not assign an account name.
/ALGORITHM=keyword=type [=value]

Sets the password encryption algorithm for a user. The keyword VMS refers to the algorithm used in the operating system version that is running on your system, whereas a customer algorithm is one that is added through the $HASH_PASSWORD system service by a customer site, by a layered product, or by a third party. The customer algorithm is identified in $HASH_PASSWORD by an integer in the range of 128 to 255. It must correspond with the number used in the AUTHORIZE command MODIFY/ALGORITHM. By default, passwords are encrypted with the VMS algorithm for the current version of the operating system.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTH</td>
<td>Set the algorithm for primary and secondary passwords.</td>
</tr>
<tr>
<td>CURRENT</td>
<td>Set the algorithm for the primary, secondary, both, or no passwords, depending on account status. CURRENT is the default value.</td>
</tr>
<tr>
<td>PRIMARY</td>
<td>Set the algorithm for the primary password only.</td>
</tr>
<tr>
<td>SECONDARY</td>
<td>Set the algorithm for the secondary password only.</td>
</tr>
</tbody>
</table>

The following table lists password encryption algorithms:

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMS</td>
<td>The algorithm used in the version of the operating system that is running on your system.</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>A numeric value in the range of 128 to 255 that identifies a customer algorithm.</td>
</tr>
</tbody>
</table>

The following example selects the VMS algorithm for Sontag's primary password:

UAF> MODIFY SONTAG/ALGORITHM=PRIMARY=VMS

If you select a site-specific algorithm, you must give a value to identify the algorithm, as follows:

UAF> MODIFY SONTAG/ALGORITHM=CURRENT=CUSTOMER=128

/ASTLM=value

Specifies the AST queue limit, which is the total number of asynchronous system trap (AST) operations and scheduled wake-up requests that the user can have queued at one time. The default is 40 on VAX systems and 250 on Alpha systems.

/BATCH=[(range[,...])]

Specifies the hours of access permitted for batch jobs. For a description of the range specification, see the /ACCESS qualifier. By default, a user can submit batch jobs any time.

/BIOLM=value

Specifies a buffered I/O count limit for the BIOLM field of the UAF record. The buffered I/O count limit is the maximum number of buffered I/O operations, such as terminal I/O, that can be outstanding at one time. The default is 40 on VAX systems and 150 on Alpha systems.
/BYTLM=value
Specifies the buffered I/O byte limit for the BYTLM field of the UAF record. The buffered I/O byte limit is the maximum number of bytes of nonpaged system dynamic memory that a user’s job can consume at one time. Nonpaged dynamic memory is used for operations such as I/O buffering, mailboxes, and file-access windows. The default is 32768 on VAX systems and 64000 on Alpha systems.

/CLI=cli-name
Specifies the name of the default command language interpreter (CLI) for the CLI field of the UAF record. The cli-name is a string of 1 to 31 alphanumeric characters and should be DCL, which is the default. This setting is ignored for network jobs.

/CLITABLES=filespec
Specifies user-defined CLI tables for the account. The filespec can contain 1 to 31 characters. The default is SYS$LIBRARY:DCLTABLES. Note that this setting is ignored for network jobs to guarantee that the system-supplied command procedures used to implement network objects function properly.

/CPUTIME=time
Specifies the maximum process CPU time for the CPU field of the UAF record. The maximum process CPU time is the maximum amount of CPU time a user’s process can take per session. You must specify a delta time value. For a discussion of delta time values, refer to the OpenVMS User’s Manual. The default is 0, which means an infinite amount of time.

/DEFPRIVILEGES=(NO)privname[,...]
Specifies default privileges for the user; that is, those enabled at login time. A NO prefix removes a privilege from the user. By specifying the keyword [NO]ALL with the /DEFPRIVILEGES qualifier, you can disable or enable all user privileges. The default privileges are TMPMBX and NETMBX. Privname is the name of the privilege.

/DEVICE=device-name
Specifies the name of the user’s default device at login. The device-name is a string of 1 to 31 alphanumeric characters. If you omit the colon from the device-name value, AUTHORIZE appends a colon. The default device is SYS$SYSDISK. If you specify a logical name as the device-name (for example, DISK1: for DUA1:), you must make an entry for the logical name in the LNM$SYSTEM_TABLE in executive mode by using the DCL command DEFINE/SYSTEM/EXEC.

/DIALUP[=(range[,...])]
Specifies hours of access permitted for dialup logins. For a description of the range specification, see the /ACCESS qualifier. The default is full access.

/DIOLM=value
Specifies the direct I/O count limit for the DIOLM field of the UAF record. The direct I/O count limit is the maximum number of direct I/O operations (usually disk) that can be outstanding at one time. The default is 40 on VAX systems and 150 on Alpha systems.

/DIRECTORY=directory-name
Specifies the default directory name for the DIRECTORY field of the UAF record. The directory-name can be 1 to 39 alphanumeric characters. If you do not enclose
the directory name in brackets, AUTHORIZE adds the brackets for you. The
default directory name is [USER].

/ENQLM=value
Specifies the lock queue limit for the ENQLM field of the UAF record. The lock
queue limit is the maximum number of locks that can be queued by the user at
one time. The default is 200 on VAX systems and 2000 on Alpha systems.

/EXPIRATION=time (default)
/NOEXPIRATION
Specifies the expiration date and time of the account. The /NOEXPIRATION
qualifier removes the expiration date on the account. If you do not specify an
expiration time when you add a new account, AUTHORIZE copies the expiration
time from the DEFAULT account. (The expiration time on the DEFAULT account
is "none" by default.)

/FILLM=value
Specifies the open file limit for the FILLM field of the UAF record. The open file
limit is the maximum number of files that can be open at one time, including
active network logical links. The default is 300 on VAX systems and 100 on Alpha
systems.

/FLAGS=([NO]option[,...])
Specifies login flags for the user. The prefix NO clears the flag. The options are
as follows:

AUDIT Enables or disables mandatory security auditing for a
specific user. By default, the system does not audit the
activities of specific users (NOAUDIT).

AUTOLOGIN Restricts the user to the automatic login mechanism when
logging in to an account. When set, the flag disables login
by any terminal that requires entry of a user name and
password. The default is to require a user name and
password (NOAUTOLOGIN).

CAPTIVE Prevents the user from changing any defaults at login,
for example, /CLI or /LGICMD. It prevents the user from
escaping the captive login command procedure specified
by the /LGICMD qualifier and gaining access to the DCL
command level. Refer to “Guidelines for Captive Command
Procedures” in the "HP OpenVMS Guide to System Security." The CAPTIVE flag also establishes an environment where
Ctrl/Y interrupts are initially turned off; however, command
procedures can still turn on Ctrl/Y interrupts with the DCL
command SET CONTROL=Y. By default, an account is not
captive (NOCAPTIVE).

DEFCLI Restricts the user to the default command interpreter
by prohibiting the use of the /CLI qualifier at login. By
default, a user can choose a CLI (NODEFCLI).
DISCTLY Establishes an environment where Ctrl/Y interrupts are initially turned off and are invalid until a SET CONTROL=Y is encountered. This could happen in SYLOGIN.COM or in a procedure called by SYLOGIN.COM. Once a SET CONTROL=Y is executed (which requires no privilege), a user can enter a Ctrl/Y and reach the DCL prompt ($). If the intent of DISCTLY is to force execution of the login command files, then SYLOGIN.COM should issue the DCL command SET CONTROL=Y to turn on Ctrl/Y interrupts before exiting. By default, Ctrl/Y is enabled (NODISCTLY).

DISFORCE_PWD_CHANGE Removes the requirement that a user must change an expired password at login. By default, a person can use an expired password only once (NODISFORCE_PWD_CHANGE) and then is forced to change the password after logging in. If the user does not select a new password, the user is locked out of the system.

To use this feature, set a password expiration date with the /PWDLIFETIME qualifier.

DISIMAGE Prevents the user from executing RUN and foreign commands. By default, a user can execute RUN and foreign commands (NODISIMAGE).

DISMAIL Disables mail delivery to the user. By default, mail delivery is enabled (NODISMAIL).

DISNEWMAIL Suppresses announcements of new mail at login. By default, the system announces new mail (NODISNEWMAIL).

DISPWDDIC Disables automatic screening of new passwords against a system dictionary. By default, passwords are automatically screened (NODISPWDDIC).

DISPWDHIS Disables automatic checking of new passwords against a list of the user's old passwords. By default, the system screens new passwords (NODISPWDHIS).

DISPWDSYNCH Suppresses synchronization of the external password for this account. See bit 9 in the SECURITY_POLICY system parameter for systemwide password synchronization control.

DISRECONNECT Disables automatic reconnection to an existing process when a terminal connection has been interrupted. By default, automatic reconnection is enabled (NODISRECONNECT).

DISREPORT Suppresses reports of the last login time, login failures, and other security reports. By default, login information is displayed (NODISREPORT).

DISUSER Disables the account so the user cannot log in. For example, the DEFAULT account is disabled. By default, an account is enabled (NODISUSER).
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISWELCOME</td>
<td>Suppresses the welcome message (an informational message displayed during a local login). This message usually indicates the version number of the operating system that is running and the name of the node on which the user is logged in. By default, a system login message appears (NODISWELCOME).</td>
</tr>
<tr>
<td>EXTAUTH</td>
<td>Considers user to be authenticated by an external user name and password, not by the SYSUAF user name and password. (The system still uses the SYSUAF record to check a user’s login restrictions and quotas and to create the user’s process profile.)</td>
</tr>
<tr>
<td>GENPWD</td>
<td>Restricts the user to generated passwords. By default, users choose their own passwords (NOGENPWD).</td>
</tr>
<tr>
<td>LOCKPWD</td>
<td>Prevents the user from changing the password for the account. By default, users can change their passwords (NOLOCKPWD).</td>
</tr>
<tr>
<td>PWD_EXPIRED</td>
<td>Marks a password as expired. The user cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user’s password expires. A system manager can clear this flag. By default, passwords are not expired after login (NOPWD_EXPIRED).</td>
</tr>
<tr>
<td>PWD2_EXPIRED</td>
<td>Marks a secondary password as expired. Users cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user’s password expires. A system manager can clear this flag. By default, passwords are not set to expire after login (NOPWD2_EXPIRED).</td>
</tr>
<tr>
<td>PWDMIX</td>
<td>Enables case-sensitive and extended-character passwords. After PWDMIX is specified, you can then use mixed-case and extended characters in passwords. Be aware that before the PWDMIX flag is enabled, the system stores passwords in all upper-case. Therefore, until you change passwords, you must enter your pre-PWDMIX passwords in upper-case. To change the password after PWDMIX is enabled:</td>
</tr>
<tr>
<td></td>
<td>• You (the user) can use the DCL command SET PASSWORD, specifying the new mixed-case password (omitting quotation marks).</td>
</tr>
</tbody>
</table>
| | • You (the system manager) can use the AUTHORIZE command MODIFY/PASSWORD, and enclose the user’s new mixed-case password in quotation marks " ".
AUTHORIZE
DEFAULT

RESTRICTED Prevents the user from changing any defaults at login (for example, by specifying /LGICMD) and prohibits user specification of a CLI with the /CLI qualifier. The RESTRICTED flag establishes an environment where Ctrl/Y interrupts are initially turned off; however, command procedures can still turn on Ctrl/Y interrupts with the DCL command SET CONTROL=Y. Typically, this flag is used to prevent an applications user from having unrestricted access to the CLI. By default, a user can change defaults (NORESTRICTED).

VMSAUTH Allows account to use standard (SYSUAF) authentication when the EXTAUTH flag would otherwise require external authentication. This depends on the application. An application specifies the VMS domain of interpretation when calling SYSSACM to request standard VMS authentication for a user account that normally uses external authentication.

/GENERATE_PASSWORD[=keyword]
/NOGENERATE_PASSWORD (default)
Invokes the password generator to create user passwords. Generated passwords can consist of 1 to 10 characters. Specify one of the following keywords:

- BOTH Generate primary and secondary passwords.
- CURRENT Do whatever the DEFAULT account does (for example, generate primary, secondary, both, or no passwords). This is the default keyword.
- PRIMARY Generate primary password only.
- SECONDARY Generate secondary password only.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, users are forced to change their passwords (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.

/INTERACTIVE[=(range[,...])]
/NOINTERACTIVE
Specifies the hours of access for interactive logins. For a description of the range specification, see the /ACCESS qualifier. By default, there are no access restrictions on interactive logins.

/JTQUOTA=value
Specifies the initial byte quota with which the jobwide logical name table is to be created. By default, the value is 4096 on VAX systems and 4096 on Alpha systems.

/LGICMD=filespec
Specifies the name of the default login command file. The file name defaults to the device specified for /DEVICE, the directory specified for /DIRECTORY, a file name of LOGIN, and a file type of .COM. If you select the defaults for all these values, the file name is SYSS$SYSTEM:[USER]LOGIN.COM.
/LOCAL[=(range[,...])]
Specifies hours of access for interactive logins from local terminals. For a description of the range specification, see the /ACCESS qualifier. By default, there are no access restrictions on local logins.

/MAXACCTJOBS=value
Specifies the maximum number of batch, interactive, and detached processes that can be active at one time for all users of the same account. By default, a user has a maximum of 0, which represents an unlimited number.

/MAXDETACH=value
Specifies the maximum number of detached processes with the cited user name that can be active at one time. To prevent the user from creating detached processes, specify the keyword NONE. By default, a user has a value of 0, which represents an unlimited number.

/MAXJOBS=value
Specifies the maximum number of processes (interactive, batch, detached, and network) with the cited user name that can be active simultaneously. The first four network jobs are not counted. By default, a user has a maximum value of 0, which represents an unlimited number.

/MODIFY_IDENTIFIER (default)
/NOMODIFY_IDENTIFIER
Specifies whether the identifier associated with the user is to be modified in the rights database. This qualifier applies only when you modify the UIC or user name in the UAF record. By default, the associated identifiers are modified.

/NETWORK[=(range[,...])]
Specifies hours of access for network batch jobs. For a description of how to specify the range, see the /ACCESS qualifier. By default, network logins have no access restrictions.

/OWNER=owner-name
Specifies the name of the owner of the account. You can use this name for billing purposes or similar applications. The owner name is 1 to 31 characters. No default owner name exists.

/PASSWORD=(password1[,password2])
/NOPASSWORD
Specifies up to two passwords for login. Passwords can be from 0 to 32 alphanumeric characters in length. The dollar sign ($) and underscore (_) are also permitted.

Uppercase and lowercase characters are equivalent. All lowercase characters are converted to uppercase before the password is encrypted. Avoid using the word password as the actual password.

Use the /PASSWORD qualifier as follows:

- To set only the first password and clear the second, specify /PASSWORD=password.
- To set both the first and second password, specify /PASSWORD=(password1, password2).
- To change the first password without affecting the second, specify /PASSWORD=(password, "").
• To change the second password without affecting the first, specify /PASSWORD=""", password).

• To set both passwords to null, specify /NOPASSWORD.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, the user is forced to change the password (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.

/PBYTLM
This flag is reserved for HP.

/PGFLQUOTA=value
Specifies the paging file limit. This is the maximum number of pages that the person's process can use in the system paging file. By default, the value is 32768 pages on VAX systems and 50000 pagelets on Alpha systems.

If decompressing libraries, make sure to set PGFLQUOTA to twice the size of the library.

/PRCLM=value
Specifies the subprocess creation limit. This is the maximum number of subprocesses that can exist at one time for the specified user's process. By default, the value is 2 on VAX systems and 8 on Alpha systems.

/PRIMEDAYS=[NO]day[,...]
Defines the primary and secondary days of the week for logging in. Specify the days as a list separated by commas, and enclose the list in parentheses. To specify a secondary day, prefix the day with NO (for example, NOFRIDAY). To specify a primary day, omit the NO prefix.

By default, primary days are Monday through Friday and secondary days are Saturday and Sunday. If you omit a day from the list, AUTHORIZE uses the default value. (For example, if you omit Monday from the list, AUTHORIZE defines Monday as a primary day.)

Use the primary and secondary day definitions in conjunction with such qualifiers as /ACCESS, /INTERACTIVE, and /BATCH.

/PRIORITY=value
Specifies the default base priority. The value is an integer in the range of 0 to 31 on VAX systems and 0 to 63 on Alpha systems. By default, the value is set to 4 for timesharing users.

/PRIVILEGES=[NO]privname[,...]
Specifies which privileges the user is authorized to hold, although these privileges are not necessarily enabled at login. (The /DEFPRIVILEGES qualifier determines which ones are enabled.) A NO prefix removes the privilege from the user. The keyword NOALL disables all user privileges. Many privileges have varying degrees of power and potential system impact (see the HP OpenVMS Guide to System Security for a detailed discussion). By default, a user holds TMPMBX and NETMBX privileges. Privname is the name of the privilege.
/PWDEXPIRED (default)
/NOPWDEXPIRED
Specifies the password is valid for only one login. A user must change a password
immediately after login or be locked out of the system. The system warns users
of password expiration. A user can either specify a new password, with the DCL
command SET PASSWORD, or wait until expiration and be forced to change. By
default, a user must change a password when first logging in to an account. The
default is applied to the account only when the password is being modified.

/PWDLIFETIME=time (default)
/NOPWDLIFETIME
Specifies the length of time a password is valid. Specify a delta time value in the
form [dd:hh:mm:ss.cc]. For example, for a lifetime of 120 days, 0 hours, and
0 seconds, specify /PWDLIFETIME="120-". For a lifetime of 120 days 12 hours,
30 minutes and 30 seconds, specify /PWDLIFETIME="120-12:30:30". If a period
longer than the specified time elapses before the user logs in, the system displays
a warning message. The password is marked as expired.

To prevent a password from expiring, specify the time as NONE. By default, a
password expires in 90 days.

/PWDMINIMUM=value
Specifies the minimum password length in characters. Note that this value
is enforced only by the DCL command SET PASSWORD. It does not prevent
you from entering a password shorter than the minimum length when you use
AUTHORIZE to create or modify an account. By default, a password must have
at least 6 characters. The value specified by the /PWDMINIMUM qualifier
conflicts with the value used by the /GENERATE_PASSWORD qualifier or the
DCL command SET PASSWORD/GENERATE, the operating system chooses the
lesser value. The maximum value for generated passwords is 10.

/QUEPRIO=value
Reserved for future use.

/REMOTE=(range[,...])
Specifies hours during which access is permitted for interactive logins from
network remote terminals (with the DCL command SET HOST). For a description
of the range specification, see the /ACCESS qualifier. By default, remote logins
have no access restrictions.

/SHRFILLM=value
Specifies the maximum number of shared files that the user can have open at one
time. By default, the system assigns a value of 0, which represents an infinite
number.

/TQELM
Specifies the total number of entries in the timer queue plus the number of
temporary common event flag clusters that the user can have at one time. By
default, a user can have 10.

/UIC=value
Specifies the user identification code (UIC). The UIC value is a group number in
the range from 1 to 37776 (octal) and a member number in the range from 0 to
177776 (octal), which are separated by a comma and enclosed in brackets. HP
reserves group 1 and groups 300–377 for its own use.

Each user must have a unique UIC. By default, the UIC value is [200,200].
/WSDEFAULT=value
Specifies the default working set limit. This represents the initial limit to the number of physical pages the process can use. (The user can alter the default quantity up to WSQUOTA with the DCL command SET WORKING_SET.) By default, a user has 256 pages on VAX systems and 2000 pagelets on Alpha systems.

The value cannot be greater than WSMAX. This quota value replaces smaller values of PQL_MWSDEFAULT.

/WSEXTENT=value
Specifies the working set maximum. This represents the maximum amount of physical memory allowed to the process. The system provides memory to a process beyond its working set quota only when it has excess free pages. The additional memory is recalled by the system if needed.

The value is an integer equal to or greater than WSQUOTA. By default, the value is 1024 pages on VAX systems and 16384 pagelets on Alpha systems. The value cannot be greater than WSMAX. This quota value replaces smaller values of PQL_MWSEXTENT.

/WSQUOTA=value
Specifies the working set quota. This is the maximum amount of physical memory a user process can lock into its working set. It also represents the maximum amount of swap space that the system reserves for this process and the maximum amount of physical memory that the system allows the process to consume if the systemwide memory demand is significant.

The value cannot be greater than the value of WSMAX and cannot exceed 64K pages. This quota value replaces smaller values of PQL_MWSQUOTA.

Description
Modify the DEFAULT record when qualifiers normally assigned to a new user differ from the HP-supplied values. The following qualifiers correspond to fields in the default record that are commonly modified:

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Reason for Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CLI</td>
<td>Specifies the default Command Line Interpreter to be used for this user. (Most OpenVMS users use the DCL command interpreter.)</td>
</tr>
<tr>
<td>/DEVICE</td>
<td>If most users have the same default login device, allows you to specify a default login device for newly-created users. The use of a logical name is recommended.</td>
</tr>
</tbody>
</table>
Qualifier | Reason for Modification
---|---
/LGICMD | Specifies the filename of a command procedure to be invoked during the login of the user.

1. OpenVMS first looks for a systemwide login command procedure, using the systemwide logical name SYS$SYLOGIN. If this logical name successfully translates to a valid file specification, the command interpreter invokes the resulting command procedure during login.

 If the file specification does not include a file extension, the command interpreter applies a default value that is specific to that command interpreter. In the case of the DCL interpreter, the default file extension is .COM.

2. OpenVMS then looks for a LGICMD specification. If it finds this specification, OpenVMS invokes the command procedure.

 If the LGICMD specification does not include a file extension, the current command interpreter applies a default value. In the case of the DCL interpreter, the default file extension is .COM.

You can disable or override the command procedure invocation during login by specifying qualifiers such as /NOCOMMAND or /LGICMD at the login username prompt. Also see the CAPTIVE and RESTRICTED flags.

/PRIVILEGES | When users are given different privileges than those supplied by HP.
Quota qualifiers | When the default quotas are insufficient or inappropriate for mainstream work.

Example

```
UAF> DEFAULT /DEVICE=SYS$USER/LGICMD=SYS$MANAGER:SECURELGN -
UAF> /PRIVILEGES=(TMPMBX,GRPNAM,GROUP)
%UAF-I-MDFYMSG, user record(s) updated

The command in this example modifies the DEFAULT record, changing the default device, default login command file, and default privileges.
```
EXIT

Enables you to exit from AUTHORIZE and return to DCL command level. You can also return to command level by pressing Ctrl/Z.

Format

EXIT

Parameters

None.

Qualifiers

None.
AUTHORIZE
GRANT/IDENTIFIER

GRANT/IDENTIFIER

Assigns the specified identifier to the user and documents the user as a holder of the identifier in the rights database.

Format

GRANT/IDENTIFIER id-name user-spec

Parameters

id-name
Specifies the identifier name. The identifier name is a string of 1 to 31 alphanumeric characters that can contain underscores and dollar signs. The name must contain at least one nonnumeric character.

user-spec
Specifies the UIC identifier that uniquely identifies the user on the system. This type of identifier appears in alphanumeric format. For example: [GROUP1,JONES].

Qualifier

/ATTRIBUTES=(keyword[,...])
Specifies attributes to be associated with the identifier. The following are valid keywords:

DYNAMIC Allows unprivileged holders of the identifier to remove and to restore the identifier from the process rights list by using the DCL command SET RIGHTS_LIST.

HOLDER_HIDDEN Prevents people from getting a list of users who hold an identifier, unless they own the identifier themselves.

NAME_HIDDEN Allows holders of an identifier to have it translated, either from binary to ASCII or from ASCII to binary, but prevents unauthorized users from translating the identifier.

NOACCESS Makes any access rights of the identifier null and void. If a user is granted an identifier with the No Access attribute, that identifier has no effect on the user's access rights to objects. This attribute is a modifier for an identifier with the Resource or Subsystem attribute.

RESOURCE Allows holders of an identifier to charge disk space to the identifier. Used only for file objects.

SUBSYSTEM Allows holders of the identifier to create and maintain protected subsystems by assigning the Subsystem ACE to the application images in the subsystem. Used only for file objects.

To remove an attribute from the identifier, add a NO prefix to the attribute keyword. For example, to remove the Resource attribute, specify /ATTRIBUTES=NORESOURCE.
Example

UAF> GRANT/IDENTIFIER INVENTORY [300,015]
%UAF-I-GRANTMSG, identifier INVENTORY granted to CRAMER

The command in this example grants the identifier INVENTORY to the user named Cramer who has UIC [300,015]. Cramer becomes the holder of the identifier and any resources associated with it. The following command produces the same result:

UAF> GRANT/IDENTIFIER INVENTORY CRAMER
HELP

Displays information concerning the use of AUTHORIZE, including formats and explanations of commands, parameters, and qualifiers.

Format

HELP [keyword[,...]]

Parameter

keyword[,...]
Specifies one or more keywords that refer to the topic, command, qualifier, or parameter on which you want information from the AUTHORIZE HELP command.

Qualifiers

None.

Description

If you do not specify a keyword, HELP displays information about the topics and commands for which help is available. It then prompts you with “Topic?”. You can supply a topic or a command name, or press Return. When you specify a command name and qualifiers, you get detailed information about that command. If you respond by pressing Return, you exit from help. You can also exit from help by pressing Ctrl/Z.

If the command you request accepts qualifiers, the display of the help information about the command is followed by the prompt “Subtopic?”. Respond to this prompt with a qualifier name, or press Return. If you respond by pressing Return, HELP prompts with “Topic?”. If you want to exit from help directly from this level, press Ctrl/Z.

Examples

1. UAF> HELP ADD

The HELP command in this example displays information about the ADD command:

ADD

Adds a user record to the SYSUAF and corresponding identifiers to the rights database.

Format

ADD newusername

Additional information available:
2. **UAF> HELP MODIFY/WSDEFAULT**

 The command in this example displays information about the /WSDEFAULT qualifier:

 MODIFY

 `/WSDEFAULT=value`

 Specifies the default working set size. This represents the initial limit to the number of physical pages the process can use. (The user can alter the default quantity up to WSQUOTA with the DCL command SET WORKING_SET.) The minimum value is 50 pages (on VAX systems) and 150 pagelets (on Alpha systems). By default, a user has 150 pages (on VAX systems) and 150 pagelets (on Alpha systems).
LIST

Writes reports for selected UAF records to a listing file, SYSUAF.LIS, which is placed in the current default directory.

Note

LIST/IDENTIFIER, LIST/PROXY, and LIST/RIGHTS are documented as separate commands.

Format

LIST [user-spec]

Parameter

user-spec

Specifies the user name or UIC of the requested UAF record. Without the user-spec parameter, AUTHORIZE lists the user records of all users. The asterisk (*) and percent sign (%) wildcards are permitted in the user name.

Qualifiers

/BRIEF

Specifies that a brief report be written to SYSUAF.LIS. The /BRIEF qualifier is the default qualifier. SYSUAF.LIS is placed in the default directory.

/FULL

Specifies that a full report be written to SYSUAF.LIS, including identifiers held by the user. SYSUAF.LIS is placed in the SYS$SYSTEM directory.

Description

The LIST command creates a listing file of reports for selected UAF records. Print the listing file, SYSUAF.LIS, with the DCL command PRINT.

Specification of a user name results in a single-user report. Specification of the asterisk wildcard character following the LIST command results in reports for all users in ascending sequence by user name. Specification of a UIC results in reports for all users with that UIC. (HP recommends that you assign each user a unique UIC, but if users share a UIC, the report will show all users with that UIC.) You can use the asterisk wildcard character to specify the UIC.

The following table shows how to specify a UIC with the LIST command and use the asterisk wildcard character with the UIC specification to produce various types of reports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST [14,6]</td>
<td>Lists a full report for the user (or users) with member number 6 in group 14.</td>
</tr>
<tr>
<td>LIST [14,*] /BRIEF</td>
<td>Lists a brief report for all users in group 14, in ascending sequence by member number.</td>
</tr>
</tbody>
</table>
Command | **Description**
--- | ---
LIST [{*},6] /BRIEF | Lists a brief report for all users with a member number of 6.
LIST [{*},*] /BRIEF | Lists a brief report for all users, in ascending sequence by UIC.

Although you must provide separate UICs for each user, the LIST command reports users with the same UIC in the order in which they were added to the SYSUAF. Full reports list the details of the limits, privileges, login flags, and command interpreter. Brief reports do not include the limits, login flags, or command interpreter, nor do they summarize the privileges. AUTHORIZE never displays the password for an account.

See the SHOW command for examples of brief and full reports.

Examples

1. **UAF> LIST ROBIN/FULL**
 %UAF-I-LSTMSG1, writing listing file
 %UAF-I-LSTMSG2, listing file SYSUAF.LIS complete

 This command lists a full report for the user record ROBIN.

2. **UAF> LIST ***
 %UAF-I-LSTMSG1, writing listing file
 %UAF-I-LSTMSG2, listing file SYSUAF.LIS complete

 This command results in brief reports for all users in ascending sequence by user name. Note, however, that this is the same result you would produce had you omitted the asterisk wildcard.

3. **UAF> LIST [300,*]**
 %UAF-I-LSTMSG1, writing listing file
 %UAF-I-LSTMSG2, listing file SYSUAF.LIS complete

 This command lists a brief report for all user records with a group UIC of 300.
LIST/IDENTIFIER

Creates a listing file (RIGHTSLIST.LIS) in which identifier names, attributes, values, and holders are written.

Format

LIST/IDENTIFIER [id-name]

Parameter

id-name
Specifies an identifier name. You can specify the asterisk wildcard character (*) to list all identifiers. If you omit the identifier name, you must specify /USER or /VALUE.

Qualifiers

/BRIEF
Specifies a brief listing in which only the identifier name, value, and attributes appear.

/FULL
Specifies a full listing, in which the names of the identifier’s holders are displayed along with the identifier’s name, value, and attributes. The /FULL qualifier specifies the default listing format.

/USER=user-spec
Specifies one or more users whose identifiers are to be listed. The user-spec can be a user name or UIC. You can use the asterisk wildcard character (*) to specify multiple user names or UICs. UICs must be in the form [*,*], [n,*], [*], or [*,n]. A wildcard user name specification (*) lists identifiers alphabetically by user name; a wildcard UIC specification ([*,*]) lists them numerically by UIC.

/VALUE=value-specifier
Specifies the value of the identifier to be listed. The following formats are valid for the value-specifier:

IDENTIFIER:n An integer value in the range 65,536 to 268,435,455. You can also specify the value in hexadecimal (precede the value with %X) or octal (precede the value with %O).
To differentiate general identifiers from UIC identifiers, %X80000000 is added to the value you specify.

GID:n GID is the POSIX group identifier. It is an integer value in the range 0 to 16,777,215 (%XFFFFFF). The system will add %XA400.0000 to the value you specify and then enter this new value into the system RIGHTSLIST as an identifier.

UIC:uic A UIC value in the standard UIC format.
Description

The LIST/IDENTIFIER command creates a listing file in which identifier names, attributes, values, and holders are displayed in various formats depending on the qualifiers specified. Two of these formats are illustrated in the description of the SHOW/IDENTIFIER command.

Print the listing file named RIGHTSLIST.LIS with the DCL command PRINT.

Examples

1. UAF> LIST/IDENTIFIER INVENTORY
 %UAF-I-LSTMSG1, writing listing file
 %UAF-I-RLSTMSG, listing file RIGHTSLIST.LIS complete

 The command in this example generates a full listing for the identifier INVENTORY, including its value (in hexadecimal), holders, and attributes.

2. UAF> LIST/IDENTIFIER/USER=ANDERSON
 %UAF-I-LSTMSG1, writing listing file
 %UAF-I-RLSTMSG, listing file RIGHTSLIST.LIS complete

 This command lists an identifier associated with the user ANDERSON, along with its value and attributes. Note, however, that this is the same result you would produce had you specified ANDERSON's UIC with the following forms of the command:

 UAF> LIST/IDENTIFIER/USER=[300,015]

 UAF> LIST/IDENTIFIER/VALUE=UIC:[300,015]
LIST/PROXY

Creates a listing file of the network proxy database entries from the network database file NET$PROXY.DAT.

Format

LIST/PROXY

Parameters

None.

Qualifiers

/OLD
Directs AUTHORIZE to display information from the NETPROXY.DAT file rather than from the default file NET$PROXY.DAT.

If someone modifies the proxy database on a cluster node that is not running the current OpenVMS VAX system, then you can use the /OLD qualifier to list the contents of the old database: NETPROXY.DAT.

Description

Use the DCL command PRINT to print the listing file, NETPROXY.LIS. The output assumes the same format as that of the SHOW/PROXY command. For an example of the output format, see the description of the SHOW/PROXY command.

Example

UAF> LIST/PROXY/OLD
%UAF-I-LSTMSG1, writing listing file
%UAF-I-NETLSTMSG, listing file NETPROXY.LIS complete

The command in this example creates a listing file of all the entries in the network proxy database NETPROXY.DAT.
LIST/RIGHTS

Lists identifiers held by the specified identifier or, if /USER is specified, all identifiers held by the specified users.

Format

LIST/RIGHTS [id-name]

Parameter

id-name
Specifies the name of the identifier associated with the user. If you omit the identifier name, you must specify the /USER qualifier.

Qualifier

/USER=usr-spec
Specifies a user whose identifiers are to be listed. The user-spec can be a user name or UIC. You can use the asterisk wildcard character (*) to specify multiple UICs or all user names. UICs must be in the form [*,*], [n,*], [*,,n], or [n,n]. A wildcard user name specification (*) or wildcard UIC specification ([*,*]) lists all identifiers held by users. The wildcard user name specification lists holders’ user names alphabetically; the wildcard UIC specification lists them in the numerical order of their UICs.

Description

Use the DCL command PRINT to print the listing file (RIGHTSLIST.LIS) produced by the LIST/RIGHTS command. For an example of the output format, see the description of the SHOW/RIGHTS command.

Example

UAF> LIST/RIGHTS PAYROLL
%UAF-I-LSTMSG1, writing listing file
%UAF-I-RLSTMSG, listing file RIGHTSLIST.LIS complete

The command in this example lists identifiers held by PAYROLL, providing PAYROLL is the name of a UIC format identifier.
AUTHORIZE
MODIFY

MODIFY

Changes values in a SYSUAF user record. Qualifiers not specified in the command remain unchanged.

Note

MODIFY/IDENTIFIER, MODIFY/PROXY, and MODIFY/SYSTEM_PASSWORD are documented as separate commands.

Format

MODIFY username /qualifier[,...]

Parameter

username
Specifies the name of a user in the SYSUAF. The asterisk (*) and percent sign (%) wildcard characters are permitted in the user name. When you specify a single asterisk for the user name, you modify the records of all users.

Qualifiers

/ACCESS=(range[,...])
/NOACCESS=(range[,...])

Specifies hours of access for all modes of access. The syntax for specifying the range is:

/[NO]ACCESS=((PRIMARY), [n-m], [n], [...],[SECONDARY], [n-m], [n], [...])

Specify hours as integers from 0 to 23, inclusive. You can specify single hours (n) or ranges of hours (n-m). If the ending hour of a range is earlier than the starting hour, the range extends from the starting hour through midnight to the ending hour. The first set of hours after the keyword PRIMARY specifies hours on primary days; the second set of hours after the keyword SECONDARY specifies hours on secondary days. Note that hours are inclusive; that is, if you grant access during a given hour, access extends to the end of that hour.

By default, a user has full access every day. See the DCL command SET DAY in the HP OpenVMS DCL Dictionary for information about overriding the defaults for primary and secondary day types.

All the list elements are optional. Unless you specify hours for a day type, access is permitted for the entire day. By specifying an access time, you prevent access at all other times. Adding NO to the qualifier denies the user access to the system for the specified period of time. See the following examples.

/ACCESS Allows unrestricted access
/NOACCESS=SECONDARY Allows access on primary days only
/ACCESS=(9-17) Allows access from 9 A.M. to 5:59 P.M. on all days
/NOACCESS=(PRIMARY, 9-17, SECONDARY, 18-8) Disallows access between 9 A.M. to 5:59 P.M. on primary days but allows access during these hours on secondary days.

To specify access hours for specific types of access, see the /BATCH, /DIALUP, /INTERACTIVE, /LOCAL, /NETWORK, and /REMOTE qualifiers.

Refer to *HP OpenVMS Guide to System Security* for information about the effects of login class restrictions.

/ACCOUNT=account-name
Specifies the default name for the account (for example, a billing name or number). The name can be a string of 1 to 8 alphanumeric characters. By default, AUTHORIZE does not assign an account name.

/ALGORITHM=keyword=type [=value]
Sets the password encryption algorithm for a user. The keyword VMS refers to the algorithm used in the operating system version that is running on your system, whereas a customer algorithm is one that is added through the $HASH_PASSWORD system service by a customer site, by a layered product, or by a third party. The customer algorithm is identified in $HASH_PASSWORD by an integer in the range of 128 to 255. It must correspond with the number used in the AUTHORIZE command MODIFY/ALGORITHM. By default, passwords are encrypted with the VMS algorithm for the current version of the operating system.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTH</td>
<td>Set the algorithm for primary and secondary passwords.</td>
</tr>
<tr>
<td>CURRENT</td>
<td>Set the algorithm for the primary, secondary, both, or no passwords, depending on account status. CURRENT is the default value.</td>
</tr>
<tr>
<td>PRIMARY</td>
<td>Set the algorithm for the primary password only.</td>
</tr>
<tr>
<td>SECONDARY</td>
<td>Set the algorithm for the secondary password only.</td>
</tr>
</tbody>
</table>

The following table lists password encryption algorithms:

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMS</td>
<td>The algorithm used in the version of the operating system that is running on your system.</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>A numeric value in the range of 128 to 255 that identifies a customer algorithm.</td>
</tr>
</tbody>
</table>

The following example selects the VMS algorithm for Sontag’s primary password:

UAF> MODIFY SONTAG/ALGORITHM=PRIMARY=VMS

If you select a site-specific algorithm, you must give a value to identify the algorithm, as follows:

UAF> MODIFY SONTAG/ALGORITHM=CURRENT=CUSTOMER=128
/ASTLM=value
Specifies the AST queue limit, which is the total number of asynchronous system trap (AST) operations and scheduled wake-up requests that the user can have queued at one time. The default is 40 on VAX systems and 250 on Alpha systems.

/BATCH=[(range[,...])]
Specifies the hours of access permitted for batch jobs. For a description of the range specification, see the /ACCESS qualifier. By default, a user can submit batch jobs any time.

/BIOLM=value
Specifies a buffered I/O count limit for the BIOLM field of the UAF record. The buffered I/O count limit is the maximum number of buffered I/O operations, such as terminal I/O, that can be outstanding at one time. The default is 40 on VAX systems and 150 on Alpha systems.

/BYTL value
Specifies the buffered I/O byte limit for the BYTLM field of the UAF record. The buffered I/O byte limit is the maximum number of bytes of nonpaged system dynamic memory that a user’s job can consume at one time. Nonpaged dynamic memory is used for operations such as I/O buffering, mailboxes, and file-access windows. The default is 32768 on VAX systems and 64000 on Alpha systems.

/CLI=cli-name
Specifies the name of the default command language interpreter (CLI) for the CLI field of the UAF record. The cli-name is a string of 1 to 31 alphanumeric characters and should be DCL, which is the default. This setting is ignored for network jobs.

/CLITABLES=filespec
Specifies user-defined CLI tables for the account. The filespec can contain 1 to 31 characters. The default is SYS$LIBRARY:DCLTABLES. Note that this setting is ignored for network jobs to guarantee that the system-supplied command procedures used to implement network objects function properly.

/CPUTIME=time
Specifies the maximum process CPU time for the CPU field of the UAF record. The maximum process CPU time is the maximum amount of CPU time a user’s process can take per session. You must specify a delta time value. For a discussion of delta time values, refer to the OpenVMS User’s Manual. The default is 0, which means an infinite amount of time.

/DEFPRI LEGES=&([NO]privname[,...])
Specifies default privileges for the user; that is, those enabled at login time. A NO prefix removes a privilege from the user. By specifying the keyword [NO]ALL with the /DEFPRILEGES qualifier, you can disable or enable all user privileges. The default privileges are TMPMBX and NETMBX. Privname is the name of the privilege.

/DEV ICE=device-name
Specifies the name of the user’s default device at login. The device-name is a string of 1 to 31 alphanumeric characters. If you omit the colon from the device-name value, AUTHORIZE appends a colon. The default device is SYS$SYSDISK.
If you specify a logical name as the *device-name* (for example, DISK1: for DUA1:), you must make an entry for the logical name in the LNM\$SYSTEM_TABLE in executive mode by using the DCL command DEFINE/SYSTEM/EXEC.

/DIALUP[=(range[,...])]
Specifies hours of access permitted for dialup logins. For a description of the range specification, see the /ACCESS qualifier. The default is full access.

/DIOLM=value
Specifies the direct I/O count limit for the DIOLM field of the UAF record. The direct I/O count limit is the maximum number of direct I/O operations (usually disk) that can be outstanding at one time. The default is 40 on VAX systems and 150 on Alpha systems.

/DIRECTORY=directory-name
Specifies the default directory name for the DIRECTORY field of the UAF record. The directory-name can be 1 to 39 alphanumeric characters. If you do not enclose the directory name in brackets, AUTHORIZE adds the brackets for you. The default directory name is [USER].

/ENQLM=value
Specifies the lock queue limit for the ENQLM field of the UAF record. The lock queue limit is the maximum number of locks that can be queued by the user at one time. The default is 200 on VAX systems and 2000 on Alpha systems.

/EXPIRATION=time (default)
/NOEXPIRATION
Specifies the expiration date and time of the account. The /NOEXPIRATION qualifier removes the expiration date on the account. If you do not specify an expiration time when you add a new account, AUTHORIZE copies the expiration time from the DEFAULT account. (The expiration time on the DEFAULT account is "none" by default.)

/FILLM=value
Specifies the open file limit for the FILLM field of the UAF record. The open file limit is the maximum number of files that can be open at one time, including active network logical links. The default is 300 on VAX systems and 100 on Alpha systems.

/FLAGS=((NO)option[,...])
Specifies login flags for the user. The prefix NO clears the flag. The options are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIT</td>
<td>Enables or disables mandatory security auditing for a specific user. By default, the system does not audit the activities of specific users (NOAUDIT).</td>
</tr>
<tr>
<td>AUTOLOGIN</td>
<td>Restricts the user to the automatic login mechanism when logging in to an account. When set, the flag disables login by any terminal that requires entry of a user name and password. The default is to require a user name and password (NOAUTOLOGIN).</td>
</tr>
</tbody>
</table>
CAPTIVE Prevents the user from changing any defaults at login, for example, /CLI or /LGICMD. It prevents the user from escaping the captive login command procedure specified by the /LGICMD qualifier and gaining access to the DCL command level. Refer to “Guidelines for Captive Command Procedures” in the HP OpenVMS Guide to System Security. The CAPTIVE flag also establishes an environment where Ctrl/Y interrupts are initially turned off; however, command procedures can still turn on Ctrl/Y interrupts with the DCL command SET CONTROL=Y. By default, an account is not captive (NOCAPTIVE).

DEFCLI Restricts the user to the default command interpreter by prohibiting the use of the /CLI qualifier at login. By default, a user can choose a CLI (NODEFCLI).

DISCTLY Establishes an environment where Ctrl/Y interrupts are initially turned off and are invalid until a SET CONTROL=Y is encountered. This could happen in SYLOGIN.COM or in a procedure called by SYLOGIN.COM. Once a SET CONTROL=Y is executed (which requires no privilege), a user can enter a Ctrl/Y and reach the DCL prompt ($). If the intent of DISCTLY is to force execution of the login command files, then SYLOGIN.COM should issue the DCL command SET CONTROL=Y to turn on Ctrl/Y interrupts before exiting. By default, Ctrl/Y is enabled (NODISCTLY).

DISFORCE_PWD_CHANGE Removes the requirement that a user must change an expired password at login. By default, a person can use an expired password only once (NODISFORCE_PWD_CHANGE) and then is forced to change the password after logging in. If the user does not select a new password, the user is locked out of the system.

To use this feature, set a password expiration date with the /PWDLIFETIME qualifier.

DISIMAGE Prevents the user from executing RUN and foreign commands. By default, a user can execute RUN and foreign commands (NODISIMAGE).

DISMAIL Disables mail delivery to the user. By default, mail delivery is enabled (NODISMAIL).

DISNEWMAIL Suppresses announcements of new mail at login. By default, the system announces new mail (NODISNEWMAIL).

DISPWDDIC Disables automatic screening of new passwords against a system dictionary. By default, passwords are automatically screened (NODISPWDDIC).

DISPWDHIS Disables automatic checking of new passwords against a list of the user’s old passwords. By default, the system screens new passwords (NODISPWDHIS).
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPWDSYNCH</td>
<td>Suppresses synchronization of the external password for this account. See bit 9 in the SECURITY_POLICY system parameter for systemwide password synchronization control.</td>
</tr>
<tr>
<td>DISRECONNECT</td>
<td>Disables automatic reconnection to an existing process when a terminal connection has been interrupted. By default, automatic reconnection is enabled (NODISRECONNECT).</td>
</tr>
<tr>
<td>DISREPORT</td>
<td>Suppresses reports of the last login time, login failures, and other security reports. By default, login information is displayed (NODISREPORT).</td>
</tr>
<tr>
<td>DISUSER</td>
<td>Disables the account so the user cannot log in. For example, the DEFAULT account is disabled. By default, an account is enabled (NODISUSER).</td>
</tr>
<tr>
<td>DISWELCOME</td>
<td>Suppresses the welcome message (an informational message displayed during a local login). This message usually indicates the version number of the operating system that is running and the name of the node on which the user is logged in. By default, a system login message appears (NODISWELCOME).</td>
</tr>
<tr>
<td>EXTAUTH</td>
<td>Considers user to be authenticated by an external user name and password, not by the SYSUAF user name and password. (The system still uses the SYSUAF record to check a user's login restrictions and quotas and to create the user's process profile.)</td>
</tr>
<tr>
<td>GENPWD</td>
<td>Restricts the user to generated passwords. By default, users choose their own passwords (NOGENPWD).</td>
</tr>
<tr>
<td>LOCKPWD</td>
<td>Prevents the user from changing the password for the account. By default, users can change their passwords (NOLOCKPWD).</td>
</tr>
<tr>
<td>PWD_EXPIRED</td>
<td>Marks a password as expired. The user cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user's password expires. A system manager can clear this flag. By default, passwords are not expired after login (NOPWD_EXPIRED).</td>
</tr>
<tr>
<td>PWD2_EXPIRED</td>
<td>Marks a secondary password as expired. Users cannot log in if this flag is set. The LOGINOUT.EXE image sets the flag when both of the following conditions exist: a user logs in with the DISFORCE_PWD_CHANGE flag set, and the user’s password expires. A system manager can clear this flag. By default, passwords are not set to expire after login (NOPWD2_EXPIRED).</td>
</tr>
</tbody>
</table>
PWDMIX Enables case-sensitive and extended-character passwords. After PWDMIX is specified, you can then use mixed-case and extended characters in passwords. Be aware that before the PWDMIX flag is enabled, the system stores passwords in all upper-case. Therefore, until you change passwords, you must enter your pre-PWDMIX passwords in upper-case.

To change the password after PWDMIX is enabled:

- You (the user) can use the DCL command SET PASSWORD, specifying the new mixed-case password (omitting quotation marks).
- You (the system manager) can use the AUTHORIZE command MODIFY/PASSWORD, and enclose the user’s new mixed-case password in quotation marks " ".

RESTRICTED Prevents the user from changing any defaults at login (for example, by specifying /LGICMD) and prohibits user specification of a CLI with the /CLI qualifier. The RESTRICTED flag establishes an environment where Ctrl/Y interrupts are initially turned off; however, command procedures can still turn on Ctrl/Y interrupts with the DCL command SET CONTROL=Y. Typically, this flag is used to prevent an applications user from having unrestricted access to the CLI. By default, a user can change defaults (NORESTRICTED).

VMSAUTH Allows account to use standard (SYSUAF) authentication when the EXTAUTH flag would otherwise require external authentication. This depends on the application. An application specifies the VMS domain of interpretation when calling SYS$ACM to request standard VMS authentication for a user account that normally uses external authentication.

/GENERATE_PASSWORD[=keyword]
/NOGENERATE_PASSWORD (default)
Invokes the password generator to create user passwords. Generated passwords can consist of 1 to 10 characters. Specify one of the following keywords:

BOTH Generate primary and secondary passwords.
CURRENT Do whatever the DEFAULT account does (for example, generate primary, secondary, both, or no passwords). This is the default keyword.
PRIMARY Generate primary password only.
SECONDARY Generate secondary password only.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, users are forced to change their passwords (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.
/INTERACTIVE[=(range[,...])]

/NOINTERACTIVE
Specifies the hours of access for interactive logins. For a description of the
range specification, see the /ACCESS qualifier. By default, there are no access
restrictions on interactive logins.

/JTQUOTA=value
Specifies the initial byte quota with which the jobwide logical name table is to
be created. By default, the value is 4096 on VAX systems and 4096 on Alpha
systems.

/LGICMD=filespec
Specifies the name of the default login command file. The file name defaults to
the device specified for /DEVICE, the directory specified for /DIRECTORY, a file
name of LOGIN, and a file type of .COM. If you select the defaults for all these
values, the file name is SYS$SYSTEM:[USER]LOGIN.COM.

/LOCAL[=(range[,...])]
Specifies hours of access for interactive logins from local terminals. For a
description of the range specification, see the /ACCESS qualifier. By default,
there are no access restrictions on local logins.

/MAXACCTJOBS=value
Specifies the maximum number of batch, interactive, and detached processes that
can be active at one time for all users of the same account. By default, a user has
a maximum of 0, which represents an unlimited number.

/MAXDETACH=value
Specifies the maximum number of detached processes with the cited user name
that can be active at one time. To prevent the user from creating detached
processes, specify the keyword NONE. By default, a user has a value of 0, which
represents an unlimited number.

/MAXJOBS=value
Specifies the maximum number of processes (interactive, batch, detached, and
network) with the cited user name that can be active simultaneously. The first
four network jobs are not counted. By default, a user has a maximum value of 0,
which represents an unlimited number.

/MODIFY_IDENTIFIER (default)
/NOMODIFY_IDENTIFIER
Specifies whether the identifier associated with the user is to be modified in the
rights database. This qualifier applies only when you modify the UIC or user
name in the UAF record. By default, the associated identifiers are modified.

/NETWORK[=(range[,...])]
Specifies hours of access for network batch jobs. For a description of how to
specify the range, see the /ACCESS qualifier. By default, network logins have no
access restrictions.

/OWNER=owner-name
Specifies the name of the owner of the account. You can use this name for billing
purposes or similar applications. The owner name is 1 to 31 characters. No
default owner name exists.
/PASSWORD=(password1[,password2])
/NOPASSWORD
Specifies up to two passwords for login. Passwords can be from 0 to 32 alphanumeric characters in length. The dollar sign ($) and underscore (_) are also permitted.

Uppercase and lowercase characters are equivalent. All lowercase characters are converted to uppercase before the password is encrypted. Avoid using the word password as the actual password.

Use the /PASSWORD qualifier as follows:

- To set only the first password and clear the second, specify /PASSWORD=password.
- To set both the first and second password, specify /PASSWORD=(password1, password2).
- To change the first password without affecting the second, specify /PASSWORD=(password, "").
- To change the second password without affecting the first, specify /PASSWORD=("", password).
- To set both passwords to null, specify /NOPASSWORD.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, the user is forced to change the password (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.

/PBYTLM
This flag is reserved for HP.

/PGFLQUOTA=value
Specifies the paging file limit. This is the maximum number of pages that the person’s process can use in the system paging file. By default, the value is 32768 pages on VAX systems and 50000 pagelets on Alpha systems.

If decompressing libraries, make sure to set PGFLQUOTA to twice the size of the library.

/PRCLM=value
Specifies the subprocess creation limit. This is the maximum number of subprocesses that can exist at one time for the specified user’s process. By default, the value is 2 on VAX systems and 8 on Alpha systems.

/PRIMEDAYS=((NO)day[,...])
Defines the primary and secondary days of the week for logging in. Specify the days as a list separated by commas, and enclose the list in parentheses. To specify a secondary day, prefix the day with NO (for example, NOFRIDAY). To specify a primary day, omit the NO prefix.

By default, primary days are Monday through Friday and secondary days are Saturday and Sunday. If you omit a day from the list, AUTHORIZE uses the default value. (For example, if you omit Monday from the list, AUTHORIZE defines Monday as a primary day.)
Use the primary and secondary day definitions in conjunction with such qualifiers as /ACCESS, /INTERACTIVE, and /BATCH.

/PRIVILEGES=(NO)privname[,...])
Specifies which privileges the user is authorized to hold, although these privileges are not necessarily enabled at login. (The /DEFPRIVILEGES qualifier determines which ones are enabled.) A NO prefix removes the privilege from the user. The keyword NOALL disables all user privileges. Many privileges have varying degrees of power and potential system impact (see the HP OpenVMS Guide to System Security for a detailed discussion). By default, a user holds TMPMBX and NETMBX privileges. Privname is the name of the privilege.

/PWDEXPIRED (default)
/NOPWDEXPIRED
Specifies the password is valid for only one login. A user must change a password immediately after login or be locked out of the system. The system warns users of password expiration. A user can either specify a new password, with the DCL command SET PASSWORD, or wait until expiration and be forced to change. By default, a user must change a password when first logging in to an account. The default is applied to the account only when the password is being modified.

/PWDLIFETIME=time (default)
/NOPWDLIFETIME
Specifies the length of time a password is valid. Specify a delta time value in the form [ddds-] [hh:mm:ss.cc]. For example, for a lifetime of 120 days, 0 hours, and 0 seconds, specify /PWDLIFETIME="120-". For a lifetime of 120 days 12 hours, 30 minutes and 30 seconds, specify /PWDLIFETIME="120-12:30:30". If a period longer than the specified time elapses before the user logs in, the system displays a warning message. The password is marked as expired.

To prevent a password from expiring, specify the time as NONE. By default, a password expires in 90 days.

/PWDMINIMUM=value
Specifies the minimum password length in characters. Note that this value is enforced only by the DCL command SET PASSWORD. It does not prevent you from entering a password shorter than the minimum length when you use AUTHORIZE to create or modify an account. By default, a password must have at least 6 characters. The value specified by the /PWDMINIMUM qualifier conflicts with the value used by the /GENERATE_PASSWORD qualifier or the DCL command SET PASSWORD/GENERATE, the operating system chooses the lesser value. The maximum value for generated passwords is 10.

/QUEPRIO=value
Reserved for future use.

/REMOTE[(range[,...])]
Specifies hours during which access is permitted for interactive logins from network remote terminals (with the DCL command SET HOST). For a description of the range specification, see the /ACCESS qualifier. By default, remote logins have no access restrictions.
/SHRFILLM=value
Specifies the maximum number of shared files that the user can have open at one time. By default, the system assigns a value of 0, which represents an infinite number.

/TQELM
Specifies the total number of entries in the timer queue plus the number of temporary common event flag clusters that the user can have at one time. By default, a user can have 10.

/UIC=value
Specifies the user identification code (UIC). The UIC value is a group number in the range from 1 to 37776 (octal) and a member number in the range from 0 to 177776 (octal), which are separated by a comma and enclosed in brackets. HP reserves group 1 and groups 300–377 for its own use.

Each user must have a unique UIC. By default, the UIC value is [200,200].

/WSDEFAULT=value
Specifies the default working set limit. This represents the initial limit to the number of physical pages the process can use. (The user can alter the default quantity up to WSQUOTA with the DCL command SET WORKING_SET.) By default, a user has 256 pages on VAX systems and 2000 pagelets on Alpha systems.

The value cannot be greater than WSMA. This quota value replaces smaller values of PQL_MWSDEFAULT.

/WSEXTENT=value
Specifies the working set maximum. This represents the maximum amount of physical memory allowed to the process. The system provides memory to a process beyond its working set quota only when it has excess free pages. The additional memory is recalled by the system if needed.

The value is an integer equal to or greater than WSQUOTA. By default, the value is 1024 pages on VAX systems and 16384 pagelets on Alpha systems. The value cannot be greater than WSMA. This quota value replaces smaller values of PQL_MWSEXTENT.

/WSQUOTA=value
Specifies the working set quota. This is the maximum amount of physical memory a user process can lock into its working set. It also represents the maximum amount of swap space that the system reserves for this process and the maximum amount of physical memory that the system allows the process to consume if the systemwide memory demand is significant.

The value cannot be greater than the value of WSMA and cannot exceed 64K pages. This quota value replaces smaller values of PQL_MWSQUOTA.

Description
The MODIFY command changes values in a SYSUAF user record. Most values not in the command remain unchanged. If the UIC is changed, the value of the corresponding identifier is also changed.

Modifications to the user record are not retroactive; thus, any changes to quota values apply to the next process that is created but not to the current one.
Examples

1. `UAF> MODIFY ROBIN /PASSWORD=SP0172`
 `%UAF-I-MDFYMSG, user record(s) updated`
 The command in this example changes the password for user ROBIN without altering any other values in the record.

2. `UAF> MODIFY ROBIN/FLAGS=RESTRICTED`
 `%UAF-I-MDFYMSG, user record(s) updated`
 The command in this example modifies the UAF record for user ROBIN by adding the login flag RESTRICTED.
MODIFY/IDENTIFIER

Modifies an identifier name, its associated value, or its attributes in the rights database.

Format

MODIFY/IDENTIFIER id-name

Parameter

id-name
Specifies the name of an identifier to be modified.

Qualifiers

/ATTRIBUTES=(keyword[,...])
Specifies attributes to be associated with the modified identifier. The following keywords are valid:

DYNAMIC Allows unprivileged holders of the identifier to remove and to restore the identifier from the process rights list by using the DCL command SET RIGHTS_LIST.
HOLDER_HIDDEN Prevents people from getting a list of users who hold an identifier, unless they own the identifier themselves.
NAME_HIDDEN Allows holders of an identifier to have it translated, either from binary to ASCII or from ASCII to binary, but prevents unauthorized users from translating the identifier.
NOACCESS Makes any access rights of the identifier null and void. If a user is granted an identifier with the No Access attribute, that identifier has no effect on the user's access rights to objects. This attribute is a modifier for an identifier with the Resource or Subsystem attribute.
RESOURCE Allows holders of an identifier to charge disk space to the identifier. Used only for file objects.
SUBSYSTEM Allows holders of the identifier to create and maintain protected subsystems by assigning the Subsystem ACE to the application images in the subsystem. Used only for file objects.

To remove an attribute from the identifier, add a NO prefix to the attribute keyword. For example, to remove the Resource attribute, specify /ATTRIBUTES=NORESOURCE.

Note

If you specify the NORESOURCE keyword without naming any holder with the /HOLDER qualifier, all holders lose the right to charge resources.

/HOLDER=username
Specifies the holder of an identifier whose attributes are to be modified. The /HOLDER qualifier is used only in conjunction with the /ATTRIBUTES qualifier.
If you specify /HOLDER, the /NAME and /VALUE qualifiers are ignored.

/NAME=new-id-name
Specifies a new identifier name to be associated with the identifier.

/VALUE=value-specifier
Specifies a new identifier value. Note that an identifier value cannot be modified from a UIC to a non-UIC format or vice versa. The following formats are valid for the value-specifier:

IDENTIFIER:n An integer value in the range of 65,536 to 268,435,455. You can also specify the value in hexadecimal (precede the value with %X) or octal (precede the value with %O).

To differentiate general identifiers from UIC identifiers, %X80000000 is added to the value you specify.

GID:n GID is the POSIX group identifier. It is an integer value in the range 0 to 16,777,215 (%XFFFFFF). The system will add %XA400.0000 to the value you specify and then enter this new value into the system RIGHTSLIST as an identifier.

UIC:uic A UIC value in the standard UIC format.

Description
The MODIFY/IDENTIFIER command changes identifier names, associated values, and attributes in the rights database. Values not specified in the command remain unchanged.

Examples

1. UAF> MODIFY/IDENTIFIER OLD_ID /NAME=NEW_ID
 %UAF-I-RDBMDFYMSG, identifier OLD_ID modified
 The command in this example changes the name of the OLD_ID identifier to NEW_ID.

2. UAF> MODIFY/IDENTIFIER/VALUE=UIC:[300,21] ACCOUNTING
 %UAF-I-RDBMDFYMSG, identifier ACCOUNTING modified
 The command in this example changes the old UIC value of the identifier ACCOUNTING to a new value.

3. UAF> MODIFY/IDENTIFIER/ATTRIBUTES=NORESOURCE-
 _UAF> /HOLDER=CRAMER ACCOUNTING
 %UAF-I-RDBMDFYMSG, identifier ACCOUNTING modified
 The command in this example associates the attribute NORESOURCE with the identifier ACCOUNTING in CRAMER's holder record. The identifier ACCOUNTING is not changed.
MODIFY/PROXY

Modifies an entry in the network proxy authorization file to specify a different local account as the default proxy account for the remote user or to specify no default proxy account for the remote user.

The command modifies an entry in the network proxy authorization file NET$PROXY.DAT and, to maintain compatibility with other systems, modifies an entry in NETPROXY.DAT.

Note

You must modify the proxy database from a system running the current OpenVMS system.

Format

MODIFY/PROXY node::remote-user

Parameters

node
Specifies a node name. If you specify an asterisk wildcard character (*), the specified remote user on all nodes is served by the local user.

remote-user
Specifies the user name of a user at a remote node. If you specify an asterisk wildcard character, all users at the specified node are served by the local user.

For systems that are not OpenVMS systems that implement DECnet, specifies the UIC of a user at a remote node. You can specify an asterisk wildcard in the group and member fields of the UIC.

Qualifier

/DEFAULT[=local-user]
/NODEFAULT

Designates the default user name on the local node through which proxy access from the remote user is directed. If /NODEFAULT is specified, removes the default designation.

Description

Use the MODIFY/PROXY command to specify a different local account as the default proxy account for the remote user or to specify that there is no default proxy account for the remote user. Whenever you modify user entries, AUTHORIZE signals DECnet to update its volatile database. Proxy modifications take effect immediately on all nodes in a cluster that share the proxy database.

The first command in the following example grants remote user STIR::YETTA proxy access to the PROXY1 and PROXY2 local accounts. The default proxy account is PROXY1. The second command changes the default proxy account to PROXY2.
UAF> ADD/PROXY STIR::YETTA PROXY1/DEFAULT, PROXY2

 UAF> MODIFY/PROXY STIR::YETTA /DEFAULT=PROXY2

The next example shows the command used to remove the default proxy
designation.

UAF> MODIFY/PROXY STIR::YETTA /NODEFAULT

If you remove the default proxy designation as shown in the last command,
remote user STIR::YETTA must include the name of the proxy account (PROXY1
or PROXY2) in the access control string of each network operation to gain proxy
access to the local system.

If no default proxy account is specified either in the network proxy database or in
the access control string of the DCL command, the system attempts to perform
the network operation using the default DECnet account.

Example

UAF> MODIFY/PROXY MISHA::MARCO /DEFAULT=JOHNSON
%UAF-I-NAFADDMSG, record successfully modified in NETPROXY.DAT

The command in this example changes the default proxy account for user MARCO
on the remote node MISHA to the JOHNSON account.
MODIFY/SYSTEM_PASSWORD

Changes the systemwide password.

Note

The systemwide password is different from the password for the SYSTEM user name. See the note in the Description.

This command operates similarly to the DCL command SET PASSWORD/SYSTEM.

Format

MODIFY/SYSTEM_PASSWORD=system-password

Parameter

system-password

Specifies the new systemwide password.

Qualifiers

None.

Description

For a detailed description of the effects of this command, refer to the discussion of the SET PASSWORD/SYSTEM command in the HP OpenVMS Guide to System Security.

Example

UAF> MODIFY/SYSTEM_PASSWORD=ABRACADABRA
UAF>

This command changes the systemwide password to ABRACADABRA.
REMOVE

Deletes a SYSUAF user record and corresponding identifiers in the rights database. The DEFAULT and SYSTEM records cannot be deleted.

Note

REMOVE/IDENTIFIER and REMOVE/PROXY are documented as separate commands.

Format

REMOVE username

Parameter

username

Specifies the name of a user in the SYSUAF.

Qualifier

/REMOVE_IDENTIFIER (default)
/NOREMOVE_IDENTIFIER

Specifies whether the user name and account name identifiers should be removed from the rights database when a record is removed from the UAF. If two UAF records have the same UIC, the user name identifier is removed only when the second record is deleted. Similarly, the account name identifier is removed only if there are no remaining UAF records with the same group as the deleted record.

Description

If you remove a SYSUAF record for a user who also appears as a local user in the network user authorization file, every network authorization record for that user is also removed.

Example

UAF> REMOVE ROBIN
%UAF-I-REMMOG, record removed from SYSUAF.DAT
%UAF-I-RDBREMMSGU, identifier ROBIN value: [00014,00006] removed from RIGHTSLIST.DAT

The command in this example deletes the record for user ROBIN from the SYSUAF and ROBIN's UIC identifier from RIGHTSLIST.DAT.
AUTHORIZE
REMOVE/IDENTIFIER

REMOVE/IDENTIFIER

Removes an identifier from the rights database.

Format

REMOVE/IDENTIFIER id-name

Parameter

id-name
Specifies the name of an identifier in the rights database.

Qualifiers

None.

Example

UAF> REMOVE/IDENTIFIER Q1SALES
%UAF-I-RDBREMMSGU, identifier Q1SALES value %X80010024 removed from
RIGHTSLIST.DAT

The command in this example removes the identifier Q1SALES from the rights
database. All of its holder records are removed with it.
REMOVE/PROXY

Deletes network proxy access for the specified remote user.

Format

REMOVE/PROXY node::remote-user [local-user,...]

Parameters

node
 Specifies the name of a network node in the network proxy authorization file.

remote-user
 Specifies the user name or UIC of a user on a remote node. The asterisk wildcard character (*) is permitted in the remote-user specification.

local-user
 Specifies the user name of from 1 to 16 users on the local node. If no local user is specified, proxy access to all local accounts is removed.

Qualifiers

None.

Example

UAF> REMOVE/PROXY MISHA::MARCO
%UAF-I-NAFREMMSG, proxy from MISHA::MARCO to * removed

The command in this example deletes the record for MISHA::MARCO from the network proxy authorization file, removing all proxy access to the local node for user MARCO on node MISHA.
RENAME

Changes the user name of the SYSUAF record (and, if specified, the corresponding identifier) while retaining the characteristics of the old record.

Note

RENAME/IDENTIFIER is documented as a separate command.

Format

RENAME oldusername newusername

Parameters

oldusername
Specifies the current user name in the SYSUAF.

newusername
Specifies the new name for the user. It can contain 1 to 12 alphanumeric characters and underscores. Although dollar signs are permitted, they are usually reserved for system names.

Qualifiers

/GENERATE_PASSWORD[=keyword]
/NOGENERATE_PASSWORD (default)
Invokes the password generator to create user passwords. Generated passwords can consist of 1 to 10 characters. Specify one of the following keywords:

BOTH Generate primary and secondary passwords.
CURRENT Do whatever the DEFAULT account does (for example, generate primary, secondary, both, or no passwords). This is the default keyword.
PRIMARY Generate primary password only.
SECONDARY Generate secondary password only.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, users are forced to change their passwords (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.

/MODIFY_IDENTIFIER (default)
/NOMODIFY_IDENTIFIER
Specifies whether the identifier associated with the user is to be modified in the rights database. This qualifier applies only when you modify the UIC or user name in the UAF record. By default, the associated identifiers are modified.
/PASSWORD=(password1[,password2])
/NOPASSWORD
Specifies up to two passwords for login. Passwords can be from 0 to 32 alphanumeric characters in length. The dollar sign ($) and underscore (_) are also permitted.

Uppercase and lowercase characters are equivalent. All lowercase characters are converted to uppercase before the password is encrypted. Avoid using the word password as the actual password.

Use the /PASSWORD qualifier as follows:

- To set only the first password and clear the second, specify /PASSWORD=password.
- To set both the first and second password, specify /PASSWORD=(password1, password2).
- To change the first password without affecting the second, specify /PASSWORD=(password, "").
- To change the second password without affecting the first, specify /PASSWORD=("", password).
- To set both passwords to null, specify /NOPASSWORD.

When you modify a password, the new password expires automatically; it is valid only once (unless you specify /NOPWDEXPIRED). On login, the user is forced to change the password (unless you specify /FLAGS=DISFORCE_PWD_CHANGE).

Note that the /GENERATE_PASSWORD and /PASSWORD qualifiers are mutually exclusive.

When you create a new UAF record with the RENAME command, you must specify a password.

Description

The RENAME command renames a SYSUAF record. It changes the user name of the SYSUAF record (and, if specified, the corresponding identifier) while retaining the characteristics of the old record. Retention of these characteristics can be particularly helpful when a user’s name changes.

Note that because password verification includes the user name as well as the password, an attempted login will fail when the user whose name has been changed attempts to log in with an old password. (Only null passwords can be effectively transferred from one user record to another by the RENAME command.) Make it a practice to include a new password when you use the RENAME command, and notify the user of the change. If you omit the /PASSWORD qualifier, you receive a warning message reminding you that the old password must be changed.

The user’s network authorization records are automatically changed to the new name.
AUTHORIZE

RENAME

Examples

1. UAF> RENAME HAWKES KRAMERDOVE/PASSWORD=MARANNKRA
 %UAF-I-PRACREN, proxies to HAWKES renamed
 %UAF-I-RENSG, user record renamed
 %UAF-I-RDBMDFYMSG, identifier HAWKES modified

 The command in this example changes the name of the account Hawkes to Kramerdove, modifies the user name identifier for the account, and renames all proxies to the account.

2. UAF> RENAME HAWKES KRAMERDOVE
 %UAF-I-PRACREN, proxies to HAWKES renamed
 %UAF-I-RENSG, user record renamed
 %UAF-W-DEFPWD, Warning: copied or renamed records must receive new password
 %UAF-I-RDBMDFYMSG, identifier HAWKES modified

 This example shows the warning message that the system displays if you fail to specify a new password with the RENAME command.
RENAME/IDENTIFIER

Renames an identifier in the rights database.

Format

RENAME/IDENTIFIER current-id-name new-id-name

Parameters

- **current-id-name**
 Specifies the name of an identifier to be renamed.

- **new-id-name**
 Specifies the new name for the identifier.

Qualifiers

None.

Description

The RENAME/IDENTIFIER command is functionally equivalent to the following AUTHORIZE command:

MODIFY/IDENTIFIER/NAME=new-id-name id-name

Example

UAF> RENAME/IDENTIFIER Q1SALES Q2SALES
%UAF-I-RDBMDFYMSG, identifier Q1SALES modified

The command in this example renames the identifier Q1SALES to Q2SALES.
REVOKE/IDENTIFIER

Takes an identifier away from a user.

Format

REVOKE/IDENTIFIER id-name user-spec

Parameters

id-name
Specifies the identifier name. The identifier name is a string of 1 to 31 alphanumeric characters. The name can contain underscores and dollar signs. It must contain at least one nonnumeric character.

user-spec
Specifies the UIC identifier that uniquely identifies the user on the system. This type of identifier appears in alphanumeric format, not numeric format; for example, [GROUP1,JONES].

Description

The REVOKE/IDENTIFIER command edits RIGHTSLIST.DAT, removing the user's name from the list of those who hold a given identifier. The change does not affect the process rights list of any current processes.

Example

UAF> REVOKE/IDENTIFIER INVENTORY CRAMER
%UAF-I-REVOKEMSG, identifier INVENTORY revoked from CRAMER

The command in this example revokes the identifier INVENTORY from the user Cramer. Cramer loses the identifier and any resources associated with it.

Note that because rights identifiers are stored in numeric format, it is not necessary to change records for users holding a renamed identifier.
SHOW

Displays reports for selected UAF records on the current SYS$OUTPUT device.

Note

SHOW/IDENTIFIER, SHOW/PROXY, and SHOW/RIGHTS are documented as separate commands.

Format

SHOW user-spec

Parameter

user-spec

Specifies the user name or UIC of the requested UAF record. If you omit the **user-spec** parameter, the UAF records of all users are listed. The asterisk (*) and percent sign (%) wildcard characters are permitted in the user name.

Qualifiers

/BRIEF

Specifies that a brief report be displayed. In the report, the Directory field displays one of the following items:

- Disuser—The account has been disabled.
- Expired—The account has expired.
- A device and directory name—The login device and directory for the account (for example, DOCD$:[SMITH]).

If you omit the /BRIEF qualifier, AUTHORIZE displays a full report.

/FULL

Specifies that a full report be displayed, including identifiers held by the user. Full reports include the details of the limits, privileges, login flags, and the command interpreter as well as the identifiers held by the user. The password is not listed.

/EXACT

Controls whether the SHOW command matches the search string exactly or treats uppercase and lowercase letters as equivalents. Enclose the specified string within quotation marks (" "). Use /EXACT with the /PAGE=SAVE and /SEARCH qualifiers.

/HIGHLIGHT[=keyword]

/NOHIGHLIGHT (default)

Identifies how to display the line that contains a string once it is found. The following keywords are valid:

- **BLINK**
- **BOLD** (default)
- **REVERSE**
- **UNDERLINE**
Use the /HIGHLIGHT qualifier with the /PAGE=SAVE and /SEARCH qualifiers.

/PAGE[=keyword]
/NOPAGE (default)
Controls the information display on a screen. The following keywords are valid:

CLEAR_SCREEN Clear the screen before displaying the next page.
SCROLL Display a continuous stream of information.
SAVE[=n] Store information and enable the navigational keys listed in Table 5–1. By default, the command saves 5 pages. The maximum page width is 255 columns.

Table 5–1 Screen Control Keys

<table>
<thead>
<tr>
<th>Key or Key Sequence</th>
<th>Action Taken When Key or Key Sequence Is Pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWN ARROW KEY</td>
<td>Scroll the display down one line</td>
</tr>
<tr>
<td>LEFT ARROW KEY</td>
<td>Scroll the display one column to the left</td>
</tr>
<tr>
<td>RIGHT ARROW KEY</td>
<td>Scroll the display one column to the right</td>
</tr>
<tr>
<td>UP ARROW KEY</td>
<td>Scroll the display up one line</td>
</tr>
<tr>
<td>Find (E1)</td>
<td>Search for a new string in the information being displayed</td>
</tr>
<tr>
<td>Insert Here (E2)</td>
<td>Move the display to the right by half a screen</td>
</tr>
<tr>
<td>Remove (E3)</td>
<td>Move the display to the left by half a screen</td>
</tr>
<tr>
<td>Select (E4)</td>
<td>Switch from 80-column displays to 132-column displays</td>
</tr>
<tr>
<td>Prev Screen (E5)</td>
<td>Return to the previous page</td>
</tr>
<tr>
<td>Next Screen (E6)</td>
<td>Display the next page</td>
</tr>
<tr>
<td>CTRL/Z</td>
<td>Return to the UAF> prompt</td>
</tr>
<tr>
<td>Help</td>
<td>Display AUTHORIZE help text</td>
</tr>
<tr>
<td>F16 (Do)</td>
<td>Switch from the oldest to the newest page</td>
</tr>
<tr>
<td>Ctrl/W</td>
<td>Refresh the display</td>
</tr>
</tbody>
</table>

/SEARCH=string
Used with the /PAGE=SAVE qualifier to specify a string to find in the information being displayed. You can dynamically change the search string by pressing the Find key (E1) while the information is being displayed.

/WRAP
/NOWRAP (default)
Used with the /PAGE=SAVE qualifier to limit the number of columns to the width of the screen and wrap lines that extend beyond the width of the screen to the next line.

The /NOWRAP qualifier extends lines beyond the width of the screen. Use the /PAGE=SAVE qualifier and the screen control keys listed in Table 5–1 to view the entire screen.
Description

The SHOW command produces reports on user authorization records. You can select the reports to be displayed, as follows:

- To display a single-user report, specify a user name.
- To display reports for all users in ascending sequence by user name, specify an asterisk wildcard character (*).
- To display reports for all users with a common UIC, specify the UIC. Users with the same UIC are listed in the order in which they were added to the SYSUAF.

You can also use the asterisk wildcard character to specify all or part of the UIC, as shown in the following examples:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHOW [14,*] /BRIEF</td>
<td>Displays a brief report for all users in group 14, in ascending sequence by member number.</td>
</tr>
<tr>
<td>SHOW [*,6] /BRIEF</td>
<td>Displays a brief report for all users with a member number of 6.</td>
</tr>
<tr>
<td>SHOW [,] /BRIEF</td>
<td>Displays a brief report for all users, in ascending sequence by UIC.</td>
</tr>
</tbody>
</table>

Examples

1. UAF> SHOW ROBIN

The command in this VAX example displays a full report for the user ROBIN. The display corresponds to the first example in the description of the ADD command. Most defaults are in effect.

Username: ROBIN Owner: JOSEPH ROBIN
Account: VMS UIC: [14,6] ([INV,ROBIN])
CLI: DCL Tables: DCLTABLES
Default: SYSSUSER:[ROBIN]
LGICMD:
Login Flags:
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: (none) Pwdchange: 15-JAN-2000 14:08
Last Login: (none) (interactive), (none) (non-interactive)
Maxjobs: 0 Fillm: 300 Bytlm: 32768
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 40 JTquota: 4096
Prolm: 2 DIOlm: 40 WSdef: 256
Prio: 4 ASI1m: 40 WSsto: 512
Queprio: 0 QTelm: 10 WSextent: 1024
CPU: (none) Enqlm: 200 Pgflquo: 32768
Authorized Privileges:
TMPMBX NETMBX
Default Privileges:
TMPMBX NETMBX
Identifer	Value	Attributes
CLASS_CAI01 | %X800100032 | NORESOURCE NODYNAMIC
CLASS_PY102 | %X800100049 | NORESOURCE NODYNAMIC
Note

The quotas Pbytlm and Queprio are placeholders only.

2. UAF> SHOW [360,+] /BRIEF

The command in this example displays a brief report for every user with a group UIC of 360.

<table>
<thead>
<tr>
<th>Owner</th>
<th>Username</th>
<th>UIC</th>
<th>Account</th>
<th>Privs</th>
<th>Pri</th>
<th>Default Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN</td>
<td>JAMES</td>
<td>[360,201]</td>
<td>USER</td>
<td>Normal</td>
<td>4</td>
<td>DOC$:[JAMES]</td>
</tr>
<tr>
<td>SUZY</td>
<td>JONES</td>
<td>[360,203]</td>
<td>DOC</td>
<td>Devour</td>
<td>4</td>
<td>DOC$:[JONES]</td>
</tr>
<tr>
<td>CLIFF</td>
<td>BROWN</td>
<td>[360,021]</td>
<td>DOC</td>
<td>All</td>
<td>4</td>
<td>disuser</td>
</tr>
<tr>
<td>JOY</td>
<td>CARTER</td>
<td>[360,005]</td>
<td>DOCSEC</td>
<td>Group</td>
<td>4</td>
<td>expired</td>
</tr>
</tbody>
</table>

3. UAF> SHOW WELCH

This command displays a full report for the restricted user WELCH. This display corresponds to the second example in the description of the ADD command.

Username: WELCH
Owner: ROB WELCH
Account: INV
UIC: [14,51]
CL: DCL
Tables: DCLTABLES
Default: SYS$USER:[WELCH]
Logcmd: SECUREIN
Login Flags: Restricted Diswelcome Disnewmail ExtAuth
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
Primary 0000000000111111111111222 Secondary 00000000001111111111112222
Day Hours 01234567890123456789012345678901234567890123
Day Hours 01234567890123456789012345678901234567890123
Network: No access
Batch: Full access
Local: No access
Dialup: No access
Remote: No access
Expiration: (none)
Pwdminimum: 6
Login Fails: 0
Pwdlifetime: (pre-expired)
Last Login: (none)
Maxjobs: 0
Fillm: 300
Bytlm: 32768
Maxacctjobs: 0
Shrfillm: 0
Pbytlm: 0
Maxdetch: 0
BIOLm: 40
Jquota: 4096
Prclm: 2
DIOLm: 40
WSdef: 256
Prio: 4
ASTLM: 40
WSquo: 512
Queprio: 4
TQELm: 10
WSextent: 1024
CPU: (none)
Englm: 200
Pgflquo: 32768
Authorized Privileges:
TMPMBX NETMBX
Default Privileges:
TMPMBX NETMBX

Note that WELCH is a captive user who does not receive announcements of new mail or the welcome message when logging in. His login command file, SECUREIN.COM, is presumably a captive command file that controls all of his operations. (Such a command file never exits, but performs operations for its user and logs him out when appropriate.) The CAPTIVE flag prevents WELCH from escaping control of the command file by using Ctrl/Y or other means. Furthermore, he is restricted to logging in between the hours of 5:00 P.M. and 5:59 A.M. on weekdays and 9:00 A.M. and 5:59 P.M. on weekends. Although he is allowed to use dial-up lines at all times during the week, he is not allowed to log in over the network. On weekends, he is further restricted
so that he cannot dial in at any time or use the DCL command SET HOST between the hours of 6:00 P.M. and 8:59 A.M.
SHOW/IDENTIFIER

Displays information about an identifier, such as its name, value, attributes, and holders, on the current SYS$OUTPUT device.

Format

SHOW/IDENTIFIER [id-name]

Parameter

id-name

Specifies an identifier name. The identifier name is a string of 1 to 31 alphanumeric characters. The name can contain underscores and dollar signs. It must contain at least one nonnumeric character. If you omit the identifier name, you must specify /USER or /VALUE.

Qualifiers

/BRIEF

Specifies a brief listing in which only the identifier name, value, and attributes are displayed. The default format is /BRIEF.

/FULL

Specifies a full listing in which the names of the identifier’s holders are displayed along with the identifier’s name, value, and attributes.

/USER=user-spec

Specifies one or more users whose identifiers are to be displayed. The user-spec can be a user name or a UIC. You can use the asterisk wildcard character (*) to specify multiple UICs or all user names. UICs must be in the form [*,*], [n,*], [*;n], or [n,n]. A wildcard user name specification (*) displays identifiers alphabetically by user name; a wildcard UIC specification ([*,*]) displays them numerically by UIC.

/VALUE=value-specifier

 Specifies the value of the identifier to be listed. The following formats are valid for the value-specifier:

IDENTIFIER:n

An integer value in the range of 65,536 to 268,435,455. You can also specify the value in hexadecimal (precede the value with %X) or octal (precede the value with %O).

To differentiate general identifiers from UIC identifiers, %X80000000 is added to the value you specify.

GID:n

GID is the POSIX group identifier. It is an integer value in the range 0 to 16,777,215 (%XFFFFFFFF). The system will add %XA400.0000 to the value you specify and then enter this new value into the system RIGHTSLIST as an identifier.

UIC:uic

A UIC value in the standard UIC format.

See also the screen control qualifiers listed under the SHOW command:
The SHOW/IDENTIFIER command displays identifier names, values, attributes, and holders in various formats depending on the qualifiers specified. Two of these formats are illustrated in the following examples.

Examples

1. UAF> SHOW/IDENTIFIER/FULL INVENTORY

This command would produce output similar to the following example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVENTORY</td>
<td>%X80010006</td>
<td>NORESOURCE NODYNAMIC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Holder</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDERSON</td>
<td>NORESOURCE NODYNAMIC</td>
</tr>
<tr>
<td>BROWN</td>
<td>NORESOURCE NODYNAMIC</td>
</tr>
<tr>
<td>CRAMER</td>
<td>NORESOURCE NODYNAMIC</td>
</tr>
</tbody>
</table>

2. UAF> SHOW/IDENTIFIER/USER=ANDERSON

This command displays the identifier associated with the user ANDERSON, as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDERSON</td>
<td>[000300,000015]</td>
<td>NORESOURCE NODYNAMIC</td>
</tr>
</tbody>
</table>

The identifier is shown, along with its value and attributes. Note, however, that this is the same result you would produce had you specified ANDERSON's UIC with the following forms of the command:

UAF> SHOW/IDENTIFIER/USER=[300,015]

UAF> SHOW/IDENTIFIER/VALUE=UIC:[300,015]
SHOW/PROXY

Displays all authorized proxy access for the specified remote user.

Format

SHOW/PROXY node::remote-user

Parameters

node
Specifies the name of a network node in the network proxy authorization file. The asterisk wildcard character (*) is permitted in the node specification.

remote-user
Specifies the user name or UIC of a user on a remote node. The asterisk wildcard character (*) is permitted in the remote-user specification.

Qualifiers

/OLD
Directs AUTHORIZE to display information from NETPROXY.DAT rather than the default file NET$PROXY.DAT.

If someone modifies the proxy database on a cluster node that is running an OpenVMS system prior to Version 6.1, you can use the /OLD qualifier to display the contents of the old database, NETPROXY.DAT.

See also the screen control qualifiers listed under the SHOW command:

/EXACT

/HIGHLIGHT[=keyword]
/NOHIGHLIGHT (default)

/PAGE[=keyword]
/NOPAGE (default)

/SEARCH=string

/WRAP
/NOWRAP (default)

Description

The SHOW/PROXY command displays the first 255 characters of a node name although the command can handle a maximum of 1024 characters.
Examples

1. **UAF> SHOW/PROXY SAMPLE::[200,100]**

 Default proxies are flagged with an *

 SAMPLE::[200,100]
 MARCO *
 PROXY2
 PROXY3

 The command in this example displays all authorized proxy access for
 the user on node SAMPLE with a UIC of [200,100]. The default proxy
 account can be changed from MARCO to PROXY2 or PROXY3 with the
 MODIFY/PROXY command.

2. **UAF> SHOW/PROXY *::***

 Default proxies are flagged with (D)

 TAO:.TWA.RANCH::MARTINEZ
 MARTINEZ (D) SALES_READER

 UAF> show/proxy/old *::*

 Default proxies are flagged with (D)

 RANCH::MARTINEZ
 MARTINEZ (D) SALES_READER

 The command in this example displays information about local authorized
 proxy access on a system running DECnet-Plus. The first command draws
 information from the file NET$PROXY.DAT. By including the /OLD qualifier
 on the SHOW/PROXY command, AUTHORIZE displays information from the
 file NETPROXY.DAT.
SHOW/RIGHTS

Displays the identifiers held by the specified identifiers or, if /USER is specified, all identifiers held by the specified users.

Format

SHOW/RIGHTS [id-name]

Parameter

id-name
Specifies the name of the identifier associated with the user. If you omit the identifier name, you must specify the /USER qualifier.

Qualifier

/USER=user-spec
Specifies one or more users whose identifiers are to be listed. The user-spec can be a user name or a UIC. You can use the asterisk wildcard character (*) to specify multiple UICs or all user names. UICs must be in the form [*,*], [*..], [n,*], or [n,n]. A wildcard user name specification (*) or wildcard UIC specification ([*,*]) displays all identifiers held by users. The wildcard user name specification displays holders’ user names alphabetically; the wildcard UIC specification displays them in the numerical order of their UICs.

See also the screen control qualifiers listed under the SHOW command:

/EXACT

/HIGHLIGHT [=keyword]

/NOHIGHLIGHT (default)

/PAGE [=keyword]

/NOPAGE (default)

/SEARCH = string

/WRAP

/NOWRAP (default)

Description

Output displayed from the SHOW/RIGHTS command is identical to that written to RIGHTSLIST.LIS when you use the LIST/RIGHTS command.

Example

UAF> SHOW/RIGHTS ANDERSON

This command displays all identifiers held by the user ANDERSON. For example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVENTORY</td>
<td>%X80010006</td>
<td>NORESOURCE NODYNAMIC</td>
</tr>
<tr>
<td>PAYROLL</td>
<td>%X80010022</td>
<td>NORESOURCE NODYNAMIC</td>
</tr>
</tbody>
</table>
Note that the following formats of the command produce the same result:

SHOW/RIGHTS/USER=ANDERSON
SHOW/RIGHTS/USER=[300,015]
AUTOGEN Command Procedure
6.1 AUTOGEN Description

The AUTOGEN command procedure (SYS$UPDATE:AUTOGEN.COM) sets appropriate values for system parameters and sizes for system page, swap, and dump files. AUTOGEN runs automatically when you install or upgrade the operating system.

In addition, you can use AUTOGEN to reset system parameter values, system file sizes, or both. The new values and file sizes take effect the next time the system is booted.

HP recommends that you run AUTOGEN on a weekly basis to adjust system parameters according to your system's work load. For a list and description of all system parameters, refer to AUTOGEN executes in phases, with each phase performing a separate task. You control which tasks AUTOGEN performs by specifying a start phase and an end phase when you invoke AUTOGEN. For more information about the AUTOGEN phases, see Section 6.4.

You can add commands to the file SYS$SYSTEM:MODPARAMS.DAT to control the system parameter values and file sizes that AUTOGEN sets. AUTOGEN uses the information in this file to determine final values for system parameters or page, swap or dump file sizes. For more information, refer to the chapter about managing system parameters in the *HP OpenVMS System Manager’s Manual*.

AUTOGEN can improve system performance by using dynamic information, called feedback, which is gathered from the running system.

______________ Note ______________

When making major configuration changes, do not use feedback. Specify nofeedback to assure the use of the initial AUTOGEN settings. See Table 6–4 for more information about nofeedback.

You control how AUTOGEN uses feedback by specifying an execution mode when you invoke AUTOGEN. To direct AUTOGEN to use feedback to make its calculations, run AUTOGEN in feedback mode. After a period of time, you can execute AUTOGEN in feedback mode to further refine system parameter settings. For more information about AUTOGEN feedback, refer to Section 6.3.

6.1.1 NEWPARAMS.DAT

The following sections explain how AUTOGEN uses NEWPARAMS.DAT and how layered product installation procedures can use it.

The basic reason for developing NEWPARAMS.DAT has been to provide a way for layered product installation procedures to easily supply AUTOGEN with the necessary parameter changes for the product. NEWPARAMS.DAT greatly reduces (if not eliminates) the need to modify MODPARAMS.DAT after installing a new layered product and avoids having installation procedures attempt to edit MODPARAMS.DAT.

NEWPARAMS.DAT does not replace or make MODPARAMS.DAT obsolete, and it does not remove the requirement to run AUTOGEN after installing a layered product. (AUTOGEN can, however, process several versions of NEWPARAMS.DAT, which you might have if you install several layered products without running AUTOGEN between installations).
6.1 AUTOGEN Description

6.1.1 How NEWPARAMS.DAT Works

Three files are involved in the operation of NEWPARAMS.DAT:

- **NEWPARAMS.DAT**
 This file contains the parameter requirements for a particular layered product.

- **NEWPARAMS.DONE**
 AUTOGEN renames each NEWPARAMS.DAT to NEWPARAMS.DONE as soon as it has finished processing the file.

 __Note__
 If AUTOGEN finds three versions of NEWPARAMS.DAT, it processes version 3, then version 2, and then version 1. After AUTOGEN has renamed the files to NEWPARAMS.DONE, their version numbers ARE reversed, reflecting the fact that the oldest file was processed and renamed the most recently.

 The system manager can purge these files at any time. AUTOGEN, however, does not delete these files immediately so that you can examine them if some problem occurs with the layered product installation or with a subsequent run of AUTOGEN.

- **CLU$PARAMS.DAT**
 This file receives the parameter values of the NEWPARAMS.DAT files that AUTOGEN processes.

 In NEWPARAMS.DAT the AUTOGEN code expects to find records that are comments (which are not passed to CLU$PARAMS.DAT), and parameter assignments very much like those in MODPARAMS.DAT. These are usually assignments similar to ADD_parameter and MIN_parameter:

 - The first setting, ADD_parameter, defines the amount of a particular resource (for example, NPAGEDYN, GBLPAGES) the layered product requires.
 - The second setting, MIN_parameter, provides floor for the calculation of a parameter (for example, PQL_DWSDEFAULT).

 The parameter settings in NEWPARAMS.DAT are integrated into CLU$PARAMS.DAT. This file is then used, along with MODPARAMS.DAT and the feedback and hardware configuration data, to calculate parameter values in the GENPARAMS phase. System managers do not need to modify CLU$PARAMS.DAT; MODPARAMS.DAT continues to be the proper file to contain system-specific parameter changes.

6.1.1.2 What Goes into NEWPARAMS.DAT

The following sections describe what is placed in the NEWPARAMS.DAT file.
6.1.1.2.1 **Product Name** A very important difference between the parameter assignments in MODPARAMS.DAT, which is familiar to most system managers, and those in NEWPARAMS.DAT: the name of the layered product that makes the assignments.

Note

If the name of the product changes from one kit to the next, the system ends up with parameter changes made under both names. Therefore, choose the name carefully so that you do not need to change it in future kits. In addition, do not include version numbers.

You can pass the layered product name to AUTOGEN in either of the following ways:

- Prepend the name and a dollar-sign ($) to each parameter name; for example:

 \[
 \text{DW-MOTIF}\$\text{ADD_GBLPAGES} = 28000
 \]

- Include the name as a comment, which must begin as follows:

 \[
 \text{!Set by DW-MOTIF}
 \]

 The entire remainder of the comment is used as the product name for example:

 \[
 \text{MIN_GBLPAGES} = 62000 \quad \text{!Set by DW-MOTIF}
 \]

 In this example, DW-MOTIF becomes the product name.

The first method takes precedence over the second method. For example, someone might enter a value like the following:

\[
\text{ABBOTT}\$\text{add_npagedyn} = 1000000 \quad \text{!Set by COSTELLO}
\]

In this example, the prefix (ABBOTT) will be used, and the product name specified in the comment (COSTELLO) will be ignored.

HP recommends that you use one method or the other to avoid confusion.

6.1.1.2.2 **Parameter Assignment** Except for specifying the product name, parameter assignment with NEWPARAMS.DAT works the same as it does in MODPARAMS.DAT, where you can set values, floors and ceilings, and specify amounts to add to a parameter; for example:

\[
\begin{align*}
\text{WINDOW_SYSTEM} &= 1 \\
\text{MIN_GBLSECTIONS} &= 600 \\
\text{MAX_WSMAX} &= 250000 \\
\text{ADD_GBLPAGES} &= 25000
\end{align*}
\]

6.1.1.2.3 **How to Remove Assignments from CLU$PARAMS.DAT** You might want to remove one or more parameter assignments from CLU$PARAMS.DAT for a number of reasons. A layered product might no longer need to use a value other than the default value of a parameter. Also, occasionally OpenVMS Engineering makes a parameters obsolete (for example, VIRTUALPAGECNT), and layered product kits need to include a way to remove these parameters from a system.

To remove an assignment from CLU$PARAMS.DAT, create a NEWPARAMS.DAT that includes either of the following syntaxes:

\[
\begin{align*}
\text{AGEN$REMOVE_PARAM} & \quad \text{!Set by <product>} \\
\text{AGEN$REMOVE_PARAM} & \quad \text{<product>$<$parameter>}
\end{align*}
\]
The rules explained in Section 6.1.1.2.1 for specifying product names also apply here. Also, you can mix such removals with assignments in a single NEWPARAMS.DAT file. Use removals to remove assignments of parameters that will no longer be needed; to change a parameter value, simply assign the new value to the parameter in NEWPARAMS.DAT, and the new value will replace the old value.

Note that AUTOGEN does not parse anything between the parameter name and the !Set by comment. This allows the kit producer to use NEWPARAMS.DAT for installation and to create a NEWPARAMS.DAT for deinstallation by prepending "AGEN$REMOVE_PARAM " to the beginning of each line.

6.1.1.3 What CLU$PARAMS.DAT Looks Like

The format of CLU$PARAMS.DAT, which is used to define layered-product-driven parameter modifications, is as follows:

```plaintext
! The file contains parameters supplied by layered products.
! It should not be modified. Customer parameters should be placed in
! SYS$SYSTEM:MODPARAMS.DAT.
!=================================================================

DW_MOTIF$MIN_CHANNELCNT = 255 !Set by DW-MOTIF
DW_MOTIF$ADD_GBLPAGES = 28000 !Set by DW-MOTIF
DW_MOTIF$MIN_GBLPAGES = 62000 !Set by DW-MOTIF
DW_MOTIF$ADD_GBLPAGFIL = 5000  !Set by DW-MOTIF
DW_MOTIF$MIN_GBLPAGFIL = 6024  !Set by DW-MOTIF
DECNET_PLUS$MIN_GBLPAGES = 55000 !Set by DECnet-Plus
DECNET_PLUS$ADD_GBLPAGES = 24000 !Set by DECnet-Plus
```

This example shows two layered product installations that use NEWPARAMS.DAT: one is DW-MOTIF (the DECWindows kit), and the other is DECnet-Plus.

A subsequent installation of DW-MOTIF replaces the value of each parameter assignment in CLU$PARAMS.DAT with the value found in NEWPARAMS.DAT. Whether the new kit has 255, 200 or 300 for MIN_CHANNELCNT, the value that is supplied is the value found in the new copy of CLU$PARAMS.DAT. Similarly, the new value that DW_MOTIF provides for ADD_GBLPAGES replaces the 28000 in the assignment of ADD_GBLPAGES shown in the last example. These values are not cumulative for a given product; they do, however, accumulate across layered products; therefore, the total ADD_GBLPAGES value are as follows:

$$28000 + 24000, \text{ or } 52000$$

Both NEWPARAMS.DAT and CLU$PARAMS.DAT are ordinary text files created by text editors. HP does not recommend editing these files.

6.2 AUTOGEN Usage Summary

HP recommends that you run AUTOGEN in the following circumstances:

- During a new installation or upgrade.
- Whenever your work load changes significantly.
- When you add an optional (layered) software product. Certain layered products might require you to execute AUTOGEN to adjust parameter values and page and swap file sizes. (For information about using AUTOGEN to modify page and swap files, refer to the chapter on managing page, swap, and
dump files in the *HP OpenVMS System Manager's Manual.* Refer to specific product documentation for installation requirements.

- When you install images with the /SHARED attribute. The GBLSECTIONS and GBLPAGES parameters might need to be increased to accommodate additional use of global pages and global sections.
- During normal operation, as part of a batch-oriented command procedure that runs AUTOGEN on a regular basis and automatically sends a report to an appropriate Mail account. The recommended procedure is described in the chapter on managing system parameters in the *HP OpenVMS System Manager's Manual.*

After a new operating system installation or upgrade, examine the results of calculations that AUTOGEN made to determine whether AUTOGEN has set system parameter values that are appropriate for your workload requirements.

Table 6–1 lists the system parameters affected by AUTOGEN calculations. AUTOGEN calculations also affect the size of page, swap and dump files. Table 6–2 lists the system parameters affected by AUTOGEN feedback.

Table 6–1 System Parameters Affected by AUTOGEN Calculations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP_DINDXCACHE</td>
<td>ACP_DIRCACHE</td>
<td>ACP_HDRCACHE</td>
</tr>
<tr>
<td>ACP_MAPCACHE</td>
<td>ACP_MULTIPLE</td>
<td>ACP_QUOCACHE</td>
</tr>
<tr>
<td>ACP_SWAPFLGS</td>
<td>ACP_SYSACC</td>
<td>BALSETCNT</td>
</tr>
<tr>
<td>BORROWLIM</td>
<td>CTLPAGES</td>
<td>DUMPSTYLE</td>
</tr>
<tr>
<td>ERLBUFFERPAGES<sup>1</sup></td>
<td>EXPECTED_VOTES</td>
<td>FREEGOAL</td>
</tr>
<tr>
<td>FREELIM</td>
<td>GBLPAGES</td>
<td>GBLPAGFIL</td>
</tr>
<tr>
<td>GBLSECTIONS</td>
<td>‡GH_EXEC_CODE</td>
<td>‡GH_EXEC_DATA</td>
</tr>
<tr>
<td>‡GH_RES_CODE</td>
<td>‡GH_RES_DATA</td>
<td>GROWLIM</td>
</tr>
<tr>
<td>†INTSTKPAGES</td>
<td>LNMPHASHTBL<sup>2</sup></td>
<td>LNMSHASHTBL</td>
</tr>
<tr>
<td>LOAD_SYS_IMAGES<sup>1</sup></td>
<td>LOCKDIRWT</td>
<td>LOCKIDTBL</td>
</tr>
<tr>
<td>LONGWAIT<sup>1</sup></td>
<td>MAXPROCESSCNT</td>
<td>MINWSCNT</td>
</tr>
<tr>
<td>MMG_CTLFLAGS</td>
<td>MPW_HILIMIT</td>
<td>MPW_IOLIMIT<sup>1</sup></td>
</tr>
<tr>
<td>MPW_LOLIMIT</td>
<td>MPW_LOWAITLIMIT</td>
<td>MPW_THRESH<sup>1</sup></td>
</tr>
<tr>
<td>MPW_WAITLIMIT</td>
<td>MPW_WRTCLUSTER</td>
<td>MSCP_BUFFER</td>
</tr>
<tr>
<td>MSCP_LOAD</td>
<td>MULTITHREAD</td>
<td>MVTIMEOUT<sup>1</sup></td>
</tr>
<tr>
<td>NISCS_MAX_PKTSZ<sup>1</sup></td>
<td>NISCS_PORT_SERV</td>
<td>NPAGEDYN</td>
</tr>
<tr>
<td>NPAGEVir</td>
<td>PAGEDYN</td>
<td>PASTDGBUF</td>
</tr>
<tr>
<td>PFCDEFAULT</td>
<td>PFRATH<sup>1</sup></td>
<td>PFRATL</td>
</tr>
<tr>
<td>‡PHYSICAL_MEMORY</td>
<td>‡PHYSICALPAGES</td>
<td>PIOPAGES</td>
</tr>
<tr>
<td>PIXSCAN</td>
<td>PQL_DPGFLQUOTA<sup>2</sup></td>
<td>PQL_DWSDEFAULT</td>
</tr>
<tr>
<td>PQL_DWSEXTENT</td>
<td>PQL_DWSQUOTA</td>
<td>PQL_MPGFLQUOTA<sup>2</sup></td>
</tr>
</tbody>
</table>

¹Parameter affected only on Alpha systems
²Parameter affected only on VAX systems
†VAX specific parameter
‡Alpha specific parameter

(continued on next page)
6.3 Feedback

AUTOGEN feedback minimizes the necessity to modify parameter values or system file sizes. Feedback allows AUTOGEN to automatically size the operating system based on your actual work load. **Sizing** is the process of matching the allocation of system resources (memory and disk space) with the workload requirements of your site.

Feedback is information about how various resources are used by the system's work load. This information is continuously collected by the operating system executive. Because the system collects feedback when exception events occur, feedback collection does not affect system performance.

You control how AUTOGEN uses feedback by specifying an execution mode when you invoke AUTOGEN. When run in feedback mode, AUTOGEN analyzes this information and adjusts any related parameter values. For information about controlling AUTOGEN's use of feedback, see Section 6.5.

AUTOGEN collects feedback during the SAVPARAMS phase by executing the image SYS$SYSTEM:AGEN$FEEDBACK.EXE. AUTOGEN writes feedback information to the file SYS$SYSTEM:AGEN$FEEDBACK.DAT. This file is then read during the GETDATA phase. For more information about AUTOGEN phases, see Section 6.4.

Table 6–2 lists the system parameters affected by AUTOGEN feedback. Feedback also affects the size of page and swap files.
Table 6–2 System Parameters Affected by AUTOGEN Feedback

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP_DINDXCACHE</td>
<td></td>
</tr>
<tr>
<td>ACP_DIRCACHE</td>
<td></td>
</tr>
<tr>
<td>ACP_EXTCACHE</td>
<td></td>
</tr>
<tr>
<td>ACP_FIDCACHE</td>
<td></td>
</tr>
<tr>
<td>ACP_HDRCACHE</td>
<td></td>
</tr>
<tr>
<td>ACP_MAPCACHE</td>
<td></td>
</tr>
<tr>
<td>ACP_QUOCACHE</td>
<td></td>
</tr>
<tr>
<td>GBLPAGES</td>
<td></td>
</tr>
<tr>
<td>GBLSECTIONS</td>
<td></td>
</tr>
<tr>
<td>‡GH_EXEC_CODE</td>
<td></td>
</tr>
<tr>
<td>‡GH_EXEC_DATA</td>
<td></td>
</tr>
<tr>
<td>‡GH_RES_CODE</td>
<td></td>
</tr>
<tr>
<td>‡GH_RES_DATA</td>
<td></td>
</tr>
<tr>
<td>LNMSHASHTBL</td>
<td></td>
</tr>
<tr>
<td>MAXPROCESSCNT</td>
<td></td>
</tr>
<tr>
<td>MSCP_BUFFER</td>
<td></td>
</tr>
<tr>
<td>NPDYN</td>
<td></td>
</tr>
<tr>
<td>PAGEDYN</td>
<td></td>
</tr>
<tr>
<td>RESHASHTBL</td>
<td></td>
</tr>
<tr>
<td>SCSCONNCNT</td>
<td></td>
</tr>
<tr>
<td>SCSRESPCNT</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Phases

AUTOGEN executes in phases. You control which tasks AUTOGEN performs by specifying a **start phase** and an **end phase** when you invoke AUTOGEN. Table 6–3 lists the phases AUTOGEN can execute in order.

Table 6–3 AUTOGEN Phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVPARAMS</td>
<td>Saves dynamic feedback from the running system.</td>
</tr>
<tr>
<td>GETDATA</td>
<td>Collects all data to be used in AUTOGEN calculations.</td>
</tr>
<tr>
<td>GENPARAMS</td>
<td>Generates new system parameters; creates the installed image list.</td>
</tr>
<tr>
<td>TESTFILES</td>
<td>Displays the system page, swap, and dump file sizes calculated by AUTOGEN.</td>
</tr>
<tr>
<td>GENFILES</td>
<td>Generates new system page, swap, and dump files if appropriate.</td>
</tr>
<tr>
<td>SETPARAMS</td>
<td>Runs SYSPRV to set the new system parameters in the default parameter file.</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>Prepares the system to await a manual reboot.</td>
</tr>
<tr>
<td>REBOOT</td>
<td>Automatically shuts down and reboots the system.</td>
</tr>
<tr>
<td>HELP</td>
<td>Displays help information to the screen.</td>
</tr>
</tbody>
</table>

The following sections describe each phase in detail.

6.4.1 SAVPARAMS

The SAVPARAMS phase records feedback in the file AGEN$FEEDBACK.DAT, which can be used in subsequent AUTOGEN phases. If you specify NOFEEDBACK as the **execution-mode** parameter, the information collected is not used.

The SAVPARAMS phase is valid as a start phase and end phase. SAVPARAMS requires the SYSPRV and CMKRNL privileges.
AUTOGEN Command Procedure
6.4 Phases

Note

You can specify the SAVE_FEEDBACK option during an interactive orderly shutdown with SYS$SYSTEM:SHUTDOWN.COM. Entering this option in response to the prompt “Shutdown options:” records feedback collected since the system was last booted. Using the SAVE_FEEDBACK option creates a new version of SYS$SYSTEM:AGEN$FEEDBACK.DAT. Run AUTOGEN from the GETDATA phase after the system reboots to use this new version of the feedback.

6.4.2 GETDATA

The GETDATA phase collects the following information required for AUTOGEN calculations and places it in the file PARAMS.DAT:

- Hardware configuration data
- HP-supplied data from CLU$PARAMS.DAT
- Feedback from AGEN$FEEDBACK.DAT (if run in feedback mode)
- User-supplied data from MODPARAMS.DAT

The GETDATA phase also attempts to configure devices on the system, by executing the following procedure and command:

- The command procedure SYS$MANAGER:SYCONFIG.COM. (For more information about this procedure, refer to the chapter on managing devices in the HP OpenVMS System Manager’s Manual.)
- The SYSGEN command AUTOCONFIGURE ALL (unless the symbol STARTUP$AUTOCONFIGURE_ALL is set to 0 in SYCONFIG.COM).

The GETDATA phase is valid as a start phase and an end phase. GETDATA requires the SYSPRV and CMKRNL privileges.

6.4.3 GENPARAMS

In the GENPARAMS phase, AUTOGEN calculates the parameter values based on data stored in PARAMS.DAT and produces SETPARAMS.DAT as output. AUTOGEN checks to see if feedback is included, and if so, uses it in the calculations unless the NOFEEDBACK execution mode was specified when AUTOGEN was invoked. Also during this phase, AUTOGEN generates the known image file list (VMSIMAGES.DAT).

The GENPARAMS phase is valid as a start phase and an end phase. GENPARAMS requires the SYSPRV and OPER privileges.

6.4.4 TESTFILES

The TESTFILES phase displays system page, swap, and dump file sizes calculated by AUTOGEN. (This phase does not change the file sizes.) File sizes for all currently installed primary and secondary page and swap files are displayed. The information is directed to SYS$OUTPUT and the AGEN$PARAMS.REPORT file by default.

Specify the TESTFILES phase to display AUTOGEN’s file size calculations; to generate new sized files, specify the GENFILES phase. You cannot specify both of these phases when invoking AUTOGEN. HP recommends that you use
TESTFILES to display the file size changes before actually generating new sized files on your system.

The TESTFILES phase is valid only as an end phase. TESTFILES requires the SYSPRV privilege.

6.4.5 GENFILES

The GENFILES phase generates the new page, swap, and dump files on the system. This phase changes the file sizes based on AUTOGEN's calculations.

The GENFILES phase does not modify a file if the calculated size change is within ten percent of the existing file size. The following files are affected: PAGEFILE.SYS, SWAPFILE.SYS, SYSDUMP.DMP, and all other currently installed page and swap files. For more information, refer to the chapter on managing page, swap and dump files in the *HP OpenVMS System Manager's Manual*.

GENFILES is valid only as an end phase. GENFILES requires the SYSPRV privilege.

6.4.6 SETPARAMS

The SETPARAMS phase uses as its input the SETPARAMS.DAT file created during the GENPARAMS phase. In this phase, AUTOGEN runs SYSMAN to update the system parameter values in the default parameter file.

On VAX systems, the default parameter file is SYS$SYSTEM:VAXVMSSYS.PAR. AUTOGEN saves the current system parameters in the file SYS$SYSTEM:VAXVMSSYS.OLD before updating these parameters in SYS$SYSTEM:VAXVMSSYS.PAR. The new values are also saved in SYS$SYSTEM:AUTOGEN.PAR.

On Alpha systems, SYS$SYSTEM:ALPHAVMSSYS.PAR is the default parameter file. AUTOGEN saves the current system parameters in the file SYS$SYSTEM:ALPHAVMSSYS.OLD before updating these parameters in SYS$SYSTEM:ALPHAVMSSYS.PAR. The new values are also saved in SYS$SYSTEM:AUTOGEN.PAR.

The SETPARAMS phase is valid as a start phase and an end phase. SETPARAMS requires the SYSPRV and OPER privileges.

6.4.7 SHUTDOWN

SHUTDOWN shuts down the system and awaits a manual reboot. To use the new system parameter values generated in the SETPARAMS phase, specify either SHUTDOWN or REBOOT as the end phase. You can define the logical name AGEN$SHUTDOWN_TIME (using the DCL command DEFINE) to specify the number of minutes before shutdown occurs.

SHUTDOWN requires the SETPRV privilege.

6.4.8 REBOOT

REBOOT automatically shuts down and reboots the system, thus installing the new parameter values. To install the new system parameter values generated in the SETPARAMS phase, specify either SHUTDOWN or REBOOT as the end phase. You can define the logical name AGEN$SHUTDOWN_TIME (using the DCL command DEFINE) to specify the number of minutes before shutdown occurs.

REBOOT requires the SETPRV privilege.
6.4 Phases

6.4.9 HELP
HELP displays help information about AUTOGEN to the screen. The HELP phase is only valid as the start phase command line parameter. When you specify HELP for the start phase, the end phase and execution mode parameters are ignored.

6.5 Execution Modes
Specify an execution mode when you invoke AUTOGEN to control how AUTOGEN uses feedback. Table 6–4 lists the execution-mode options.

Table 6–4 AUTOGEN Execution Modes
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEEDBACK</td>
<td>Specifies that AUTOGEN run in feedback mode, using dynamic feedback collected during the SAVPARAMS phase to make its calculations.</td>
</tr>
<tr>
<td>NOFEEDBACK</td>
<td>Specifies that AUTOGEN not use feedback in the calculations. The feedback from the SAVPARAMS phase is ignored. Use NOFEEDBACK mode for the initial system installation or upgrade. NOFEEDBACK supersedes the execution-mode option INITIAL, which was used in a previous version of the operating system.</td>
</tr>
<tr>
<td>CHECK_FEEDBACK</td>
<td>Specifies that AUTOGEN use feedback in its calculations as long as the feedback is valid. If feedback is suspect, AUTOGEN does not use feedback in the calculations, but continues through the specified end phase.</td>
</tr>
<tr>
<td>Blank</td>
<td>If you do not specify an execution mode, AUTOGEN uses feedback in the calculations by default. However, if AUTOGEN determines that the feedback might be suspect, it performs the calculations, issues the feedback report, and stops before modifying any parameters or system files, even if you specified an end phase of GENFILES, SETPARAMS, SHUTDOWN or REBOOT.</td>
</tr>
</tbody>
</table>

6.6 Files Used by AUTOGEN
Table 6–5 lists the files AUTOGEN uses during each phase.

Table 6–5 Files Used by AUTOGEN
<table>
<thead>
<tr>
<th>AUTOGEN Phase</th>
<th>Input Files¹</th>
<th>Output Files¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVPARAMS</td>
<td>None</td>
<td>AGEN$FEEDBACK.DAT</td>
</tr>
<tr>
<td>GETDATA</td>
<td>NEWPARAMS.DAT²</td>
<td>CLU$PARAMS.DAT</td>
</tr>
<tr>
<td></td>
<td>AGEN$FEEDBACK.DAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLU$PARAMS.DAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODPARAMS.DAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARAMS.DAT³</td>
<td></td>
</tr>
</tbody>
</table>

¹All files except VMSIMAGES.DAT, which contains the installed image list, reside in the SYS$SYSTEM directory. VMSIMAGES.DAT resides in the SYS$MANAGER directory.
²From software installation kit
³Also includes collected hardware configuration information

(continued on next page)
Table 6–5 (Cont.) Files Used by AUTOGEN

<table>
<thead>
<tr>
<th>AUTOGEN Phase</th>
<th>Input Files¹</th>
<th>Output Files¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENPARAMS</td>
<td>PARAMS.DAT</td>
<td>SETPARAMS.DAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMSIMAGES.DAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AGENSPARAMS.REPORT</td>
</tr>
<tr>
<td>TESTFILES</td>
<td>PARAMS.DAT</td>
<td>SYS$OUTPUT</td>
</tr>
<tr>
<td>GENFILES</td>
<td>PARAMS.DAT</td>
<td>PAGEFILE.SYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SWAPFILE.SYS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(and secondary page and swap files)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SYSDUMP.DMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AGENSPARAMS.REPORT</td>
</tr>
<tr>
<td>SETPARAMS</td>
<td>SETPARAMS.DAT</td>
<td>†VAXVMSSYS.PAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‡ALPHAVMSSYS.PAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTOGEN.PAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>†VAXVMSSYS.OLD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‡ALPHAVMSSYS.OLD</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REBOOT</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

¹All files except VMSIMAGES.DAT, which contains the installed image list, reside in the SYS$SYSTEM directory. VMSIMAGES.DAT resides in the SYS$MANAGER directory.

†VAX specific
‡Alpha specific

6.7 AUTOGEN Usage Summary

The AUTOGEN command procedure runs automatically when your system is installed or upgraded to set appropriate values for system parameters and sizes for system page, swap, and dump files.

Execute AUTOGEN to reset system parameter values and system file sizes. The new values and file sizes take effect the next time the system is booted.

Format

@SYS$UPDATE:AUTOGEN [start-phase] [end-phase] [execution-mode]

Parameters

start-phase
Specify the phase where AUTOGEN is to begin executing. Table 6–3 lists the options for the end-phase parameter.

The phase specified for start-phase must either precede or be identical to the phase specified for end-phase, according to the sequence shown in Table 6–3. If you do not supply an option for the start-phase parameter, enter a null argument (that is, “”). If you do not specify a start phase, GENPARAMS is the default.

end-phase
Specify the phase where AUTOGEN is to complete executing. Table 6–3 lists the options for the end-phase parameter. If you do not specify an end phase, the end phase has the same value as the start phase by default.
execution-mode
Specify one of the following execution-mode options to control how AUTOGEN uses feedback:

- FEEDBACK
- NOFEEDBACK
- CHECK_FEEDBACK
- Blank

Table 6–4 describes each execution-mode option.

Description
To invoke AUTOGEN, use the following syntax to enter a command at the DCL command prompt:

```
$ @SYS$UPDATE:AUTOGEN [start-phase] [end-phase] [execution-mode]
```

You are returned to DCL level when the command has finished processing unless you specify SHUTDOWN or REBOOT as the end-phase parameter.
7.1 BACKUP Description

The Backup utility (BACKUP) helps you prevent data loss or corruption by creating copies of your files, directories, and disks. In case of a problem, for example, a disk drive failure, you can restore the backup copy and continue your work with minimal disruption.

When you save files with BACKUP, it writes the files to a special file called a **save set**. Save sets are written in a format that only BACKUP can interpret. (A save set stored on a Files–11 disk is a standard OpenVMS file, however, and can be copied, renamed, deleted, or backed up. A save set stored on magnetic tape should only be processed with the BACKUP command; do not use the DCL command COPY to copy a magnetic tape save set to disk.)

Use BACKUP to perform the following tasks:

- Save disk files to a BACKUP save set.
- Restore files to disk from a BACKUP save set.
- Copy disk files to disk files.
- Compare disk files created by BACKUP or files in a BACKUP save set with disk files.
- List information about the files in a BACKUP save set.
- Create and list journal files that record the results of BACKUP save operations.
- Convert ODS-5 file names to ODS-2 file names.

For specific information about performing these tasks, refer to the *HP OpenVMS System Manager’s Manual*.

Note

Some layered products have their own special backup procedures. For more information, refer to the layered product documentation.

Using BACKUP also eliminates disk fragmentation. Fragmentation can occur as you create and extend files on a disk. If the file system cannot store files in contiguous blocks, it stores them in noncontiguous pieces. Eventually, the disk can become severely fragmented and system performance suffers. To eliminate fragmentation, perform an image backup of the disk and restore the backup copy. When you restore the image backup, BACKUP places the files on the disk contiguously.

Besides backing up your own files, directories, and disks, remember to back up your OpenVMS system disk. Depending on the policy at your site, individuals may be responsible for backing up their system disks, or an operator or system manager may perform the backup (as would likely be the case in a large, clustered computer system).
The two ways to back up your system disk are:

- If you have access to the OpenVMS Alpha or VAX system CD–ROM, you can use a menu system supplied on the CD–ROM to back up your system disk.
- If you do not have access to the OpenVMS VAX system CD–ROM, you must use standalone BACKUP to back up your system disk (VAX only).

Refer to the *HP OpenVMS System Manager’s Manual* for more information about standalone BACKUP and the menu-driven procedure.

Types of backup operations are:

- An **image backup** (also called a full backup) saves a copy of all the files on a disk (or volume) to a save set. The first backup that you do on a disk must be an image backup; you cannot perform an incremental backup first.

- An **image restore** initializes the output disk and restores an entire volume.

- An **image copy** operation initializes the output disk and copies an entire volume; the image backup is a logical duplicate of the contents of the disk.

- An **image compare** operation compares the contents of entire volumes.

 Note

 Because an image copy or backup operation processes all files on the input volume, you cannot specify file-selection qualifiers for these operations. You can, however, restore files and directories selectively from an image save set.

If the output volume of an image operation is a disk, BACKUP stores all files on the output volume contiguously, eliminating disk fragmentation and creating contiguous free blocks of disk space.

- An **incremental backup** saves only those files that have been created or modified since the most recent backup that was performed using the /RECORD qualifier. (The /RECORD qualifier records the date and time that the files are backed up.)

- An **incremental restore** operation restores an incremental save set. Specify the command qualifier /INCREMENTAL in an incremental restore operation.

- A **file operation** processes individual files or directories.

- A **selective operation** process files or volumes selectively, according to criteria such as version number, file type, UIC, date and time of creation, expiration date, or modification date.

 Perform selective save operations by using wildcard characters and input file-selection qualifiers (for example, /BACKUP, /BEFORE, /BY_OWNER (use instead of /OWNER_UIC), /CREATED, /EXCLUDE, /EXPIRED, /MODIFIED, and /SINCE).

- A **physical operation** copies, saves, restores, or compares an entire volume in terms of logical blocks, ignoring any file structure.

BACKUP allocates virtual memory to hold copies of the index file and storage bitmaps. With larger bitmaps, the virtual memory requirement of this utility increases correspondingly. To use BACKUP on volumes with large bitmaps, you might need to increase your page file quota. On OpenVMS VAX systems, you might also need to increase the system parameter VIRTUALPAGECNT.
Sizes of virtual memory requirements for the bitmaps are VAX pages (or Alpha 512-byte pagelets) per block of bitmap. For the BACKUP utility, the virtual memory requirement for the bitmaps is equal to the sum of the sizes of all index file bitmaps on the volume set. (Note that this memory requirement is in addition to the BACKUP utility’s substantial buffer pool.)

The following sections describe the BACKUP command line format.

7.2 BACKUP Command Line Format

To perform BACKUP operations, enter the DCL command BACKUP in the following format:

```
BACKUP input-specifier output-specifier
```

BACKUP evaluates the input and output specifiers to determine which type of operation to perform. BACKUP also uses the input specifier to locate the input and directs output to the output specifier.

7.3 BACKUP Input and Output Specifiers

BACKUP can process several different types of input and output. Depending on the type of operation being executed, input and output specifiers can be standard OpenVMS file specifications, BACKUP save-set specifications, or device specifications. Device specifications can refer to disk or magnetic tape volumes.

You can specify any valid OpenVMS file specification as BACKUP input or output specifiers; however, BACKUP does not allow node names in BACKUP file specifications. You can use wildcard characters, and you can list multiple file specifications as input to a single BACKUP operation.

A BACKUP save-set specification is the file specification of a BACKUP save set. When you use BACKUP to save files or volumes, BACKUP writes your files to a save set. You can specify the save set as input to other BACKUP operations. When specifying a save set, follow the rules for specifying a OpenVMS file. The *OpenVMS User’s Manual* describes valid specifications for disk files; the *HP OpenVMS System Manager’s Manual* explains the rules for specifying magnetic tape files. A save-set specification has no default file type, although you can use BCK or SAV.

The save-set name can be any valid OpenVMS file name and type. However, when you create a save set on magnetic tape, the save-set name has the following restrictions:

- The entire save-set name cannot exceed 17 characters, including the period delimiter.
- You cannot specify a version number.
- You cannot specify a directory name.

Device specifications used as BACKUP input or output specifiers follow the conventions for specifying devices outlined in the *OpenVMS User’s Manual*.

By default, BACKUP treats an input or output specifier referring to a Files–11 disk as a file specification. Therefore, to identify a save set on a Files–11 volume, you must include the /SAVE_SET qualifier with the specifier (see /SAVE_SET). BACKUP treats input and output specifiers referring to magnetic tape as save sets.
Note

You cannot specify a save set for both the input and output specifier of a BACKUP command. For this reason, you cannot perform a BACKUP operation from one magnetic tape to another.

Table 7–1 shows input and output specifiers for each type of BACKUP operation.

Table 7–1 BACKUP Input and Output by Operation Type

<table>
<thead>
<tr>
<th>Operation</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save</td>
<td>BACKUP file-spec save-set-spec</td>
</tr>
<tr>
<td>Save (image)</td>
<td>BACKUP/IMAGE device-spec save-set-spec</td>
</tr>
<tr>
<td>Save (physical to disk)</td>
<td>BACKUP/PHYSICAL device-spec device-spec</td>
</tr>
<tr>
<td>Restore</td>
<td>BACKUP save-set-spec file-spec</td>
</tr>
<tr>
<td>Restore (image)</td>
<td>BACKUP/IMAGE save-set-spec device-spec</td>
</tr>
<tr>
<td>Restore (physical from disk)</td>
<td>BACKUP/PHYSICAL save-set-spec device-spec</td>
</tr>
<tr>
<td>Restore (physical from tape)</td>
<td>BACKUP/PHYSICAL save-set-spec device-spec</td>
</tr>
<tr>
<td>Copy</td>
<td>BACKUP file-spec file-spec</td>
</tr>
<tr>
<td>Copy (image)</td>
<td>BACKUP/IMAGE device-spec device-spec</td>
</tr>
<tr>
<td>Copy (physical to tape)</td>
<td>BACKUP/PHYSICAL device-spec save-set-spec</td>
</tr>
<tr>
<td>Compare</td>
<td>BACKUP/COMPARE file-spec file-spec</td>
</tr>
<tr>
<td>Compare (image)</td>
<td>BACKUP/COMPARE/IMAGE save-set-spec device-spec</td>
</tr>
<tr>
<td>Compare (physical)</td>
<td>BACKUP/COMPARE/PHYSICAL device-spec device-spec</td>
</tr>
<tr>
<td>List¹</td>
<td>BACKUP/LIST=file-spec save-set-spec</td>
</tr>
<tr>
<td>Create Journal</td>
<td>BACKUP/JOURNAL=file-spec file-spec save-set-spec</td>
</tr>
<tr>
<td>List Journal</td>
<td>BACKUP/JOURNAL=file-spec/LIST=file-spec</td>
</tr>
</tbody>
</table>

¹Can also be used with any other operation listed here.

7.3.1 Input and Output Specifier Element Lists

An element list is a list of arguments specified with a command or qualifier. The arguments, or elements, in the list are separated by commas. Element lists relating to input or output specifiers are allowed only in the following circumstances:

- If an input specifier refers to a Files–11 disk, you can construct lists from standard OpenVMS file specifications, as follows:

  ```
  $ BACKUP
  _From: DUA0:[DATA]A.DAT,B.DAT,[PROGRAMS]TEST.EXE
  _To: MSA0:TEST.SAV/LABEL=DLY101
  ```
• If an input specifier or an output specifier refers to a BACKUP save set on magnetic tape or sequential disk, you can specify more than one device name to be used in the operation. This allows you to process multivolume save sets efficiently by specifying the order in which devices will be used. The first volume is processed until it is full. The second (or subsequent) volume is processed while the media in the first (or previous) volume is being changed. However, the save-set name must appear with the first element in the list and must not appear in subsequent elements in the list.

In the following example, BACKUP first saves data to a tape in drive MSA0, then to a tape in drive MSA1. When the tape in drive MSA1 is full, BACKUP saves data to a fresh tape in MSA0.

```
$ BACKUP
  _From: DUA0:[DATA]*.*,DUA0:[PROGRAMS]*.*
  _To: MSA0:TEST.SAV,MSA1:/LABEL=WKLY01
```

• If you are performing an image operation on a volume set, you can specify element lists in the input and output specifiers. In the following example, BACKUP first restores the save set TEST.SAV from the tape in drive MSA0, and then continues to restore the save set from the tape in drive MSA1. BACKUP first restores this save set to DUA0. When DUA0 is full, BACKUP continues the restore operation to DUA1.

```
$ BACKUP/IMAGE
  _From: MSA0:TEST.SAV,MSA1:
  _To: DUA0:[DATA...],DUA1:
```

7.3.2 BACKUP Qualifiers

You can also affect BACKUP operations by specifying qualifiers. BACKUP has five types of qualifiers:

• **Command qualifiers** modify the default action of a BACKUP command. You can place command qualifiers anywhere in the command line. Command qualifiers act upon every file in the input or output specifier.

• **Input file-selection qualifiers** select files from the input specifier. Place them immediately after the input specifier.

• **Input save-set qualifiers** affect the way BACKUP handles an input save set during a restore or compare operation. Place them immediately after the input specifier.

• **Output file qualifiers** change the way output files are restored. Place them immediately after the output specifier.

• **Output save-set qualifiers** affect the way BACKUP processes an output save set during a save operation. Place them immediately after the output specifier.

Note: You cannot use input and output qualifiers in image operations.

It is important to understand the differences between the types of qualifiers. The position of qualifiers in the BACKUP command line affects the results of the command. Although command qualifiers can be placed anywhere in the command.
7.3 BACKUP Input and Output Specifiers

Line, input- and output-specifier qualifiers are position-dependent. That is, input-specifier qualifiers must be placed immediately after the input specifier, and output-specifier qualifiers must be placed immediately after the output specifier.

Additionally, several BACKUP qualifiers are both input-specifier qualifiers and output-specifier qualifiers. To achieve the results you want from a BACKUP command, ensure that you place position-dependent qualifiers correctly. For example, use the /SAVE_SET qualifier as an output save-set qualifier in a BACKUP save operation and as an input save-set qualifier in a BACKUP restore operation.

Appendix G contains more information about valid combinations of BACKUP qualifiers.

7.3.3 Using Wildcard Characters with BACKUP

BACKUP allows you to use wildcard characters in file specifications to represent directories, file names, file types, and version numbers. Omitted file names, file types, or version numbers are assumed to be the asterisk wildcard character (*). For instance, if you omit the version number, BACKUP processes all versions. (For introductory information about wildcard characters, refer to the OpenVMS User’s Manual.)

You can use any valid DCL wildcard character with input specifiers that are Files–11 media or with the /SELECT and /EXCLUDE qualifiers. Note, however, that the symbols denoting the latest versions of files (;) and relative versions of files (;-n) are processed as the asterisk wildcard character (;*) when they are used with the /EXCLUDE and /SELECT qualifiers.

You cannot use wildcard characters in BACKUP save-set specifications unless the save sets are input specifiers on tape.

Using Wildcard Characters to Represent Directories

The following table lists the types of directory wildcards allowed for output specifiers that are Files–11 media:

<table>
<thead>
<tr>
<th>Directory Wildcard</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>omitted</td>
<td>If a directory name is omitted, BACKUP restores file to the current default directory [].</td>
</tr>
<tr>
<td>[* . . .]</td>
<td>BACKUP restores files to the directory from which they were saved.</td>
</tr>
<tr>
<td>[directory]</td>
<td>BACKUP restores files to the named directory.</td>
</tr>
<tr>
<td>[directory . . .]</td>
<td>The wildcard characters used in the specification of the input files determine the directory to which BACKUP restores the files.</td>
</tr>
</tbody>
</table>

Note

If you specify directory wildcard characters incorrectly and your directories contain many levels of subdirectories, you risk losing the lower level subdirectories in BACKUP operations because OpenVMS directory trees can have only 8 levels with ODS-2 files. ODS-5 files, however, do not have this 8-level restriction.
The following example uses the directory wildcard format [directory . . .] for both the input and the output specifiers:

```
$ BACKUP [OSCAR...] [JOE.RECEIVED...]
```

In this example, BACKUP creates a directory named [JOE.RECEIVED] (if it does not already exist) as well as subdirectories that correspond to the subdirectories of [OSCAR]. BACKUP copies all files from the directory [OSCAR] and its subdirectories to [JOE.RECEIVED] and its subdirectories. If [OSCAR] has 8 levels of directories, however, and files in it are ODS-2, BACKUP is unable to create a corresponding 9-level subdirectory to [JOE.RECEIVED]; the 8-level subdirectory to [OSCAR] is not copied. (This restriction does not apply to ODS-5 files.)

If you use the asterisk wildcard character (*) to represent subdirectories in the input specifier of a copy operation, BACKUP creates subdirectories to the directory specified in the output specifier that correspond to the subdirectories in the input specifier. BACKUP then copies all files from the lowest level subdirectory in the input specifier to the lowest level subdirectory in the output specifier. In the following example, the asterisk represents subdirectories named MONDAY and TUESDAY:

```
$ BACKUP [SAM.WORK.*.WEDNESDAY] [JAMES...]
```

In this example, BACKUP creates a subdirectory named [JAMES.MONDAY.TUESDAY.WEDNESDAY]. In doing so, BACKUP copies the file MONDAY.DIR to [JAMES], copies the file TUESDAY.DIR to [JAMES.MONDAY], and copies the file WEDNESDAY.DIR to [JAMES.MONDAY.TUESDAY]. Then BACKUP copies all files from [SAM.WORK.MONDAY.TUESDAY.WEDNESDAY] to [JAMES.MONDAY.TUESDAY.WEDNESDAY].

In a restore operation, the input specifier defaults to [* . . .] if the input save-set qualifier /SELECT is not used; this is important if you use the form [directory . . .] in the output specifier. The function of the wildcard [* . . .] is to carry over the entire directory name from the first level on and to place it before the ellipsis in the output specifier. Thus, if the save set in the following example contains the directory tree [SAVE . . .], the restored directory tree will be [WORK.SAVE . . .]:

```
$ BACKUP MTA0:SAVE.BCK [WORK...]
```

Note that the result will be the same, even if your output specifier has the same name as the directory in the input specifier, as shown in the following example:

```
$ BACKUP MTA0:SAVE.BCK [SAVE...]
```

The preceding command restores the directory tree [SAVE . . .] to a directory tree named [SAVE.SAVE . . .].

The following command restores the directory tree [SAVE . . .] to a directory tree named [WORK . . .]:

```
$ BACKUP MTA0:SAVE.BCK/SELECT=[SAVE...] [WORK...]
```

There are two ways to retain the original directory name when you restore files. You must either use the form [* . . .] for the output specifier, or you must specify the input save-set qualifier /SELECT. The following example uses the form [* . . .] in the output specifier to restore the directory tree [SAVE . . .] in save set SAVE.BCK to the directory tree [SAVE . . .]:
7.3 BACKUP Input and Output Specifiers

$ BACKUP MTA0:SAVE.BCK [*...]

The input save-set qualifier /SELECT causes only the ellipsis portion of the selected file specification to be carried over to the directory tree named in the output specifier [directory ...]. The following command restores [SAVE ...] to [SAVE ...]:

$ BACKUP MTA0:SAVE.BCK/SELECT=[SAVE...] [SAVE...]

7.4 BACKUP Usage Summary

By duplicating files or volumes of files, the Backup utility (BACKUP) protects data from loss or corruption.

BACKUP is intended for use primarily by system managers and operators to protect public media. However, anyone can use BACKUP to make personal BACKUP copies and to transport files between OpenVMS systems.

The two ways to back up your system disk are:

- If you have access to the CD–ROM of the current version of OpenVMS Alpha or VAX, you can use a menu-driven procedure to back up your system disk.
- If you do not have access to the CD–ROM of the current version of OpenVMS Alpha or VAX, you must use standalone BACKUP to back up your system disk. Standalone BACKUP is a version of the Backup utility that is bootstrapped into main memory instead of running under the control of the OpenVMS VAX operating system. Standalone BACKUP uses a subset of BACKUP qualifiers to perform image and physical BACKUP operations.

Format

BACKUP input-specifier output-specifier

Parameters

input specifier

Specifies the input for the BACKUP operation. The input specifier can be a standard OpenVMS file specification, a BACKUP save-set specification, or a device name. If the input specifier is a save-set specification on disk, it must include the input save-set qualifier /SAVE_SET.

DECnet node names are allowed only in save-set specifications.

Wildcards are permitted in standard OpenVMS file specifications and in save-set specifications if they are on magnetic tape.

output specifier

Specifies the output for the BACKUP operation. The output specifier, like the input specifier, can be either a standard OpenVMS file specification, a BACKUP save-set specification, or a device name. If the output specifier is a save set on disk, it must include the output save-set qualifier /SAVE_SET.

DECnet node names are allowed only in save-set specifications.

You can use wildcard characters if the output specifier is a Files–11 volume. You cannot use wildcard characters if the output specifier is a BACKUP save set or a volume created by a BACKUP/PHYSICAL or BACKUP/IMAGE operation. Refer to Section 7.3.3 for restrictions on the use of wildcard characters in BACKUP commands.
Description

To invoke online BACKUP, enter an appropriate BACKUP command at the DCL prompt. For instructions on invoking standalone BACKUP, refer to the *HP OpenVMS System Manager's Manual*.

When you enter a BACKUP command, BACKUP evaluates the input and output specifier and qualifiers to determine the type of operation to perform. BACKUP uses the input specifier to locate the input to the utility and directs output to the output specifier, which can be a file or a save set on disk or a save set on magnetic tape.

After executing the command, BACKUP returns to DCL command level. If you want to halt the execution of a BACKUP command prematurely, press Ctrl/Y. If BACKUP is creating a file when you press Ctrl/Y, the file is closed immediately and only partially created.

You need the user privilege TMPMBX to send messages to operator terminals when using BACKUP in batch mode. If you are performing a save operation to a volume set of sequential disks, you must have the user privilege PHY_IO or LOG_IO to write to a continuation volume. The use of several BACKUP qualifiers also requires privileges; these are noted in the appropriate qualifier descriptions.

7.5 BACKUP Qualifiers

This section describes and provides examples of each BACKUP qualifier. Make sure that you understand how the position of BACKUP qualifiers affects BACKUP operations. See Section 7.2 for information about the BACKUP command line format. Table 7–2 summarizes the BACKUP qualifiers.

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ALIAS</td>
<td>Specifies whether to maintain the previous behavior of multiple processing of alias and primary file entries.</td>
</tr>
<tr>
<td>/ASSIST</td>
<td>Allows operator or user intervention if a request to mount a magnetic tape fails during a BACKUP operation.</td>
</tr>
<tr>
<td>/BACKUP</td>
<td>Selects files according to the BACKUP date written in the file header record by the BACKUP/RECORD command.</td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Selects files dated earlier than the date and time you specify.</td>
</tr>
<tr>
<td>/BLOCK_SIZE</td>
<td>Specifies the output block size in bytes for data records in a BACKUP save set.</td>
</tr>
<tr>
<td>/BRIEF</td>
<td>Causes the /LIST qualifier to display the file specification, size (in blocks), and creation date for each file in the save set.</td>
</tr>
<tr>
<td>/BUFFER_COUNT</td>
<td>This qualifier is obsolete and has no effect.</td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td>As an input file-selection qualifier, /BY_OWNER causes BACKUP to process files owned by the specified UIC.</td>
</tr>
<tr>
<td></td>
<td>As an output file qualifier, /BY_OWNER redefines the owner user identification code (UIC) for restored files.</td>
</tr>
<tr>
<td></td>
<td>As an output save-set qualifier, /BY_OWNER specifies the owner user identification code (UIC) of the save set.</td>
</tr>
</tbody>
</table>

(continued on next page)
BACKUP Qualifiers

Table 7-2 (Cont.) BACKUP Qualifier Summary

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/COMMENT</td>
<td>Places the string that you supply into the BACKUP summary record of the output save set.</td>
</tr>
<tr>
<td>/COMPARE</td>
<td>Causes BACKUP to compare the contents of the first parameter with the contents of the second parameter.</td>
</tr>
<tr>
<td>/CONFIRM</td>
<td>Displays prompts on your terminal for confirmation before processing each file.</td>
</tr>
<tr>
<td>/CONVERT</td>
<td>Converts ODS-5 file names to ODS-2 file names.</td>
</tr>
<tr>
<td>/CRC</td>
<td>As an input save-set qualifier, /CRC checks the software cyclic redundancy check (CRC) encoded in the save set's data blocks.</td>
</tr>
<tr>
<td></td>
<td>As an output save-set qualifier, /CRC specifies that the CRC is to be computed and stored in the data blocks of the output save set.</td>
</tr>
<tr>
<td>/CREATED</td>
<td>Selects files according to the value of the creation date field in each file header record.</td>
</tr>
<tr>
<td>/DELETE</td>
<td>Specifies that a BACKUP save or copy operation is to delete the selected input files from the input volume after all files have been successfully processed.</td>
</tr>
<tr>
<td>/DENSITY</td>
<td>Specifies the recording density of the output magnetic tape.</td>
</tr>
<tr>
<td>/EXACT_ORDER</td>
<td>Specifies the exact order of tape volume labels that you want to use in a BACKUP operation.</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Excludes files from processing that otherwise meet the selection criteria for a save or copy operation.</td>
</tr>
<tr>
<td>/EXPIRED</td>
<td>Selects files according to the value of the expiration date field in each file header record.</td>
</tr>
<tr>
<td>/FAST</td>
<td>Processes the input specifier using a fast file scan to reduce processing time.</td>
</tr>
<tr>
<td>/FILES_SELECTED</td>
<td>Specifies a file that contains a list of the files that are to be selected when a save set is restored.</td>
</tr>
<tr>
<td>/FULL</td>
<td>Displays the information produced by the /LIST command qualifier in a format similar to that displayed by the DCL command DIRECTORY/FULL.</td>
</tr>
<tr>
<td>/GROUP_SIZE</td>
<td>Defines the number of blocks BACKUP places in each redundancy group.</td>
</tr>
<tr>
<td>/HEADER_ONLY</td>
<td>Controls whether BACKUP saves only the file header of shelved and preshelved files.</td>
</tr>
<tr>
<td>/IGNORE</td>
<td>Specifies that a BACKUP save or copy operation will override restrictions placed on files or will not perform tape label processing checks.</td>
</tr>
<tr>
<td>/IMAGE</td>
<td>Directs BACKUP to process an entire volume or volume set.</td>
</tr>
<tr>
<td>/INCREMENTAL</td>
<td>Allows you to restore a disk volume from a series of incremental save sets.</td>
</tr>
<tr>
<td>/INITIALIZE</td>
<td>Initializes an output disk volume, making its entire previous contents unavailable.</td>
</tr>
<tr>
<td>/INPUT_FILES</td>
<td>Directs BACKUP to treat the input-specifier as the file name of a list of files. This file specifies the input files for a BACKUP operation.</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/INTERCHANGE</td>
<td>Directs BACKUP to process files in a manner suitable for data interchange (software distribution) by excluding information that would prevent other utilities or sites from reading the BACKUP save set.</td>
</tr>
<tr>
<td>/JOURNAL</td>
<td>Specifies that a BACKUP save operation is to create, or append information to, a BACKUP journal file.</td>
</tr>
<tr>
<td>/LABEL</td>
<td>Specifies the 1- to 6- character volume labels for the magnetic tapes and 1- to 12- character volume labels for disks to which the save set is written.</td>
</tr>
<tr>
<td>/LIST</td>
<td>Lists information about a BACKUP save set and about the files in a save set.</td>
</tr>
<tr>
<td>/LOG</td>
<td>Displays the file specification of each file processed during the operation on SYS$OUTPUT.</td>
</tr>
<tr>
<td>/MEDIA_FORMAT</td>
<td>Controls whether data records are automatically compacted and blocked together.</td>
</tr>
<tr>
<td>/MODIFIED</td>
<td>Selects files according to the value of the modified date field (the date the file was last modified) in each file header record.</td>
</tr>
<tr>
<td>/NEW_VERSION</td>
<td>Creates a new version of a file if a file with an identical specification already exists at the location to which the file is being restored or copied.</td>
</tr>
<tr>
<td>/NOINCREMENTAL</td>
<td>Allows you to control the amount of file data that is saved in a save operation.</td>
</tr>
<tr>
<td>/OVERLAY</td>
<td>Writes over an existing file when an identically named file is encountered during the restore operation.</td>
</tr>
<tr>
<td>/OWNER_UIC</td>
<td>The /OWNER_UIC qualifier has been superseded by the /BY_OWNER qualifier. HP recommends that you substitute /BY_OWNER for OWNER_UIC in command procedures and operator instructions. See the description of the /BY_OWNER qualifier for more information.</td>
</tr>
<tr>
<td>/PHYSICAL</td>
<td>Specifies that a BACKUP operation is to ignore any file structure on the input volume and to process the volume in terms of logical blocks.</td>
</tr>
<tr>
<td>/PROTECTION</td>
<td>When you create a save set on disk, this qualifier defines the protection to be applied to an output save set. When you create a save set on magnetic tape, this qualifier defines the protection to be applied to the magnetic tape volume.</td>
</tr>
<tr>
<td>/RECORD</td>
<td>Records the current date and time in the BACKUP date field of each file header once a file is successfully saved or copied.</td>
</tr>
<tr>
<td>/RELEASE_TAPE</td>
<td>Dismounts and unloads a tape after a BACKUP save operation either writes and verifies the save set, or reaches the end of the tape.</td>
</tr>
<tr>
<td>/REPLACE</td>
<td>Replaces a file on the output specifier with an identically named file from the input specifier.</td>
</tr>
</tbody>
</table>

(continued on next page)
7.5 BACKUP Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/REWIND</td>
<td>As an input save-set qualifier, /REWIND rewinds the input tape reel to the beginning-of-tape marker before reading the input volume.</td>
</tr>
<tr>
<td></td>
<td>As an output save-set qualifier, /REWIND rewinds the output tape to the beginning-of-tape marker and initializes the output tape.</td>
</tr>
<tr>
<td>/SAVE_SET</td>
<td>As an input save-set qualifier, /SAVE_SET directs BACKUP to treat the input file as a BACKUP save set.</td>
</tr>
<tr>
<td></td>
<td>As an output save-set qualifier, /SAVE_SET directs BACKUP to treat the output file as a BACKUP save set.</td>
</tr>
<tr>
<td>/SELECT</td>
<td>Selects the specified files for processing.</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Selects files dated equal to or later than the specified date and time.</td>
</tr>
<tr>
<td>/TAPE_EXPIRATION</td>
<td>Writes a file expiration date other than the current date to the file header label of the save set.</td>
</tr>
<tr>
<td>/TRUNCATE</td>
<td>Controls whether a copy or restore operation truncates a sequential output file at the end-of-file (EOF) when creating it.</td>
</tr>
<tr>
<td>/VERIFY</td>
<td>Specifies that the contents of the output specifier be compared with the contents of the input specifier after a save, restore, or copy operation is completed.</td>
</tr>
<tr>
<td>/VOLUME</td>
<td>Indicates that a specific disk volume in a disk volume set is to be processed.</td>
</tr>
</tbody>
</table>
/ALIAS

Command Qualifier
Specifies that the previous behavior of multiple processing of alias and primary file entries be maintained.

Note
Use the /ALIAS qualifier only when you are restoring very old save sets (from OpenVMS Version 6.2 or earlier). The current default behavior is correct in nearly every other situation. If you are in doubt about using this qualifier, contact your HP support representative.

Description
The /ALIAS qualifier maintains the previous BACKUP behavior of treating alias file entries the same as primary file entries. Therefore, a primary file may be processed multiple times by BACKUP if one or more alias file entries reference the same primary file entry.

If you specify /NOALIAS, alias directory and file entries are ignored. Therefore, multiple processing of primary files may be avoided, which saves time and save-set file space. If a restore operation is performed using the /ALIAS qualifier but the save set was created by using the /NOALIAS qualifier, a message is displayed that the /ALIAS qualifier will be ignored.

Format
/ALIAS save-set-spec (default)
/NOALIAS
/ASSIST

Command Qualifier

Allows operator or user intervention during a BACKUP operation if a magnetic tape mount request fails or if an operation requires another volume.

Format

/[NO]ASSIST input-specifier output-specifier

Description

The /ASSIST qualifier causes BACKUP to send messages to operator terminals when a failure occurs during a BACKUP mount request or when an operation requires another volume. BACKUP sends messages to operator terminals enabled to receive TAPES and CENTRAL messages. (See the description of the REPLY command in the HP OpenVMS DCL Dictionary for information about enabling and disabling operator terminals.) If a failure occurs, the operator can either abort the operation or correct the error condition and allow the operation to continue.

If no operator terminal is enabled to receive TAPES and CENTRAL messages and to respond to a mount assist request, a message is displayed informing the user of the situation. If a volume is placed in the requested drive, no additional operator response is necessary. Any operator reply to a mount request is written to SYS$OUTPUT. When BACKUP is run interactively, SYS$OUTPUT is the user’s terminal. When BACKUP is run in batch mode, SYS$OUTPUT is the batch job log file.

If you specify /NOASSIST, mount messages appear on your terminal and are not sent to the operator.

The default is /ASSIST. The /NOASSIST qualifier has no effect if the logical name SYS$COMMAND points to a device that is not a terminal (as is the case when you run BACKUP in a batch job). Specifying /NOASSIST when BACKUP is run in batch mode has no effect.

Example

$ BACKUP/NOASSIST [PAYROLL]*.*;* MTA1:PAYROLL.BCK/LABEL=WKY101

This command mounts the volume labeled WKY101 on the MTA1 tape drive and copies all files in the [PAYROLL] directory to a save set named PAYROLL.BCK. The /NOASSIST qualifier directs BACKUP to send mount messages to your terminal rather than to the operator terminal. The WKY101 label indicates that WKY101 is a weekly BACKUP tape in group 1, volume number 01. (If the volume label of the tape is not WKY101, you can direct BACKUP to write the save set to the tape by choosing the OVERWRITE option at the BACKUP> prompt.)
/BACKUP

Input File-Selection Qualifier

Selects files according to the BACKUP date written in the file header record by the BACKUP/RECORD command.

Format

input-specifier/BEFORE=time/BACKUP output-specifier
input-specifier/SINCE=time/BACKUP output-specifier

Description

The /BACKUP qualifier is valid with Files–11 Structure Levels 2 and 5 volumes only and must be used with either the /BEFORE or /SINCE qualifier. You cannot use /BACKUP with the /CREATED, /MODIFIED, or /EXPIRED qualifiers in an image operation or in a physical operation.

The /BACKUP qualifier selects files by comparing the date and time recorded in the BACKUP field of the file header record with the date and time specified with the /BEFORE or /SINCE qualifier. The date and time recorded in the file header record is the date and time the file was last saved or copied using the /RECORD command qualifier.

When you use /BACKUP with /BEFORE, files with a BACKUP date prior to the specified date or time are selected. Files with no BACKUP date (that is, /RECORD was not specified when the file was saved or copied) are also selected.

When you use /BACKUP with /SINCE, files with a BACKUP date equal to or later than the specified date or time are selected. Files with no BACKUP date (that is, /RECORD was not specified when the file was saved or copied) are not selected.

Examples

1. $ BACKUP/RECORD
 _From: [PAYROLL]*.*;*/BEFORE=01-SEP-2002/BACKUP
 _To: MTA1:SEP01.BCK

 In this command, the /BACKUP qualifier combined with the /BEFORE qualifier saves all versions of all files in the directory [PAYROLL] that have a BACKUP date written before September 1, 2002. The command qualifier /RECORD writes the date and time of the save operation to the file header record of each saved file.

2. $ BACKUP/RECORD [ACCOUNTS...]/SINCE=YESTERDAY/BACKUP MTA1:ACC.BCK

 In this command, the /BACKUP qualifier combined with the /SINCE qualifier saves all files in all subdirectories of [ACCOUNTS] that have a BACKUP date written since yesterday (24 hours before midnight last night). The command qualifier /RECORD writes the date and time of the save operation to the file header record of each saved file.
Input File-Selection Qualifier

Selects files dated earlier than the date and time you specify.

Format

`input-specifier/BEFORE=time output-specifier`

Description

The `/BEFORE` qualifier selects files by comparing the date and time in the specified field of each file header record with the date and time you specify in the command line. The following list shows the other input file-selection qualifiers (and their functions) that you can use with the `/BEFORE` qualifier. Use these other qualifiers only one at a time in your command line.

- `/BACKUP` Selects files last saved or copied by BACKUP/RECORD before the date specified. Also selects files with no BACKUP date.
- `/CREATED` Selects files created before the date specified.
- `/EXPIRED` Selects files that have expired as of the date specified. If you specify `/BEFORE` without another qualifier, `/MODIFIED` is used by default.
- `/MODIFIED` Selects files last modified before the date specified.

Specify the date and time as a delta time or as an absolute time using the format `[dd-mmm-yyyy[:]][hh:mm:ss.cc]`. You can also use one of the following reserved words to specify the date and time:

- `BACKUP` The BACKUP date of the file written by a previous BACKUP/RECORD operation (available only on Files–11 Structure Levels 2 or 5 volumes)
- `TODAY` The current day, month, and year at 00:00:00.0 o'clock
- `TOMORROW` 24 hours after midnight last night
- `YESTERDAY` 24 hours before midnight last night

The `/BEFORE` qualifier is not valid in incremental restore operations.

Example

```
$ BACKUP [POLICIES]*.*;/BEFORE=TODAY/EXPIRED DMA1:OLDPOL.BCK/SAVE_SET
```

This command saves all files in the directory [POLICIES] that have expiration dates preceding today's date.
The /BLOCK_SIZE qualifier specifies the output block size in bytes for data records in a BACKUP save set.

Format

```
input-specifier output-save-set-spec/BLOCK_SIZE=n
```

Description

You can specify a block size between 2048 and 65,535 bytes. BACKUP may adjust this value according to the constraints of the BACKUP format. Although BACKUP may adjust the block size you specify, it does not adjust the block size over the maximum of 65,535.

If you specify /BLOCK_SIZE in a magnetic tape save operation, BACKUP ignores any block size defined by the /BLOCK_SIZE qualifier to the DCL command MOUNT.

If the block size is set to a large value for a save set on magnetic tape, it is possible for the magnetic tape to run off its reel or for a large number of write errors to be logged. If this occurs, avoid using large block sizes. If the problem recurs with the same magnetic tape, avoid using that tape for future BACKUP operations.

The default block size for magnetic tape is 8192 bytes; the default for disk is 32,256 bytes.

Example

```
$ BACKUP/RECORD DRA2:/LEE.../SINCE=BACKUP MTA0:SAVEWORK.BCK/BLOCK_SIZE=10000
```

This command saves a directory tree on DRA2 to a magnetic tape mounted on drive MTA0. The input file-selection qualifier /SINCE=BACKUP instructs BACKUP to process only those files in the specified directory tree that have been modified since the last BACKUP/RECORD operation. The output save-set qualifier /BLOCK_SIZE directs BACKUP to assign a block size of 10,240 (BACKUP rounds the specified block size of 10,000 up to the next multiple of 512).
/BRIEF

Command Qualifier

Lists the file specification, size, and creation date for each file in the save set. (The size listed is the actual size of the file saved, rather than the number of blocks allocated to the file.) The /BRIEF qualifier is valid only with the /LIST qualifier and is the default format for BACKUP listings. Specify the /FULL qualifier to list the information in a format similar to that displayed by the DCL command DIRECTORY/FULL.

Format

/LIST/BRIEF save-set-spec

Example

$ BACKUP/LIST/BRIEF DBA2:[SAVE]23MAR02.BCK/SAVE_SET

Listing of save set(s)

Save set: 23MAR02.BCK
Written by: MOROCI
UIC: [000200,000200]
Date: 23-MAR-2002 14:18:16.00
Command: BACKUP [SAVE] DBA2:[SAVE]23MAR02.BCK/SAVE_SET

Operating system: OpenVMS Alpha Version 7.3-1
BACKUP version: V7.3-1
CPU ID register: 08000000
Node name: _SUZI::
Written on: _DBA2:
Block size: 32,256
Group size: 10
Buffer count: 3

[SAVE]INFO.TXT;4 4-FEB-2002 13:12
[SAVE]LAST.DAT;1 18-JAN-2002 14:11
[SAVE]WORK.DAT;3 1-JAN-2002 10:02

Total of 3 files, 39 blocks
End of save set

This command lists the BACKUP summary information and the file name, size, and creation date for each file in the save set. Note that the input save-set qualifier /SAVE_SET is required to identify the input specifier as a save set on a Files–11 medium.
/BUFFER_COUNT

Command Qualifier

This qualifier is obsolete. You can still specify the /BUFFER_COUNT qualifier, although it has no effect. (This ensures that command procedures containing this qualifier will still operate correctly.) HP recommends that you remove the /BUFFER_COUNT qualifier from command procedures.
Input File-Selection Qualifier
Selects files for processing according to the user identification code (UIC).

Format
input-specifier/BY_OWNER[=][uic]] output-specifier

Description
If you specify /BY_OWNER without a UIC, BACKUP selects all files whose UIC matches that of the current process.

Specify either a numeric UIC as octal numbers or an alphanumeric UIC in the form [g,m]. Wildcards are permitted. Note that the brackets are required.

[g,m]
 g An octal number in the range 0 to 37776 representing the group number or an alphanumeric group name
 m An octal number in the range 0 to 177776 representing the member number or an alphanumeric member name

If you do not specify /BY_OWNER, BACKUP processes all files specified by the input specifier.

Examples
1. $ BACKUP [SNOW...]/BY_OWNER MT$DRIVE:SNOW.BCK/LABEL=TAPE01
 In this example, BACKUP mounts the tape with the label TAPE01 on drive MT$DRIVE and saves all files in the directory and subdirectories of [SNOW] with the UIC of the current default process to the save set SNOW.BCK.

2. $ BACKUP [SUNDANCE]/BY_OWNER=[727,46] DBA1:STABLE.BCK/SAVE_SET
 In this example, all files in the directory [SUNDANCE] with an owner UIC of [727,46] are saved to the sequential-disk save set STABLE.BCK on DBA1.
Output File Qualifier
Redefines the owner user identification code (UIC) for restored files.

Format
input-specifier output-specifier/BY_OWNER[=option]

Description
The following options are available:

- **DEFAULT**
 Sets the owner UIC to the user’s current default UIC. This option is the default if you do not specify the /BY_OWNER qualifier, except in image and incremental restore operations, when ORIGINAL is the default option.

- **ORIGINAL**
 Retains the owner UIC of the file being restored. This option is the default if you specify the /BY_OWNER qualifier with no option. This option is also the default for incremental restore operations. To use this option, the UIC must be yours, or you must have the SYSPRV user privilege or be the owner of the output volume.

- **PARENT**
 Sets the owner UIC to the owner UIC of the directory to which the file is being restored or copied. To use this option, the parent UIC must be yours, or you must have the SYSPRV user privilege or be the owner of the output volume.

- **[uic]**
 Sets the owner UIC to the UIC specified. Use the [g,m] format (as described in the input file-selection qualifier /BY_OWNER). To use this option, the UIC must be yours, or you must have the SYSPRV user privilege or be the owner of the output volume.

In restore operations where the command qualifier /IMAGE or /INCREMENTAL is specified, the default is /BY_OWNER=ORIGINAL.

Example

$ BACKUP DBA2:ACCOUNTS.BCK/SAVE_SET
 [CLEAVER...]/BY_OWNER=PARENT

In this example, the sequential-disk save set ACCOUNTS.BCK is restored to the directory tree [CLEAVER...], assigning each restored file the owner UIC of the [CLEAVER] directory.
Output Save-Set Qualifier
Specifies the owner user identification code (UIC) of the save set.

Format
input-specifier output-save-set-spec/BY_OWNER=uic

Description
If the /BY_OWNER qualifier is omitted, the UIC of the current process is used. To use this qualifier on Files–11 save sets, you need the user privilege SYSPRV, or the UIC must be your own.

Specify either a numeric UIC as octal numbers or an alphanumeric UIC in the form [g,m]. Wildcards are permitted. Note that the brackets are required.

[g,m]
g An octal number in the range 0 to 37776 representing the group number or alphanumeric group name
m An octal number in the range 0 to 177776 representing the member number or alphanumeric member name

Example

$ BACKUP [CLEAVER...] MFA2:ACCOUNTS.BCK/BY_OWNER=[301,310]/LABEL=TAPE01

In this example, BACKUP mounts the tape with the label TAPE01 on drive MFA2. Next, BACKUP saves the directory tree [CLEAVER...] to a save set named ACCOUNTS.BCK. The output save-set qualifier /BY_OWNER assigns an owner UIC of [301,310] to the save set.
Output Save-Set Qualifier

Places a comment in an output save set. If the comment string is longer than one word or if it contains nonalphanumeric characters, you must enclose it in quotation marks ("="). A DCL command can contain a maximum of 1024 characters.

Format

input-specifier output-save-set-spec /COMMENT=string

Example

$ BACKUP [REMARKS] DMA1:20JULREM.BCK/SAVE_SET -
 $ /COMMENT="Remote operations for July 20, 2002"
$ BACKUP/LIST DMA1:20JULREM.BCK/SAVE_SET
Listing of save set

Save set: 20JULREM.BCK
Written by: WALRUS
UIC: [360, 054]
Date: 20-JUL-2002 15:22:06.62
Operating system: OpenVMS Alpha Version V7.3-1
BACKUP version: V7.3-1
CPU ID register: 0138084C
Node name: _ABBEY::
Written on: _ABBEY$DMA1:
Block size: 32256
Group size: 10
Buffer count: 3

[REMARKS]BAC.RES;1 2 20-JUL-2002 14:13
[REMARKS]COM.LIS;1 1 20-JUL-2002 14:04
[REMARKS]DTOP.DIR;1 1 20-JUL-2002 14:18
.
.
Total of 40 files, 535 blocks
End of save set

The first BACKUP command saves the directory [REMARKS] to a sequential-disk save set and records a comment. The BACKUP/LIST command displays the contents of the newly created save set. Note that the /SAVE_SET qualifier is required when creating a save set on disk.
/COMPARE

Command Qualifier

Compares the save set, device, file, or files specified by the first parameter with the contents of the Files–11 device, file, or files specified by the second parameter and displays an error message if it finds a difference.

Format

/COMPARE file-spec file-spec
/COMPARE save-set-spec file-spec
/IMAGE/COMPARE device-spec device-spec
/IMAGE/COMPARE save-set-spec device-spec
/PHYSICAL/COMPARE device-spec device-spec
/PHYSICAL/COMPARE save-set-spec device-spec

Description

In a BACKUP compare operation, the first parameter can be a Files–11 file or a wildcard character representing a set of files, a BACKUP save set on disk or magnetic tape, a tape device, or a disk device. The second parameter must be a Files–11 disk file, a wildcard character representing a set of files or a Files–11 disk device, unless you specify the command qualifier /PHYSICAL. When you specify /PHYSICAL, and the first parameter specifies a disk device, both disks in the compare operation must be mounted with the /FOREIGN qualifier.

BACKUP displays the following error message if it encounters a difference between files it compares:

%BACKUP-E-VERIFYERR, verification error for . . .

Use the /COMPARE qualifier to compare a save set with original files or to compare files or volumes copied using BACKUP with original files. Because BACKUP processes files by blocks, comparing files not produced by BACKUP is likely to cause mismatch errors in files that are apparently identical.

If you do not specify a version number with the file specification, the default is ;* (the asterisk wildcard character), which processes all versions of the file.

Both parameters in a compare operation are input specifiers.

If you are comparing two entire Files–11 volumes, use an image compare operation, as follows:

$ BACKUP/IMAGE/COMPARE DBA1: DBA2:

You cannot use the command qualifier /DELETE or /RECORD in compare operations.

Do not perform compare operations on files that were restored or copied using the output file qualifier /NEW_VERSION because this qualifier causes version numbers to change.
Examples

1. $ BACKUP/COMPARE JAZZ.DAT BLUES.DAT
 This example compares two Files–11 files. Because no version number is specified, BACKUP compares all versions of each file.

2. $ BACKUP/COMPARE/IMAGE MTA0:SWING.BCK DBA2:
 This example compares an image save set stored on magnetic tape and a Files–11 volume.
/CONFIRM

Input File-Selection Qualifier
Displays prompts on your terminal for confirmation before processing each file. If you want the file to be processed, enter Y or YES and press Return.

Format
input-specifier/CONFIRM output-specifier

Example
$ BACKUP *.LIS/CONFIRM/LOG DLA2:LIST.BCK/SAVE_SET
DISK$DEFAULT:[WONDER]CRE.LIS;1, copy? (Y or N): Y
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]CRE.LIS;1
DISK$DEFAULT:[WONDER]CRETIME.LIS;1, copy? (Y or N): Y
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]CRETIME.LIS;1
DISK$DEFAULT:[WONDER]EXC.LIS;1, copy? (Y or N): Y
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]EXC.LIS;1
DISK$DEFAULT:[WONDER]REB.LIS;1, copy? (Y or N): N
DISK$DEFAULT:[WONDER]SETREB.LIS;1, copy? (Y or N): Y
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]SETREB.LIS;1
DISK$DEFAULT:[WONDER]VERS.LIS;1, copy? (Y or N): N
.
.
.
$
This command locates all files with a file type of .LIS and prompts for confirmation before saving each file to LIST.BCK on DLA2. The command qualifier /LOG displays information about each file as it is processed. Note that you must use the output save-set qualifier /SAVE_SET when creating a save set on disk.
/CONVERT

Input File-Selection Qualifier

Converts ODS-5 file names to ODS-2 file names. To preserve the output volume as ODS-2, you must also use the /NOINIT qualifier.

Be aware that all ODS-5 file attributes are lost if you convert from an ODS-5 file name to an ODS-2 file name.

Format

input-specifier/CONVERT output-specifier

Example

$ BACKUP/LOG/CONVERT/IMAGE DKA500: DKA200:[000000]IMAGE.BCK/SAVE

The command in this example creates an ODS-2 image save set from an ODS-5 disk. The save set can be read by a system running a version of OpenVMS prior to Version 7.2.
BACKUP
/CRC

/CRC

Input Save-Set Qualifier
Specifies that the software cyclic redundancy check (CRC) is to be performed.

Format
input-save-set-spec/[NO]CRC output-specifier

Description
The default is /CRC. To disable CRC checking, specify /NOCRC; note that use of /NOCRC reduces processing time but increases the risk of data loss.

Example

$ BACKUP MTA2:988SAVE.BCK/NOCRC []

This command restores the save set 988SAVE.BCK to the current default directory, indicated by ([]); the input save-set qualifier /NOCRC disables CRC.
/CRC

Output Save-Set Qualifier

Specifies whether the software cyclic redundancy check (CRC) is to be computed and stored in the data blocks of the output save set.

Format

```
input-specifier output-save-set-spec/[NO]CRC
```

Description

The default is /CRC. To disable checking, use /NOCRC; note that use of /NOCRC reduces processing time but increases the risk of data loss.

Example

```
$ BACKUP/RECORD [ ]/SINCE=BACKUP MTA2:988SAVE.BCK/NOCRC
```

This command saves all files in the current default directory that have been created or modified since the last BACKUP/RECORD operation to the save set 988SAVE.BCK; the output save-set qualifier /NOCRC disables cyclic redundancy checking.
Input File-Selection Qualifier
Selects files according to the value of the creation date field in each file header record.

Format
input-specifier/BEFORE=time/CREATED output-specifier
input-specifier/SINCE=time/CREATED output-specifier

Description
You must use either the /BEFORE qualifier or the /SINCE qualifier with /CREATED. The date and time you specify with /BEFORE or /SINCE determine which files should be processed.

You cannot use /CREATED with the /BACKUP, /MODIFIED, or /EXPIRED qualifiers.

Example
$ BACKUP *.SDML/SINCE=YESTERDAY/CREATED DLA2:[SAVEDIR]/SAVE_SET

The command in this example saves all files with a file type of .SDML created since yesterday (24 hours before midnight last night).
/DELETE

Command Qualifier
Specifies that a BACKUP save or copy operation is to delete the selected input files from the input volume after all files have been successfully processed.

Format
/DELETE file-spec save-set-spec

Description
The /DELETE qualifier is valid only when used in a BACKUP save or copy operation. You must have sufficient privilege to delete files; if you do not, files protected against deletion are not deleted. If you use the command qualifier /VERIFY with /DELETE, files that fail verification are not deleted.

You cannot use /DELETE with the /PHYSICAL, /RECORD or /COMPARE command qualifiers.

Examples
1. $ BACKUP/DELETE BOP.DAT MTA0:BOP.BCK/LABEL=DANCE
 In this example, the file BOP.DAT will be deleted after the save set BOP.BCK is successfully created on MTA0.

2. $ BACKUP/VERIFY/DELETE RAY.DAT,JOE.DAT,ELLA.DAT MTA0:OSCAR.BCK/LABEL=FRIEND
 The BACKUP command deletes the selected list of files in this example after saving them to OSCAR.BCK on MTA0 and comparing the output save set with the input files. If BACKUP detects a difference between the contents of the output save set and the input file, the input file is not deleted.
Output Save-Set Qualifier

Specifies the recording density of the output magnetic tape. Use a value that is supported by the magnetic tape drive.

If you do not specify the /DENSITY qualifier, the default density is the current density of the magnetic tape drive. You must specify the output save-set qualifier /REWIND with /DENSITY.

Format

input-specifier output-save-set-spec/DENSITY=keyword

The following table shows the densities that are supported for tapes.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT</td>
<td>Default density</td>
</tr>
<tr>
<td>800</td>
<td>NRZI 800 bits per inch (BPI)</td>
</tr>
<tr>
<td>1600</td>
<td>PE 1600 BPI</td>
</tr>
<tr>
<td>6250</td>
<td>GRC 6250 BPI</td>
</tr>
<tr>
<td>3480</td>
<td>IBM 3480 HPC 39872 BPI</td>
</tr>
<tr>
<td>3490E</td>
<td>IBM 3480 compressed</td>
</tr>
<tr>
<td>833</td>
<td>DLT TK50: 833 BPI</td>
</tr>
<tr>
<td>TK50</td>
<td>DLT TK50: 833 BPI</td>
</tr>
<tr>
<td>TK70</td>
<td>DLT TK70: 1250 BPI</td>
</tr>
<tr>
<td>6250</td>
<td>RV80 6250 BPI EQUIVALENT</td>
</tr>
</tbody>
</table>

NOTE: Only the symbols listed above are understood by TMSCP/TUDRIVER code prior to OpenVMS Version 7.2. The remaining values in this table are supported only on Alpha systems.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK85</td>
<td>DLT Tx85: 10625 BPI—Cmpt III - Alpha only</td>
</tr>
<tr>
<td>TK86</td>
<td>DLT Tx86: 10626 BPI—Cmpt III - Alpha only</td>
</tr>
<tr>
<td>TK87</td>
<td>DLT Tx87: 62500 BPI—Cmpt III - Alpha only</td>
</tr>
<tr>
<td>TK88</td>
<td>DLT Tx88: (Quantum 4000)—Cmpt IV - Alpha only</td>
</tr>
<tr>
<td>TK89</td>
<td>DLT Tx89: (Quantum 7000)—Cmpt IV - Alpha only</td>
</tr>
<tr>
<td>QIC</td>
<td>All QIC drives are drive-settable only - Alpha only</td>
</tr>
<tr>
<td>8200</td>
<td>Exa-Byte 8200 - Alpha only</td>
</tr>
<tr>
<td>8500</td>
<td>Exa-Byte 8500 - Alpha only</td>
</tr>
<tr>
<td>DDS1</td>
<td>Digital Data Storage 1—2G - Alpha only</td>
</tr>
<tr>
<td>DDS2</td>
<td>Digital Data Storage 2—4G - Alpha only</td>
</tr>
<tr>
<td>DDS3</td>
<td>Digital Data Storage 3—8-10G - Alpha only</td>
</tr>
<tr>
<td>DDS4</td>
<td>Digital Data Storage 4 - Alpha only</td>
</tr>
<tr>
<td>AIT1</td>
<td>Sony Advanced Intelligent Tape 1 - Alpha only</td>
</tr>
<tr>
<td>AIT2</td>
<td>Sony Advanced Intelligent Tape 2 - Alpha only</td>
</tr>
<tr>
<td>AIT3</td>
<td>Sony Advanced Intelligent Tape 3 - Alpha only</td>
</tr>
</tbody>
</table>
Description

The value that you specify must be supported by your magnetic tape hardware. If you omit this qualifier, the default density is the current density on the output tape drive.

The `/DENSITY` qualifier is incompatible with the output save-set qualifier `/NOREWIND`. You must specify the output save-set qualifier `/REWIND` to initialize the magnetic tape when using the `/DENSITY` qualifier. When you specify `/DENSITY/REWIND`, BACKUP rewinds the tape to the beginning-of-tape. Then BACKUP initializes the tape with the new density, removing access to all data that previously resided on the tape.

Example

```
$ BACKUP *.PAS MTA2:SAVEPAS.BCK/DENSITY=1600/REWIND/LABEL=PASCAL
```

The magnetic tape on drive MTA2: is initialized. All files with a file type of .PAS in the current default directory are saved to the save set SAVEPAS.BCK. The `/DENSITY` qualifier sets the recording density to 1600 bits/in.
Output Save-Set Qualifier

Depending on the other qualifiers you specify on the command line, the /EXACT_ORDER qualifier allows you to perform the following actions:

- Specify the exact order of tape volume labels that you want to use in a BACKUP operation.
- Preserve the existing volume label on a tape.
- Prevent previous volumes of a multivolume save operation from being overwritten.

Format

input-specifier output-save-set-spec/EXACT_ORDER

Description

The /EXACT_ORDER qualifier allows you to perform the following actions:

- Specify the exact order of tape volume labels that you want to use in a BACKUP operation. You must use the /LABEL=(label1,label2,...) qualifier to specify the order of the labels. BACKUP continues the operation as long as the label of the tape in the drive matches the corresponding label on the command line. If you do not specify enough labels on the command line to complete the operation, BACKUP prompts you to enter a label for the tape in the drive.

- Preserve the existing volume label on a tape. If you do not use the /LABEL qualifier on the command line and the tape has an ANSI label, BACKUP uses the existing label.

- Prevent previous volumes of a multivolume save operation from being overwritten. BACKUP keeps track of the volume labels you have already used in the operation. If you accidentally mount one of the previous volumes, BACKUP displays the following error message:

```
%BACKUP-W-MOUNTERR, volume 1 on MKB100: was not mounted because its label does not match the one requested Volume with label TAPE1 was already used in this save operation. Specify option (QUIT or NEW tape)
BACKUP>
```

Note the following restrictions when you use the /EXACT_ORDER output qualifier:

- If you use the /EXACT_ORDER qualifier, you cannot specify a label longer than six characters on the command line. If you specify a label longer than six characters, BACKUP displays the following error message:

```
%BACKUP-F-INVQUAVAL, value 'label_name' invalid for /LABEL qualifier
```

- You cannot use the /IGNORE=LABEL_PROCESSING qualifier with the /EXACT_ORDER qualifier.

- If you use the /LABEL qualifier with the /EXACT_ORDER qualifier, you cannot specify duplicate labels.
The default is /NOEXACT_ORDER.

Examples

1. $ BACKUP/IMAGE/RECORD/VERIFY/NOASSIST
 _From: DKA100:
 _To: MKB100:MAR11.SAV/LABEL=(TAPE1,TAPE2,TAPE3)/EXACT_ORDER

 This example uses the /EXACT_ORDER qualifier to specify the exact order of
 labels for the BACKUP operation. Note that if you specify the /ASSIST
 qualifier, BACKUP would display messages on the operator terminal.
 BACKUP performs the following actions:

 a. Compares the volume label of the tape in MKB100: with the first label
 that you specified on the command line (TAPE1). If the labels match
 exactly, BACKUP begins the save operation. If the labels do not match or
 if the tape does not have an ANSI label, BACKUP displays the following
 message:

 %BACKUP-W-MOUNTERR, volume 1 on MKB100: was not mounted
 because its label does not match the one requested
 %BACKUP-W-EXLABEER, volume label processing failed
 because volume TAPE4 is out of order, Volume label
 TAPE1 was expected. Specify option (QUIT, NEW tape,
 OVERWRITE tape, USE loaded tape)
 BACKUP> OVERWRITE

 Depending on the option you specify, you can quit the backup operation
 (QUIT), dismount the old tape and mount a new one (NEW), overwrite
 the label and the data on the tape (OVERWRITE), or write the data to
 the tape using the loaded tape’s label (USE).

 b. When the operation fills the first tape, it displays the following message:

 %BACKUP-I-RESUME, resuming operation on volume 2
 %BACKUP-I-READYWRITE, mount volume TAPE2 on MKB100:
 for writing. Respond with YES when ready:

 c. When you load the second tape and enter YES, BACKUP compares
 the label of the second tape with the second label you specified on the
 command line (TAPE2) just as it did in step 1a.

 d. Assuming the volume labels match, BACKUP continues processing until
 it completes the operation or runs out of volume labels. If you do not
 specify enough labels on the command line to complete the operation,
 BACKUP prompts you to enter a label for the tape in the drive as follows:

 %BACKUP-W-MOUNTERR, volume 4 on MKB100: was not mounted
 because the label was not specified
 Specify EXACT_ORDER label (up to 6 characters)
 BACKUP>

 BACKUP then compares the label on the tape with label you specify as
 described previously.
Because this example does not use the /LABEL qualifier, BACKUP uses the existing label on the tape. If the tape does not have an ANSI label, and it is the first tape in the operation, BACKUP displays the following error message:

%BACKUP-F-NOTANSI, tape is not valid ANSI format

If the tape does not have an ANSI label, and is not the first tape in the operation, BACKUP displays the following error message prompting you to specify a label:

%BACKUP-W-MOUNTERR, volume 2 on MKB100: was not mounted
because the label was not specified
Specify EXACT_ORDER label (up to 6 characters)
BACKUP>

Note

BACKUP checks to make sure you specify a valid label. If the label is not valid (for example, longer than six characters), BACKUP displays an error message. In previous versions of the OpenVMS operating system, BACKUP truncated long volume labels.
Input File-Selection Qualifier

Excludes files that otherwise meet the selection criteria for a save or copy operation. The excluded files are not processed.

Format

```
input-specifier/EXCLUDE=(file-spec[,...]) output-specifier
```

Description

If you specify more than one file, separate the file specifications with commas and enclose the list in parentheses. Do not use a device specification when defining the files to be excluded. You can use most standard wildcard characters, but you cannot use wildcard characters denoting latest versions of files (;) or relative versions of files (;-n).

Note that BACKUP does not apply temporary file specification defaults within the list. Each file specification independently takes its defaults from the file specification [000000 . . .]*.*;*.

If you specify directory files (files with the file type .DIR), your command is processed but the directory files are not excluded (they are processed). BACKUP uses directory files to facilitate incremental restore operations.

You cannot use the /EXCLUDE qualifier in image restore operations.

Example

```
$ BACKUP
   _From: DRA2:[CONTRACTS]/BEFORE=TODAY/EXCLUDE=(*.OBJ,*.MAI)
   _To: MFA0:CONTRACT.BCK/LABEL=DLY102
```

All files in the directory [CONTRACTS] that have a modification date prior to today (the current day, month, and year at 00:00:00.0 o’clock) are saved to the save set CONTRACT.BCK on drive MFA0, except for those with a file type of .OBJ or .MAI.
/EXPIRED

Input File-Selection Qualifier

Selects files according to the value of the expiration date field in each file header record.

Format

input-specifier/BEFORE=time /EXPIRED output-specifier

input-specifier/SINCE=time /EXPIRED output-specifier

Description

You must use the input file-selection qualifier /BEFORE or /SINCE with /EXPIRED. The date and time you specify to /BEFORE or /SINCE determines which files are processed.

You cannot use /EXPIRED with the input file-selection qualifiers /BACKUP, /MODIFIED, or /CREATED.

Example

$ BACKUP [CONTRACTS]/BEFORE=TOMORROW/EXPIRED MTA1:30DEC.BCK/LABEL=WK04

This command saves all files in the directory [CONTRACTS] that have an expiration date prior to tomorrow (24 hours after midnight last night) to a save set named 30DEC.BCK.
/FAST

Command Qualifier

Processes the input specifier using a fast file scan to reduce processing time. The input specifier must be a Files–11 disk.

Format

```
/FAST   input-specifier output-specifier
```

Description

The fast file scan reads the index file on the Files–11 disk specified by the input specifier and creates a table of files that match the qualifiers you specified.

When you use the /FAST qualifier to save a disk, ALIAS directory trees are not processed. Only the primary files that the ALIAS points to are saved. Depending on the number of ALIAS directory specifications there are on the disk, this may increase performance by reducing the number of files BACKUP checks for processing. A message is displayed for each ALIAS directory or file that is not processed.

To perform a fast file scan, you need write access to the INDEXF.SYS file on the input medium, or the input medium must be write-locked. This requirement is necessary because BACKUP opens the index file to synchronize with the file system, whether or not any update is made.

A fast file scan is most useful when the input specifier includes most of the files on the volume, and file-selection qualifiers (such as those that pertain to date or owner) specify a relatively small set of the files named. Because image operations implicitly use the fast file scan, the /FAST qualifier is ignored if used with the command qualifier /IMAGE.

You cannot use /FAST in restore operations.

Example

```bash
$ BACKUP/FAST
_FROM: DBA1:/*...*/MODIFIED/SINCE=TODAY
_TO: MTA0:13NOVBAK.BCK,MTA1:/LABEL=WK201
```

In this example, all files on the disk DBA1 that have been modified today are saved to a multireel tape save set named 13NOVBAK.BCK. The /FAST qualifier is used to reduce processing time.
/FILES_SELECTED

Input File-Selection Qualifier

Specifies a file that contains a list of the files that will be selected when a save set is restored.

Format

input-specifier /FILES_SELECTED=file-spec output-specifier

Description

The /FILES_SELECTED qualifier allows you to specify a file that contains a list of the files that are to be selected when a save set is restored. You can use this qualifier in place of the /SELECT qualifier to select files to restore from a save set.

Do not use a device specification when you list the files to be selected. In the list of files, enter one OpenVMS file specification per line. You can use most standard wildcard characters, but you cannot use wildcard characters denoting the latest version of files (;) and relative versions of files (;-n).

Example

$ BACKUP INFO.BCK/SAVE_SET/FILES_SELECTED=RFILE.DAT []

The command in this example selects the files in RFILE.DAT and restores them to the current default directory. The RFILE.DAT file contains the following entries:

 [INFO]RESTORE.COM
 [PAYROLL]BADGE.DAT
 EMPLOYEE.DAT
Command Qualifier

Lists the file information produced by the command qualifier /LIST in the format provided by the DCL command DIRECTORY/FULL.

Format

/LIST/FULL input-specifier [output-specifier]

Description

The /FULL qualifier is valid only with the command qualifier /LIST.

If you do not specify /FULL with /LIST, the /LIST qualifier uses the default command qualifier /BRIEF and lists only the file specification, size, and creation date of each file. When you specify /FULL, the list includes more information from the file header records, such as the BACKUP date, date of last modification, number of blocks allocated to the file, file protection and organization, and record attributes.

Example

$ BACKUP/LIST/FULL MTA1:ROCK.BCK
Listing of save set(s)
Save set: ROCK.BCK
Written by: RINGO
UID: [000200,000300]
Date: 20-AUG-2002 15:39:38.89
Command: BACKUP [.STONES] MTA0:ROCK.BCK/LABEL=BACKUP
Operating system: OpenVMS Alpha Version V7.3-1
BACKUP version: V7.3-1
CPU ID register: 08000000
Node name: _SUZI::
Written on: _MTA0:
Block size: 8192
Group size: 10
Buffer count: 30

[RINGO.STONES]GRAPHITE.DAT;1
Size: 1/1 Created: 18-AUG-2002 14:10
Owner: [000200,000200] Revised: 18-AUG-2002 14:10 (2)
File ID: (91,7,1) Expires: [None specified]
Backup: [No backup done]
File protection: System:RWED, Owner:RWED, Group:RE, World:
File organization: Sequential
File attributes: Allocation = 1, Extend = 0
Global Buffer Count = 0
Record format: Variable length, maximum 255 bytes
Record attributes: Carriage return

[RINGO.STONES]GRANITE.DAT;1
Size: 1/1 Created: 18-AUG-2002 14:11
Owner: [000200,000200] Revised: 18-AUG-2002 14:11 (2)
File ID: (92,9,1) Expires: [None specified]
Backup: [No backup done]
File protection: System:RWED, Owner:RWED, Group:RE, World:
File organization: Sequential
The command in this example lists the files in save set MTA1:ROCK.BCK in full format.
/GROUP_SIZE

Output Save-Set Qualifier
Defines the number of blocks BACKUP places in each redundancy group.

Format
input-specifier output-save-set-spec/GROUP_SIZE=n

Description
BACKUP writes redundant information to output save sets to protect against data loss. Using the redundant information, BACKUP can correct one uncorrectable read error in each redundancy group. The /GROUP_SIZE qualifier specifies the number of output blocks written to each redundancy group. The value of n can be 0 to 100. The default value is 10.

If you define a value of 0 for /GROUP_SIZE, no redundancy groups are created for the save set.

Example
$ BACKUP/RECORD DBA1:*[...]/SINCE=BACKUP TAPE:SAVEWORK.BCK/GROUP_SIZE=5
This BACKUP command saves all files in the current default directory tree that have been modified since the last BACKUP/RECORD operation; the /GROUP_SIZE defines the redundancy group size as 5 blocks.
/HEADER_ONLY

Input File-Selection Qualifier

Specifies that only the file headers of a file are to be saved in a BACKUP operation.

Format

input-specifier /HEADER_ONLY=option output-specifier

Description

The /HEADER_ONLY qualifier specifies that the Backup utility is to save only the file header of a shelved or a preshelved file in a BACKUP operation.

When a file is shelved, the data in the file is shelved, but the file header is retained. Users.shelve files to save disk space. (In addition, users might preshelve files to save time by performing shelving operations ahead of time.)

In a BACKUP save operation, the default behavior is to unshelve files before backing them up. This brings back the file data online, so that, when the BACKUP operation is performed, the entire file is backed up (not just the file header). The only exception to the BACKUP default behavior is in operations that use the /PHYSICAL or /IMAGE qualifier. For those operations, the file remains in the file shelved state.

For more information about file shelving and preshelving, refer to Hierarchical Storage Management (HSM) documentation.

Use the following options with the /HEADER_ONLY qualifier:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELVED</td>
<td>Saves only the file header of a shelved file.</td>
</tr>
<tr>
<td>NOSHELVED</td>
<td>Saves both the file header and the file data of a shelved file. (This causes the file to be unshelved.)</td>
</tr>
<tr>
<td>PRESHELVED</td>
<td>Saves only the file header of a preshelved file.</td>
</tr>
<tr>
<td>NOPRESHELVE</td>
<td>Saves both the file header and the file data of a preshelved file.</td>
</tr>
</tbody>
</table>

Examples

1. $ BACKUP [INFO]/HEADER_ONLY=(SHELVED) MKA600:INFO.BCK/SAVE_SET

 The command in this example saves all files in the directory [INFO] to a tape drive save set named INFO.BCK. The shelved files in [INFO] will not be unshelved. Only their file headers will be saved to save set INFO.BCK because the /HEADER_ONLY=(SHELVED) qualifier is specified.
2. $ BACKUP [INFO]/HEADER_ONLY=(SHELVED,PRESHELVED) MKA600:INFO.BCK/SAVE_SET

 This command saves all files in the directory [INFO] to a tape drive save set named INFO.BCK. The files saved from [INFO] will not be unshelved because the HEADER_ONLY=(SHELVED,PRESHELVED) qualifier is specified. The save set INFO.BCK will contain only the file headers of files that are shelved or preshelved.

3. $ BACKUP/IMAGE DKA0: MKA600:INFO.BCK/SAVE_SET

 The command in this example saves all files on the disk DKA0:. Because the /IMAGE qualifier is specified, only the file headers of files that are shelved or preshelved are saved to INFO.BCK.

4. $ BACKUP [INFO] MKA600:INFO.BCK/SAVE_SET

 The command in this example saves all files in the directory [INFO] to a tape drive save set named INFO.BCK. The files saved from [INFO] will be unshelved (the default). The save set INFO.BCK will contain both the file header and the data of files that are shelved or preshelved.
/IGNORE=option

Command Qualifier

Specifies that a BACKUP save or copy operation will override restrictions placed on files or will not perform tape label processing checks.

Note

File system interlocks are expressly designed to prevent data corruptions, and to allow applications to detect and report data access conflicts.

Use of the INTERLOCK keyword overrides these file data integrity interlocks. The data that BACKUP subsequently transfers can then contain corrupted data for open files. Also, all cases in which these data corruptions can occur in the data that BACKUP transfers are not reliably reported to you; in other words, silent data corruptions are possible within the transferred data.

Format

/IGNORE=option input-specifier output-specifier

Description

The /IGNORE= qualifier has the following options:

ACCESSIBILITY Processes files on a tape that is protected by a volume accessibility character, or on a tape created by HSC Backup. The option applies only to tapes. It affects the first tape mounted and all subsequent tapes in the save set.

INTERLOCK Processes files that otherwise cannot be processed due to file access conflicts. Use this option to save or copy files currently open for writing. No synchronization is made with the process writing the file, so the file data that is copied might be inconsistent with the input file, depending on the circumstances (for example, if another user is editing the file, the contents might change). When a file open for writing is processed, BACKUP issues the following message:

%BACKUP-W-ACCONFLICT, 'filename' is open for write by another user.

The INTERLOCK option is especially useful if you have files that are open so much of the time that they might not otherwise be saved. The use of this option requires the user privilege SYSPRV, a system UIC, or ownership of the volume. See the Note before this table for more information about this keyword.
Back up utility

LABEL_PROCESSING

Saves or copies the contents of files to the specified magnetic tape volume regardless of the information contained in the volume header record. BACKUP does not verify the volume label or expiration date before writing information to the tape volume. Note that you cannot use this option with the /EXACT_ORDER qualifier.

NOBACKUP

Saves or copies both the file header record and the contents of files marked with the NOBACKUP flag by the /NOBACKUP qualifier of the DCL command SET FILE. If you do not specify this option, BACKUP saves only the file header record of files marked with the NOBACKUP flag.

Examples

1. `$ BACKUP/IGNORE=INTERLOCK
 _From: DUA0:\[SUSAN...]
 _To: MTA0:SONGBIRD.BCK/LABEL=TAPE01
 This command saves an entire directory tree and the files in all subdirectories, including any files that are open.

2. `$ BACKUP/IGNORE=LABEL_PROCESSING *.*;* MFA1:MYFILES.BCK/REWIND
 This command rewinds the tape in drive MFA1 to the beginning-of-tape marker, initializes the tape, and creates a save set containing all files in the user’s current directory. The command qualifier /IGNORE=LABEL_PROCESSING specifies that no tape label processing checks are done before BACKUP initializes the tape. When the tape is initialized, access to data that previously resided on the tape is lost.

3. `$ INITIALIZE/LABEL=VOLUME_ACCESSIBILITY:"K" MUA1: 29JUN
 $ BACKUP/IGNORE=(ACCESSIBILITY)
 _From: DUA0:\[BOOKS...]
 _To: MUA1:BACKUP.SAV /LABEL=29JUN
 The INITIALIZE command in this example initializes the tape with an accessibility character (K) and a volume label (29JUN). The BACKUP command mounts the tape, regardless of the accessibility, and performs the BACKUP operation. For more information about tape protection, refer to the HP OpenVMS System Manager’s Manual.

4. `$ BACKUP/LOG/IMAGE/CONVERT DKA500:\[000000\]IMAGE.BCK/SAVE DKA200:/NOINIT
 %BACKUP-I-ODS5CONV, structure level 5 files will be converted to structure level 2 on DKA200:
 -BACKUP-I-ODS5LOSS, conversion may result in loss of structure level 5 file attributes
 %BACKUP-S-CREATED, created DKA200:\[000000\]000000.DIR;1
 %BACKUP-S-CREATED, created DKA200:\[000000\]BACKUP.SYS;1
 %BACKUP-S-CREATED, created DKA200:\[000000\]CONTIN.SYS;1
 %BACKUP-S-CREATED, created DKA200:\[000000\]CORING.SYS;1
 %BACKUP-S-CREATED, created DKA200:\[000000\]SECURITY.SYS;1
 %BACKUP-S-CREATED, created MDA2:\[000000\]TEST_FILES.DIR;1
 %BACKUP-S-CREATEDAS, created DKA200:\[TEST_FILES\]SUB^\{DIR\}^\}.DIR;1 as DKA200:\[TEST_FILES\]SUBDIR.DIR;1
 You can use commands like the ones in the example if you have an image backup of an ODS-5 disk, and you want to restore it to an ODS-2 disk.
In the command line in the example, IMAGE.BCK is the ODS-5 save set, and DKA200: is the ODS-2 disk. When you use this conversion method, you must preinitialize the output disk to ODS-2 and then include the /NOINIT qualifier in your command line.
/IMAGE

Command Qualifier

Directs BACKUP to process an entire volume or volume set.

Format

/IMAGE input-specifier output-specifier

Description

To use the /IMAGE qualifier, you need write access to the volume index file (INDEXF.SYS) and the bit map file (BITMAP.SYS), or the input medium must be write-locked. BACKUP opens the index file to synchronize with the file system (no update is made). Finally, you must have read access to all files on the input medium.

You can receive a fatal error if you use /IMAGE with the /PHYSICAL qualifier.

When you use the /IMAGE qualifier to save to a disk, alias directory trees are not processed.

Note

The input and output devices in an image operation must be different except in an image save operation when the output device is a Files–11 disk save set.

If the output volume is a disk, all files on the output volume are stored contiguously. Contiguous storage of files eliminates disk fragmentation and creates contiguous free blocks of disk space.

Because all files on the input volume are processed, you cannot use input file-selection qualifiers in image copy or save operations. You can, however, restore files and directories selectively from an image save set.

When performing image operations on volume sets (more than one volume), the number of volumes specified by the output specifier must be equal to the number of volumes in the input volume set.

In an image save or copy operation, BACKUP attempts to save or copy all files on the input disk volume including files marked for deletion and lost files (files without a directory entry). By default, a BACKUP image operation saves or copies the attributes but not the contents of files flagged as NOBACKUP.

Also by default, BACKUP does not save the attributes nor the contents of files open for write access by another user at the time of the image save operation. If you want these files to be included, specify the command qualifier /IGNORE in the BACKUP command line. The command qualifier /IGNORE=NOBACKUP directs BACKUP to save or copy files flagged as NOBACKUP. The command qualifier /IGNORE=INTERLOCK directs BACKUP to save or copy files open for write access by another user.
An image restore or copy operation initializes the output volume or volume set. The initialization data comes from the save-volume summary record of the input volume unless the command qualifier /NOINITIALIZE is specified. Specifying /NOINITIALIZE directs BACKUP to initialize the output volume using volume initialization data that already exists on the output volume.

In image restore and copy operations, every file is restored or copied. The output volume must be mounted using the /FOREIGN qualifier. The new volume is a functionally equivalent copy of the input volume; however, file placement will change. Files are stored contiguously on the output volume.

You cannot change the structure level of the output volume in an image restore or copy operation. A BACKUP operation to mixed tape and disk save sets, as shown in the following command, is unsupported:

```
$ BACKUP SYS$DISK:/IMAGE dka0:FUN,MKA0:/SAVE/REW
```

Examples

1. $ MOUNT/FOREIGN DMA1:

 %MOUNT-I-MOUNTED, mounted on NODE$DMA1:

 $ BACKUP/IMAGE/LOG DLA2: DMA1:

 %BACKUP-S-CREATED, created DMA1:[000000]000000.DIR;1
 %BACKUP-S-CREATED, created DMA1:[000000]BACKUP.SYS;1
 %BACKUP-S-CREATED, created DMA1:[000000]CONTIN.SYS;1
 %BACKUP-S-CREATED, created DMA1:[000000]CORMG.SYS;1
 %BACKUP-S-CREATED, created DMA1:[000000]ELLA.DIR;1
 %BACKUP-S-CREATED, created DMA1:[ELLA]SCAT.DAT;1
 %BACKUP-S-CREATED, created DMA1:[000000]JOE.DIR;1
 %BACKUP-S-CREATED, created DMA1:[JOE]STRINGS.DAT;1
 %BACKUP-S-CREATED, created DMA1:[000000]OSCAR.DIR;1
 %BACKUP-S-CREATED, created DMA1:[OSCAR]KEYS.DAT;1
 %BACKUP-S-CREATED, created DMA1:[000000]VOLSET.SYS;1

 $

 The MOUNT command prepares the target disk for the image copy operation. The command qualifier /LOG directs BACKUP to display information about each file copied on your terminal. The BACKUP command initializes DMA1 and copies the disk volume DLA2 to DMA1. All files on DMA1 are stored contiguously.

2. $ BACKUP/IMAGE DBA2: MTA0:ET.BCK,MTA1:

 This command saves an entire disk volume to a multivolume save set named ET.BCK using two magnetic tape drives.

3. $ MOUNT/FOREIGN DBA1:

 %MOUNT-I-MOUNTED, mounted on NODE$DBA1:

 $ BACKUP/IMAGE WORKDISK DBA1:28SEP.BCK/SAVE_SET

 The MOUNT command prepares the target disk for the image save operation. The BACKUP command performs an image save operation to a Files–11 save set named 28SEP.BCK.
Command Qualifier

Allows you to restore an incremental save set.

Note

/INCREMENTAL is valid only in restore operations. It is not related to the /NOINCREMENTAL qualifier, which is valid only in BACKUP save operations.

Format

/INCREMENTAL save-set-spec disk-device-name

Description

Use /INCREMENTAL only in restore operations that restore incremental save sets. When you use /INCREMENTAL, the output specifier must specify a device only; file specifications are not allowed. Also, input save-set qualifiers are not allowed in incremental restore operations.

You can create incremental save sets with the command qualifier /RECORD and the file-selection qualifier /SINCE=BACKUP or /SINCE=date. Most sites perform daily incremental save operations to keep copies of files created or modified that day, and periodic full backups to keep a copy of all files on the disk volume. (HP recommends that you use the command qualifier /IMAGE to perform full backups.)

If a disk volume is lost, corrupted, or destroyed, its contents can be recreated by performing the following tasks:

1. Restore the volume using the latest (most recent) image backup save set. (The save set must have been created using the /IMAGE and /RECORD BACKUP command qualifiers.)

2. Restore any incremental save sets since the last full backup, in reverse chronological order, using the /INCREMENTAL qualifier.

After you restore the save sets in this order, the output disk volume contains the same files it contained when the most recent incremental save operation was performed.

When the /INCREMENTAL qualifier is used, the /BY_OWNER=ORIGINAL qualifier is assumed; therefore, specifying /BY_OWNER is unnecessary unless you want to change the original UICs. The /INCREMENTAL qualifier can be used only on Files–11 Structure Level 2 or 5 volumes.

You can receive a fatal error if you use the /PHYSICAL qualifier with /INCREMENTAL.
Example

If you have been performing a combination of full backups and incremental save operations on a public volume, and the public volume is lost, corrupted, or destroyed, use a procedure like the following one to create a new copy of the public volume. First, restore the volume from the latest full backup with an image restore operation.

The section “Formulating a Backup Strategy” in the BACKUP chapter of the HP OpenVMS System Manager’s Manual discusses the importance of using the /IMAGE and /RECORD qualifiers the first time you back up a disk, before you perform incremental backups.

```
$ MOUNT/FOREIGN DRA0:
%MOUNT-I-MOUNTED, mounted on DRA0:
$ BACKUP/IMAGE/RECORD MTA0:FULLJUN02,MTA1 DRA0:
%MBACKUP-I-RESUME, resuming operation on volume 2
%MBACKUP-I-RESUME, resuming operation on volume 3
%MBACKUP-I-RESUME, resuming operation on volume 4
.
.
.
$ DISMOUNT/NOUNLOAD DRA0:
```

Next, mount the disk as a file-structured volume and restore the incremental save sets in reverse chronological order. Finally, restore the weekly incremental save sets. The /INCREMENTAL qualifier must be used where shown in the following example to obtain the correct results:

```
$ MOUNT DRA0: PUBLIC
%MOUNT-I-MOUNTED, PUBLIC mounted on DRA0:
$ BACKUP/INCREMENTAL MTA0:INCD17JUN DRA0:
$ BACKUP/INCREMENTAL MTA0:INCD16JUN DRA0:
$ BACKUP/INCREMENTAL MTA0:INCD15JUN DRA0:
$ BACKUP/INCREMENTAL MTA0:INCW14JUN DRA0:
$ BACKUP/INCREMENTAL MTA0:INCW7JUN DRA0:
```

Note that BACKUP restores the volume correctly regardless of the order in which the incremental save sets are applied; using reverse chronological order is most efficient.
/INITIALIZE

Command Qualifier
Initializes an output disk or tape volume, making its entire previous contents unavailable. (/REWIND performs the same function for output tapes.)

Format
/[NO]INITIALIZE input-specifier output-specifier

Description
The /[NO]INITIALIZE qualifier is valid only when used with the command qualifier /IMAGE during restore or copy operations or when saving files to a sequential-disk save set.

When used with the command qualifier /IMAGE in a restore or copy operation, the /INITIALIZE qualifier directs BACKUP to initialize the output volume using volume initialization data from the save-volume summary record on the input volume.

The /NOINITIALIZE qualifier directs BACKUP to reinitialize the output volume using the existing initialization data on that volume; the output volume must have been previously initialized as a Files–11 volume. When the output volume is initialized, existing data on the volume is lost. The structure level of the output volume must be the same as the structure level of the save set being restored.

For image restore and copy operations on Files–11 volumes, the default is /INITIALIZE.

If you use the /INITIALIZE qualifier when creating sequential-disk save sets, BACKUP initializes the first output volume in the sequential-disk save set, as well as subsequent volumes. By default, BACKUP does not initialize the first volume of a sequential-disk save set but does initialize subsequent volumes of a multivolume sequential-disk save set.

The BACKUP/IMAGE/INITIALIZE command sizes the storage bitmap to correspond to the entire physical volume. Beginning with OpenVMS Version 7.2, the file system also correctly handles a volume whose storage bitmap is smaller than required. The space on the volume available for allocation is the space the bitmap describes; as a result, if the bitmap is smaller than the volume requires, not all the volume is available for file allocation. A SHOW DEVICE /FULL command continues to display the actual physical volume size; however, the free blocks displayed are the number of blocks actually available for allocation.

Examples

1. $ BACKUP/IMAGE/NOINITIALIZE DBA0: DBA2:

 This command causes the output volume DBA2 to be reinitialized using the volume initialization data that exists on DBA2. The contents of DBA0 are then copied to DBA2.
2. `$ BACKUP/IMAGE/INITIALIZE DBA2:OLDFILES.BCK/SAVE_SET DBA6`:

This command directs BACKUP to initialize the output volume DBA6 using volume initialization parameters in the save-volume summary record on DBA2. The image save set OLDFILES.BCK is then restored to DBA6.
/INPUT_FILES

Input Save-Set Qualifier

Directs BACKUP to treat the input-specifier as the file name of a list of files. This file specifies the input files for a BACKUP operation.

Format

input-specifier /INPUT_FILES output-specifier/SAVE_SET

Description

The /INPUT_FILES qualifier allows you to specify a list of files to be processed for input. The input-specifier is the name of a file that contains one standard OpenVMS file specification per line.

Example

$ BACKUP FILE.DAT/INPUT_FILES MKA600:INFO.BCK/SAVE_SET

The command in this example backs up the files listed in the FILE.DAT file to a tape drive save set named INFO.BCK. If the disk, directory, or file extension is not specified, the defaults are copied from the previous entry or from the default if this is the first entry. The FILE.DAT file contains the following entries:

1DKA0:{INFO}*.*.COM
INFO.TEXT
[PAYROLL]*.DAT
/INTERCHANGE

Command Qualifier

Directs BACKUP to process files in a manner suitable for data interchange (software distribution) by excluding information that would prevent other utilities or sites from reading the BACKUP save set.

The /INTERCHANGE qualifier implies /CONVERT when the input is an ODS-5 disk or file.

Format

/INTERCHANGE input-specifier output-specifier

Description

The effects of the /INTERCHANGE qualifier are as follows:

- Directories not selected as files are not copied.
- Access control lists are not copied.
- Block size on magnetic tape is limited to 8192 bytes.
- Normal error recovery is used to write magnetic tapes so that no bad records exist on the resulting magnetic tape.

Example

$ BACKUP/RECORD/INTERCHANGE [ACCOUNTS]/SINCE=BACKUP MFA0:SAVACC.BCK

The command in this example saves all files in the directory [ACCOUNTS] that have been modified since the last BACKUP/RECORD operation. The /INTERCHANGE qualifier ensures that the processed files are suitable for data interchange.
/JOURNAL

Command Qualifier

Specifies that a BACKUP save operation is to create a BACKUP journal file or append information to a BACKUP journal file. Lists the contents of a BACKUP journal file when combined with the command qualifier /LIST.

Format

/JOURNAL[=file-spec] input-specifier output-specifier
/JOURNAL[=file-spec]/LIST[=file-spec]

Description

A BACKUP journal file contains records of BACKUP save operations and the file specifications of saved files. Use the command qualifier /JOURNAL[=file-spec] in a BACKUP save operation to create a journal file.

If you do not include a file specification with the command qualifier /JOURNAL, the name of the BACKUP journal file defaults to SYS$DISK:[]BACKUP.BJL. You can specify another file name, however. (The file specification of a journal file cannot include a node name; the default file type for a journal file is .BJL.) If the specified journal file does not exist, it is created; if the journal file does exist, the new journal information is appended to the existing journal file.

Start a new version of a journal file by creating a zero-length file using the DCL command CREATE or a text editor.

To list the contents of a BACKUP journal file, use the /JOURNAL[=file-spec] qualifier with the /LIST qualifier, but do not specify an input or output specifier. By default, the list is displayed on SYS$OUTPUT, but it is written to an output file if you specify a file with /LIST.

When listing a journal file, you can use the file-selection qualifiers /BEFORE, /SINCE, and /EXCLUDE to search for specific files. (In this context, the /BEFORE and /SINCE qualifiers refer to the time when the save set was created, not the time when the files in the save set were created.) Also, by specifying a file in a multivolume save set, you can search the journal file to find which volume the file is in. You can then mount that volume and restore the file.

Journal files are not created for physical save operations (save operations performed with the command qualifier /PHYSICAL). You can receive a fatal error if you use the /PHYSICAL qualifier with /JOURNAL.

Examples

1. $ BACKUP/JOURNAL=LAR.BJL [LARRY]*.* MFA0:YET.BCK

 This command saves all versions of all files in the directory [LARRY] to the save set YET.BCK on MFA0. The /JOURNAL qualifier creates a record of the saved files in a journal file named LAR.BJL in the current default directory.
2. $ BACKUP/LIST/JOURNAL=ARCH.BJL/SELECT=[SMITH.PROGS]/SINCE=5-OCT-2002
Listing of BACKUP journal
Journal file _DB1:[SYSMGR]:ARCH.BJL;1 on 7-OCT-2002 00:45:43.01
Save set WKLY.BCK, created on 6-OCT-2002 00:01:34.54
Volume number 1, volume label WKL101

[SMITH.PROGS]REMINDER.FOR;46
[SMITH.PROGS]RUNTHIS.FOR;4
[SMITH.PROGS]TIMER.PAS;5

This example displays all files in the directory [SMITH.PROGS] that
were saved after October 5, 2002, and listed in the BACKUP journal file
ARCH.BJL.

3. $ BACKUP/JOURNAL/LOG/IMAGE DRA2: MTA0:3OCT.FUL
%BACKUP-S-COPIED, copied DRA2:[COLLINS]ALPHA.DAT;4
%BACKUP-S-COPIED, copied DRA2:[COLLINS]EDTINI.EDT;5

%BACKUP-I-RESUME, resuming operation on volume 2
%BACKUP-I-READYWRITE, mount volume 2 on _MTA0: for writing
Press return when ready: [Volume]
%BACKUP-S-COPIED, copied DRA2:[LANE]MAIL.MAI;1
%BACKUP-S-COPIED, copied DRA2:[LANE]MEMO.RNO;5

%BACKUP-S-COPIED, copied DRA2:[COLLINS]LOGIN.COM;46
%BACKUP-S-COPIED, copied DRA2:[COLLINS.MAR]GETJPI.EXE;9
%BACKUP-S-COPIED, copied DRA2:[COLLINS.MAR]GETJPI.LIS;14

%BACKUP-S-COPIED, copied DRA2:[LANE]LES.MAI;1

Save set 3OCT.FUL created on 3-OCT-2002 00:40:56.36
Volume number 1, volume label 3OCT01

[COLLINS]ALPHA.DAT;4
[COLLINS]EDTINI.EDT;5
[COLLINS]LOGIN.COM;46
[COLLINS]LOGIN.COM;45
[COLLINS]MAIL.MAI;1
[COLLINS.MAR]GETJPI.EXE;9
[COLLINS.MAR]GETJPI.LIS;14

[LANE]LES.MAI;1

Save set 3OCT.FUL created on 3-OCT-2002 00:40:56.36
Volume number 2, volume label 3OCT02

[LANE]MAIL.MAI;1
[LANE]MEMO.RNO;5
[LANE]MEMO.RNO;4

[LANE]MEMO.RNO;4

[LANE]KD.RNO;52

END OF BACKUP journal
This example shows how to create a BACKUP journal file and list the contents of the BACKUP journal file.
Output Save-Set Qualifier

Specifies the volume labels for the magnetic tapes to which the save set is written.

Format

input-specifier output-save-set-spec/LABEL=(string[,...])

Description

Use the /LABEL Qualifier to specify the one- to six-character volume labels for the magnetic tapes to which the save set is written.

You can specify either a single label or a list of labels with the /LABEL qualifier. If you do not specify the /LABEL qualifier, BACKUP uses the first six characters of the save-set name as the volume label of the first tape. If you specify a label that is longer than six characters, BACKUP truncates the label to six characters.

If the save set continues to another tape, and you did not specify a volume label for the tape, BACKUP uses the first four characters of the previous tape’s volume label followed by the volume number of the tape. For example, if the first tape in a save set is labeled AAAABB, the second tape in a save set is labeled AAAA02, and the third tape is labeled AAAA03.

Before writing a save set to magnetic tape, BACKUP compares the label specified in the command line to the volume label of the tape. (If the tape has no volume label and you specified the output save-set qualifier /REWIND, BACKUP writes the label you specified to the volume header record of the tape.) If the volume label has fewer than six characters, BACKUP pads the volume label with the blank character to six characters.

The first four characters of the volume label must either exactly match the first four characters of the label specified in the BACKUP command line, or the first four characters of the volume label must end with one or more underscore characters. If the first four characters of the volume label end with one or more underscore characters, and the label specified in the command line matches the part of the volume label that appears before the underscore characters, BACKUP accepts the match. (For example, the volume label ABN_ matches the command line label ABN but does not match the command line label ABNE.) If either the fifth or the sixth character of the volume label is in the range 0 to 9, BACKUP does not compare these characters with corresponding characters in the label specified in the BACKUP command line. Otherwise, the fifth and sixth characters in the volume label must match the corresponding characters in the label specified in the BACKUP command line exactly.

The following table illustrates volume labels that match labels specified in the BACKUP command line:

<table>
<thead>
<tr>
<th>Label Specified in the Command Line</th>
<th>Matching Volume Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>MAR, MAR_, MAR_nn</td>
</tr>
<tr>
<td>MAR_</td>
<td>MAR_, MAR_nn</td>
</tr>
</tbody>
</table>
If the label you specify matches the tape’s volume label, the BACKUP save operation proceeds. If you specify more than one label with the /LABEL qualifier, the BACKUP save operation succeeds if any of the labels you specify match the tape’s volume label. For example, if the tape’s volume label is MA1686, the save operation will succeed if you specify the following list of labels with the /LABEL qualifier:

/LABEL=(MA1684,MA1685,MA1686)

If the label you specified does not match the tape’s volume label, BACKUP displays the following messages and prompt on your terminal if you specified the command qualifier /NOASSIST, or on the operator terminal if you did not specify /NOASSIST:

%BACKUP-W-MOUNTERR, volume 'number' on 'device' was not mounted because its label does not match the one requested
Specify option (QUIT, NEW tape or OVERWRITE tape)
BACKUP>

Specify QUIT to abort the BACKUP operation and unload the magnetic tape. Specify NEW to direct BACKUP to prompt for a new tape. Specify OVERWRITE to direct BACKUP to ignore the label mismatch, mount the tape, initialize the tape if you specified the output save-set qualifier /REWIND, and write the save set to the tape.

You can specify the command qualifier /IGNORE=LABEL_PROCESSING to prevent BACKUP from verifying the volume label of the tape. You can also use the /EXACT_ORDER qualifier to specify the exact order of tape volume labels that you want to use in a BACKUP operation.

Examples

1. $ BACKUP [PAYROLL] MTA0:30NOV.BCK/LABEL=PAY

 This command causes BACKUP to check the volume label of the tape mounted on drive MTA0. If the volume label is PAY, BACKUP saves the directory [PAYROLL] to a save set named 30NOV.BCK.

2. $ BACKUP DDA1: MTA0:PLAYS.BCK,MTA1,MTA2/REWIND/LABEL=(ACT1,ACT2,ACT3)

 This example assumes that the three tapes have no volume labels. This command saves all files on the disk named DDA1 to the save set PLAYs.BCK. The first tape in the save set is labeled ACT1, the second is labeled ACT2, and the third is labeled ACT3.
BACKUP
/List

/List

Command Qualifier
Lists information about a BACKUP save set and about the files in a save set. You can display the list on your terminal or write it to a file.

Format
/List[=file-spec] save-set-spec

Description
Use the /LIST qualifier by itself or in conjunction with any other operation (save, restore, copy, compare, or journal). If /LIST is specified by itself (not with a save, restore, copy, compare or journal operation), the input specifier must refer to a save set, and the output specifier must be omitted.

Before you can list the contents of a save set, the media containing the save set must be inserted into an appropriate drive. If the save set is stored on a disk, the disk must be mounted as a Files–11 volume or as a foreign volume. BACKUP mounts magnetic tapes automatically as part of the list operation.

By default, the list information is displayed on your terminal; however, you can specify a file to which the list information can be written.

When you use the /LIST qualifier with standalone BACKUP and you direct output to a file (/LIST=file-spec), the file specification must refer to either a terminal or a printer.

You can use either the command qualifier /BRIEF or /FULL with the /LIST qualifier. The /BRIEF qualifier directs BACKUP to list each file's size in blocks and its creation date. The /FULL qualifier directs BACKUP to list additional information about each file in the same format as the information provided by the DCL command DIRECTORY/FULL. The default is /BRIEF.

Do not use the command qualifier /LOG with /LIST when the output for /LIST is directed to the terminal; if you do, you will receive confusing output.

Example

$ BACKUP/LIST DBA2:[SAVE]23MAR02.BCK/SAVE_SET
Listing of save set(s)
Save set: 23MAR02.BCK
Written by: MOROCI
UIC: [000200,000200]
Date: 23-MAR-2002 14:18:16.00
Command: BACKUP [SAVE] DBA2:[SAVE]23MAR00.BCK/SAVE_SET
Operating system: OpenVMS Alpha Version V7.3-1
BACKUP version: V7.3-1
CPU ID register: 08000000
Node name: _SUZI::
Written on: _DBA2:
Block size: 32,256
Group size: 10
Buffer count: 3
Total of 3 files, 39 blocks
End of save set

This command lists the BACKUP summary information and the file name, size, and creation date for each file in the save set. Note that the /SAVE_SET qualifier is required to identify the input specifier as a save set on a Files–11 disk.
/LOG

Command Qualifier
Determines whether the file specification of each file processed is displayed on SYS$OUTPUT during the operation. The default is /NOLOG.

Format
/[/NO]LOG input-specifier output-specifier

Example
$ BACKUP/LOG [SAVE]23MAR02.BCK/SAVE_SET DBA2:[PLI.WORK]
%BACKUP-S-CREATED, created DBA2:[PLI.WORK]ANOTHER.DAT;1
%BACKUP-S-CREATED, created DBA2:[PLI.WORK]LAST.DAT;1
%BACKUP-S-CREATED, created DBA2:[PLI.WORK]THAT.DAT;1
%BACKUP-S-CREATED, created DBA2:[PLI.WORK]THIS.DAT;2
.
.
.

In this example, the file specifications of the files restored to the directory named [PLI.WORK] on DBA2 are logged to SYS$OUTPUT.
/MEDIA_FORMAT=[NO]COMPACATION

Output Save-Set Qualifier

Controls whether data records are automatically compacted and blocked together. Data compaction and record blocking increase the amount of data that can be stored on a single tape cartridge.

The compaction ratio depends on the data and the tape drive you use. For more information, refer to the documentation supplied with your tape drive.

BACKUP allows you to specify different compaction settings on different save sets on a tape. However, not all tape drives support the use of more than one compaction setting on a tape. Whether mixed mode tapes are permitted depends on the model of the tape drive you use.

Format

input-specifier output-save-set-spec /MEDIA_FORMAT=[NO]COMPACATION

Description

The /MEDIA_FORMAT qualifier can only be used with tape drives that support data compaction.

On Alpha systems, you can use the /MEDIA_FORMAT=COMPACATION qualifier for hardware data compaction of SCSI tape drives.

Example

$ BACKUP WORK$:[TESTFILES...]*. * MUA0:TEST.SAV - _$/MEDIA_FORMAT=COMPACATION /REWIND

This command saves all files in the directory [TESTFILES] and its subdirectories in a save set named TEST.SAV using a TA90E tape drive. The /MEDIA_FORMAT=COMPACATION qualifier specifies that the tape drive automatically compacts and blocks together data records on the tape.
/MODIFIED

Input File-Selection Qualifier

Selects files according to the value of the modified date field (the date the file was last modified) in each file header record.

Format

```
input-specifier/BEBEFORE=time /MODIFIED output-specifier
input-specifier /SINCE=time /MODIFIED output-specifier
```

Description

You must use the /MODIFIED qualifier with either of the input file-selection qualifiers /BEFORE or /SINCE. The date and time you specify with /BEFORE or /SINCE determines which files are processed.

You cannot use /MODIFIED with the input file-selection qualifiers /BACKUP, /CREATED, or /EXPIRED.

Example

```
$ BACKUP [SUNDANCE...]/BEFORE=TODAY/MODIFIED MFA1:MOD.BCK
```

This command saves all files in the directory tree [SUNDANCE] whose modification dates precede today (00:00:00.0 o’clock of the current day, month, and year).
/NEW_VERSION

Output File Qualifier

Creates a new version of a file if a file with an identical specification already exists at the location to which the file is being restored or copied.

Format

input-specifier output-specifier/NEW_VERSION

Description

If BACKUP attempts to copy or restore a file when a file with an identical directory name, file name, type, and equal or higher version number already exists, a new file is created with the same name and type and a version number one higher than the highest existing version.

If you do not use /NEW_VERSION, /REPLACE, or /OVERLAY, and the version number of the file being restored is equal to or less than the version number of the existing file, BACKUP reports an error in copying or restoring the file.

Note that when copying or restoring files using the /NEW_VERSION qualifier, files are processed in decreasing version number order and are created in ascending order. The result is that the version numbers are inverted.

Because this qualifier causes version numbers to change, using it with the /VERIFY qualifier will cause unpredictable results. HP recommends that you do not use the /NEW_VERSION qualifier with the /VERIFY qualifier.

Example

$ BACKUP MTA1:NOV30REC.BCK/SELECT=*.*DAT [RECORDS...] /NEW_VERSION

This example restores all files with the file type of .DAT from the magnetic tape save set NOV30REC.BCK to the directory [RECORDS]. The /NEW_VERSION qualifier instructs BACKUP to restore each file with the file type .DAT regardless of whether a file with the same file specification already exists.
/NOINCREMENTAL

Command Qualifier

Beginning with OpenVMS Version 7.2, on a save operation, /NOINCREMENTAL allows you to control the amount of file data that is saved. Use this qualifier only if you are sure that you want to save specific files and do not want to save all data.

In recent versions of OpenVMS, the /SINCE=BACKUP incremental save operation has been refined so that files that are saved are accurate and not redundant. As a result, the /NOINCREMENTAL and /SINCE=BACKUP qualifiers are not allowed together. This ensures an accurate /INCREMENTAL restore.

--- Note ---

/NOINCREMENTAL is valid only in BACKUP save operations. It is not related to the /INCREMENTAL qualifier, which is valid only in restore operations.

Format

/NOINCREMENTAL input-specifier output-specifier

Description

In OpenVMS Version 6.2 and prior versions, the system, by default, did not save files and subdirectories that were under directories that had been modified. In OpenVMS Versions 7.0 and 7.1, to ensure a successful restore, the system saved all files and subdirectories under directories that had been modified. This behavior, however, sometimes resulted in saving files and subdirectories that were not needed for later restore operations.

Example

$ BACKUP/ FAST/ NOINCREMENTAL /SINCE="3-MAY-2002" -
 $ MAC_DISK:{000000...}.*.*;* -
 $ TAPÉ:MCDSK00503.BCK/ SAVE/ REWIND

The command in this example executes an incremental save BACKUP operation for an input volume; the command avoids saving all files under recently modified directories.
/OVERLAY

Output File Qualifier

Writes the input file over a file with an identical specification at the output location.

Format

input-specifier output-specifier/OVERLAY

Description

If BACKUP attempts to copy or restore a file when a file with an identical directory name, file name, type, and version number already exists, the new version of the file is written over the existing version. The file identification of the new version is the same as the file identification of the file that is overwritten.

The physical location of the file on disk does not change. If /OVERLAY is specified, and the new file is larger than the one already present, BACKUP allocates more blocks on the disk and extends the file.

When you do not use /OVERLAY, /REPLACE, or /NEW_VERSION, and the version number of the file being restored is identical to the version number of the existing file, BACKUP reports an error in copying or restoring the file.

Example

$ BACKUP DRA1:MAR30SAV.BCK/SAVE_SET [RECORDS...] /OVERLAY

The sequential-disk save set MAR30SAV.BCK is restored to the directory tree [RECORDS...]. If a file from the save set has a specification that is identical to a file that already exists in [RECORDS...], the /OVERLAY qualifier directs BACKUP to write over the existing version.
The /OWNER_UIC qualifier has been superseded by /BY_OWNER. HP recommends that you substitute /BY_OWNER for /OWNER_UIC in command procedures and operator instructions. See the description of /BY_OWNER for more information.
/PHYSICAL

Command Qualifier

Specifies that a BACKUP operation is to ignore any file structure on the input volume and to process the volume in terms of logical blocks.

Format

/PHYSICAL input-specifier output-specifier

Description

In a physical operation, BACKUP saves, restores, copies, or compares the entire volume in terms of logical blocks.

The input and output specifiers for physical volumes must be device names, and they cannot be the same device. Also, the following qualifiers cause a fatal error if you specify any of them with the /PHYSICAL qualifier: /DELETE, /IMAGE, /INCREMENTAL, /JOURNAL, and /RECORD.

For physical copy operations between disks, the output disk must be the same type of device as the input disk; for example, a BACKUP/PHYSICAL operation cannot be performed between an RP05 input disk and an RP06 output disk. The output disk must not have a bad block in any location that corresponds to a good block on the input disk. (This restriction does not apply to RA or more recent disk architectures.)

For physical save operations between disks, the output disk must be the same type of disk as the input disk or a larger capacity disk. The output disk must not have a bad block in any location that corresponds to a good block on the input disk. (This restriction does not apply to RA or more recent disk architectures.)

For physical restore operations between disks, the output disk must be the same type of device as the disk from which the save set was created. The output disk must not have a bad block in any location that corresponds to a good block on the disk from which the save set was created. (This restriction does not apply to RA or more recent disk architectures.)

An output disk of a physical operation must be mounted using the DCL command MOUNT/FOREIGN. An input disk of a physical operation must either be mounted using the DCL command MOUNT/FOREIGN, or the user must have the user privilege LOG_IO or PHY_IO.

You can perform physical save and restore operations using magnetic tapes. BACKUP mounts magnetic tapes automatically as foreign devices.

A save set written using the /PHYSICAL qualifier can only be read as a physical save set; conversely, a file-structured save set can only be read with file-structured restore or compare operations.

Note

BACKUP/PHYSICAL does not copy the first track (track 0) of RX01 and RX02 diskettes; HP does not support track 0.
Examples

1. `$ MOUNT/FOREIGN DYA0:
 $ MOUNT/FOREIGN DYA1:
 $ BACKUP/PHYSICAL DYA0: DYA1:

 This example mounts RX02 diskettes in DYA0 and DYA1 as foreign devices and copies the contents of the diskette mounted in DYA0 to the diskette mounted in DYA1.

2. `$ MOUNT/FOREIGN DBA1:
 $ BACKUP/PHYSICAL MTA0:28SEP.BCK DBA1:

 This command restores a physical save set named 28SEP.BCK to DBA1.
Output Save-Set Qualifier

When you create a save set on disk, this qualifier defines the protection to be applied to an output save set. When you create a save set on magnetic tape, this qualifier defines the protection to be applied to the magnetic tape volume. (All save sets created subsequently on the tape will receive this same protection until the tape is initialized.)

Format

input-specifier output-save-set-spec/PROTECTION\=(code)\]

Description

Because the file system treats a BACKUP save set as a single file, it is crucial that you protect save sets adequately. If you do not specify adequate protection, anyone who has access to a save set can access any file in the save set.

The protection code indicates the type of access (read, write, execute, and delete) available to the four categories of users (system, owner, group, and world). For more information about specifying protection codes, refer to the OpenVMS User’s Manual.

If the save set is written to either a Files–11 disk or a sequential disk and /PROTECTION is not specified, BACKUP applies the process default protection to the save set. If /PROTECTION is specified, any protection categories not specified default to your default process protection.

Protection information is written to the volume header record of a magnetic tape, and applies to all save sets stored on the tape. If you specify /PROTECTION, any protection categories that you do not specify default to your default process protection.

To initialize a magnetic tape with the correct protection, specify the output save-set qualifier /REWIND with the /PROTECTION qualifier. If you do not specify /REWIND with /PROTECTION, the protection information, if any, in the volume header record is not changed. However, specifying /PROTECTION without /REWIND ensures that continuation volumes receive the correct protection.

If the save set is written to magnetic tape and /PROTECTION is not specified, BACKUP applies no protection to the tape.

In order to initialize a magnetic tape volume that was previously initialized with the /PROTECTION qualifier, you must own the volume (your UIC matches the UIC of the volume) or have the VOLPRO privilege.

Examples

1. $ BACKUP
 _From: [CLEAVER...]
 _To: MFA2:ACCOUNTS.BCK/BY_OWNER=[301,310]/REWIND/LABEL=BANK01-
 _$ /PROTECTION=(S:RWE,O:RWED,G:RE,W)

 This command saves the directory tree [CLEAVER...] to a save set named ACCOUNTS.BCK on the magnetic tape labeled BANK01. The output save-set qualifier /REWIND directs BACKUP to rewind the tape and initialize it before performing the save operation. The output save-set qualifier /BY_OWNER
assigns an owner UIC of [301,310] to the magnetic tape. The /PROTECTION qualifier assigns the owner of the magnetic tape read, write, execute, and delete access. SYSTEM users are assigned read, write, and execute access; GROUP users are assigned read and execute access; and WORLD users are assigned no access.

2. $ BACKUP/IMAGE
 _From: DUA0:
 _To: MFA2:DAILY.BCK/REWIND/LABEL=TAPE1-
 $ /PROTECTION=(S:RWED,O:RWED,G,W)
 $ BACKUP/IMAGE DUA2: MFA2:DAILY2.BCK/PROTECTION=(S:RWED,O:RWED,G,W)
 %BACKUP-I-RESUME, resuming operation on volume 2
 %BACKUP-I-READYWRITE, mount volume 2 on _MFA2: for writing
 Press return when ready: [Return]

This first BACKUP command creates an image backup of the disk DUA0 in a save set named DAILY.BCK on the magnetic tape labeled BANK01. The output save-set qualifier /REWIND directs BACKUP to rewind the tape and initialize it before performing the save operation. The /PROTECTION qualifier assigns the owner of the magnetic tape and SYSTEM users read, write, execute, and delete access; GROUP and WORLD users are assigned no access.

The second BACKUP command uses the same tape for an image backup of the disk DUA2. When the tape is full, BACKUP requests another volume. Because the /PROTECTION qualifier was specified with second BACKUP command, the continuation volume receives the desired protection.
/RECORD

Command Qualifier

Records the current date and time in the BACKUP date field of each file header record once a file is successfully saved or copied.

Format

/RECORD input-specifier output-specifier

Description

The /RECORD qualifier can be used only in save or copy operations on Files–11 Structure Level 2 or 5 volumes. To use the /RECORD qualifier on files, the user privilege SYSPRV is required.

When you use /RECORD in a copy or save operation, BACKUP writes the date and time that the copy or save set was created in the BACKUP date field of each file header record.

When you use /RECORD to perform incremental save operations on a disk volume, do not allow other users to use /RECORD in their BACKUP operations on the same disk volume. If other users specify /RECORD, the dates in the BACKUP date fields of file header records will change. This makes it impossible for you to save all files created or modified since you last performed a save operation.

If you use the command qualifier /VERIFY with /RECORD, files that fail verification are not recorded.

If /RECORD is not specified, the BACKUP date field of each processed file is not changed.

You cannot use the /RECORD qualifier with the command qualifiers /DELETE, /COMPARE, or /PHYSICAL.

Example

$ BACKUP/RECORD DBA1:[000000...]/SINCE=BACKUP MTA0:13MAY.BCK

This command saves all files on DBA1 that have been created or modified since the last save operation and records the current date and time in each file header record.
/RELEASE_TAPE

Command Qualifier

Dismounts and unloads a tape after a BACKUP save operation writes a save set to the tape (and optionally verifies the saveset information on that tape).

Format

/RELEASE_TAPE input-specifier output-specifier

Description

By using the /RELEASE_TAPE qualifier in conjunction with either the /DELETE or /RECORD qualifiers, you can make a tape drive available for other operations before the BACKUP command completes. You can also use the /RELEASE_TAPE qualifier without the /DELETE or /RECORD qualifiers, in which case the /RELEASE_TAPE qualifier dismounts and unloads the tape in the drive after the BACKUP command completes.

You cannot use the /RECORD and /DELETE qualifiers in the same BACKUP command.

Examples

1. $ BACKUP/IMAGE/RECORD/RELEASE_TAPE DUA1: MUA0:BACK.BCK

 The command in this example backs up the disk DUA1 to the save set BACK.BCK. By using the /RELEASE_TAPE and /RECORD qualifiers, BACKUP dismounts and unloads the tape in MUA0 (making it available for other operations) before it performs the action of the /RECORD qualifier.

2. $ ALLOCATE MUA0: TAPE

 $ BACKUP/DELETE/RELEASE_TAPE/LOG DUA1:[MAIN...] MUA0:MAIN.BCK

 $ DEALLOCATE TAPE

 The commands in this example back up some directories on a disk named DUA1, and then delete the files that have been backed up. The /RELEASE_TAPE qualifier dismounts and unloads the tape (making it available for other operations) before the /DELETE qualifier performs its action. The tape remains allocated until you enter the DEALLOCATE command.
/REPLACE

Output File Qualifier
Replaces a file on the output specifier with an identically named file from the input specifier.

Format
input-specifier output-specifier/REPLACE

Description
When you use /REPLACE in a copy or restore operation, and an identically named file exists in both the input and output specifiers, BACKUP performs the following tasks:

- Copies or restores a new version of the file with the same directory specification, file name, type, and version number
- Deletes the copy of the file that previously existed on the output disk

In this way, the previous copy of the file is replaced with the restored version. Note that the version number is not incremented because the old copy of the file is deleted. If you want to keep the versions from both the input and the output specifiers, use the output file qualifier /NEW_VERSION.

If you do not use /REPLACE, /OVERLAY, or /NEW_VERSION, and the version number of the file being restored is identical to the version number of the existing file, BACKUP reports an error and does not restore the file.

Example

$ BACKUP MUA0:SAVEWORK.BCK/SELECT=[LEE...] DUA0:[LEE...]/REPLACE

The command in this example restores the directory tree [LEE...] (and all files in the directory tree) from a magnetic tape save set to disk. The input save-set qualifier /SELECT specifies the directory tree to be selected from the save set. The output file qualifier /REPLACE instructs BACKUP to first create a new version of an input file if the output medium has a file with the same file specification, and then to delete the file that originally existed on the output medium.
Input Save-Set Qualifier
Rewinds the input tape reel to the beginning-of-tape marker before reading the input volume.

Format
input-save-set-spec/[NO]REWIND output-specifier

Description
The /[NO]REWIND qualifier is for magnetic tape volumes only.
The /REWIND qualifier directs BACKUP to rewind the input magnetic tape to the beginning-of-tape marker before reading the input volume. Then BACKUP locates the input save set. In this way, BACKUP can find the input save set if it is located before the current tape position.
The /NOREWIND qualifier indicates that BACKUP should not rewind the input volume before processing the command. Instead, BACKUP proceeds toward the logical end-of-tape (the end of the last save set stored on the tape). Therefore, if the specified save set is located before the current position of the tape, BACKUP is unable to find it.
The default is /NOREWIND. You must specify /REWIND to rewind the tape.

Example
$ BACKUP MFA1:CONTRACTS.BCK/REWIND DBA2:/*...*/BY_OWNER=ORIGINAL

In this example, the save set CONTRACTS.BCK is restored to the disk volume mounted on DBA2. The /REWIND qualifier rewinds the magnetic tape to the beginning-of-tape marker before reading the input volume to search for CONTRACTS.BCK. The output file qualifier /BY_OWNER restores the original owner UICs.
/REWIND

Output Save-Set Qualifier

Rewinds the output tape to the beginning-of-tape marker and initializes the output tape. The /NOREWIND qualifier causes the tape to wind forward to the logical end-of-tape (the end of the last save set stored on the tape) and to begin writing the save set there.

Format

input-specifier output-save-set-spec/[NO]REWIND

Description

The /[NO]REWIND qualifier is for magnetic tape volumes only.

If you specify /REWIND, BACKUP rewinds to the beginning of the magnetic tape and searches the volume header record for a volume label. If the volume header record contains no volume label, BACKUP writes the label specified in the BACKUP command to the volume header record, initializes the tape, and creates the save set on the tape.

If no label is specified explicitly in the command line, BACKUP uses the first six characters of the save-set name as the volume label of the first tape in a multivolume save set and the first four characters of the save-set name followed by the volume number of the tape as the volume label of subsequent tapes. You can also specify a label or list of labels explicitly with the /LABEL qualifier. If you do not specify enough labels with the /LABEL qualifier, BACKUP uses the first four characters of the final label in the list followed by the volume number of the tape as the volume label of subsequent tapes.

If BACKUP finds a volume label on the tape, it compares the volume label with the label you specified in the BACKUP command line (either explicitly with the /LABEL qualifier or implicitly through the save-set name) and ensures that the tape is expired.

If the volume label is fewer than six characters long, BACKUP pads the volume label with the blank character to six characters. The first four characters of the volume label must either match the first four characters of the label specified in the BACKUP command line exactly, or the first four characters of the volume label must end with one or more underscore characters. If the first four characters of the volume label end with one or more underscore characters, and the label specified in the command line matches the part of the volume label that appears before the underscore characters, BACKUP accepts the match. (For example, the volume label ABN_ matches the command line label ABN but does not match the command line label ABNE.) If either the fifth or sixth character of the volume label is in the range 0 to 9, BACKUP does not compare these characters with corresponding characters in the label specified in the BACKUP command line. Otherwise, the fifth and sixth characters in the volume label must match the corresponding characters in the label specified in the BACKUP command line exactly. The following table illustrates volume labels that match labels specified in the BACKUP command line:
You can specify more than one label with the /LABEL qualifier. If any label specified in the BACKUP command line matches the volume label of the tape and the tape is expired, BACKUP overwrites the volume label of the tape with the same volume label.

By overwriting the tape's volume label, BACKUP initializes the tape, removing access to any data that previously resided on the tape and preparing the tape to receive new data. During the initialization process, BACKUP writes the values specified with the output save-set qualifiers /TAPE_EXPIRATION, /PROTECTION, and /BY_OWNER to the volume header record. (If these qualifiers are not specified, the default tape expiration date is today, the default protection is none, and the owner UIC of the tape is the UIC of the current process.) After initializing the tape, BACKUP writes the save set to the tape.

If the label in the BACKUP command line did not match the volume label of the tape, BACKUP displays the following message and prompt on your terminal if you specified the command qualifier /NOASSIST, or on the operator terminal if you did not specify /NOASSIST:

```
%BACKUP-W-MOUNTERR, volume 'number' on 'device' was not mounted because its label does not match the one requested
Specify option (QUIT, NEW tape or OVERWRITE tape)
BACKUP>
```

If you enter QUIT at the BACKUP> prompt, BACKUP aborts, unloads the magnetic tape, and issues the following message:

```
%BACKUP-F-ABORT, operator requested abort on fatal error
```

If you enter NEW at the BACKUP> prompt, BACKUP unloads the magnetic tape and issues the following prompt for a new tape:

```
%BACKUP-I-READYWRITE, mount volume 'volume-number' on _'device-name': for writing Enter "YES" when ready:
```

If you enter OVERWRITE at the BACKUP> prompt, BACKUP overwrites the old volume label with the new volume label. (OVERWRITE instructs BACKUP to ignore the fact that either the tape has not expired or that the labels do not match.) By overwriting the tape's volume label, BACKUP initializes the tape, removing access to any data that previously resided on the tape and preparing the tape to receive new data.

During the initialization process, BACKUP writes the values specified with the output save-set qualifiers /TAPE_EXPIRATION, /PROTECTION, and /BY_OWNER to the volume header record. After initializing the tape, BACKUP writes the save set to the tape.

If the tape is not expired, BACKUP displays the following message and prompt on your terminal if you specified the command qualifier /NOASSIST, or on the operator terminal if you did not specify /NOASSIST:

Label Specified in the Command Line | Matching Volume Labels

<table>
<thead>
<tr>
<th>Label</th>
<th>Matching Volume Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR</td>
<td>MAR, MAR_, MAR_nn</td>
</tr>
<tr>
<td>MAR_</td>
<td>MAR_, MAR_nn</td>
</tr>
<tr>
<td>MARK</td>
<td>MARK, MARKnn</td>
</tr>
<tr>
<td>MARKER</td>
<td>MARKER, MARKnn</td>
</tr>
</tbody>
</table>

Always specify /REWIND when the output tape has a non-ANSI or non-ISO label or when the output tape has never been initialized.

The /NOREWIND qualifier directs BACKUP to compare the volume label of the tape with the label you specified in the BACKUP command before performing the save operation. You can specify a label explicitly with the /LABEL qualifier; otherwise, BACKUP uses the first six characters of the save-set name as the volume label. If the volume label does not match the label you specified, BACKUP displays the following message and prompt on your terminal if you specified the command qualifier /NOASSIST, or on the operator terminal if you did not specify /NOASSIST:

%BACKUP-W-MOUNTERR, volume ‘number’ on ‘device’ was not mounted because its label does not match the one requested Specify option (QUIT, NEW tape or OVERWRITE tape)

If you choose the OVERWRITE option, BACKUP ignores the fact that the volume labels do not match. If the labels match, or if you choose the OVERWRITE option, BACKUP winds the tape forward to the logical end-of-tape (the end of the last save set stored on the tape) and writes the save set to the tape. If the logical end-of-tape is also the physical end of the tape, BACKUP requests a new tape. Because BACKUP searches for the end of data on the tape, you cannot write a new save set to a tape if it ends with a save set that is continued onto another tape.

Although the /NOREWIND qualifier does not initialize the first tape in a multivolume save set, BACKUP initializes subsequent tapes in a multivolume save set. BACKUP ensures that the tape is expired and that the tape labels match before initializing subsequent volumes in a multivolume save set.

The default is /NOREWIND. You must specify /REWIND to rewind and initialize a magnetic tape volume.

Example

```bash
$ BACKUP
  _From: *.*PS
  _To: MTA0:DSRSAVE.BCK/REWIND/LABEL=DSR01/TAPE_EXPIRATION=29-JUN-2002
```

The command in this example initializes a new magnetic tape and writes the volume label DSR01 and a tape expiration date of June 29, 2002, to the tape's volume header record. Then this command saves all files in the current default directory with a file type of .PS to the magnetic tape save set named DSRSAVE.BCK.
/SAVE_SET

Input Save-Set Qualifier

Directs BACKUP to treat the input file as a BACKUP save set. You must specify /SAVE_SET when the input specifier refers to a BACKUP save set on disk.

Format

input-save-set-spec/SAVE_SET output-specifier

Description

The /SAVE_SET qualifier allows you to refer to a BACKUP save set on a local Files–11 disk, a remote Files–11 disk, or a sequential disk. If you do not specify /SAVE_SET, an input specifier that refers to a disk is treated as a Files–11 file. An input specifier that refers to tape is always treated as a BACKUP save set.

Examples

1. $ BACKUP DBA2:[BACKUP]1212MAR3.BCK/SAVE_SET DBA1:[*...
 This command restores a save set named 1212MAR3.BCK from DBA2 to DBA1.

2. $ BACKUP/LIST DBA2:[SAVE]23MAR02.BCK/SAVE_SET
 This command lists the BACKUP summary information and the file name, size, and creation date for each file in the save set named 23MAR02.BCK. The /SAVE_SET qualifier is required to identify the input specifier as a save set on a disk.

3. $ BACKUP/LOG DBA2:[SAVE]23MAR02.BCK/SAVE_SET DBA3:[PLI.WORK]
 This command restores the directory that was listed in Example 2. File specifications are logged to SYS$OUTPUT as the files are restored.
/SAVE_SET

Output Save-Set Qualifier

Directs BACKUP to treat the output file as a BACKUP save set. You must specify the /SAVE_SET qualifier when the output specifier refers to a BACKUP save set on disk.

Format

input-specifier output-save-set-spec/SAVE_SET

Description

The /SAVE_SET qualifier allows you to create a BACKUP save set on a local Files–11 disk, a remote Files–11 disk, or a sequential disk. If you do not specify /SAVE_SET, an output specifier that refers to disk is treated as a Files–11 file. An output specifier that refers to tape is always treated as a BACKUP save set.

Examples

1. $ BACKUP [HILL] DBA1:[BACKUP]SEP28.BCK/SAVE_SET
 This command saves the directory [HILL] to a save set named SEP28.BCK on a Files–11 disk.

2. $ BACKUP DBA2:[PLI.WORK]*.*; [SAVE]23MAR02.BCK/SAVE_SET
 This command saves the highest numbered version of each file in directory [PLI.WORK] in a save set named 23MAR02.BCK on the same disk.

3. $ BACKUP
 _From: []
 _To: MILO"FRANKIE THISISMINE":DUA0:[FRANKIE]MYDIR.BCK/SAVE_SET
 This command saves all files in the current default directory to a network save set named MYDIR.BCK on node MILO.

4. $ MOUNT/FOREIGN DBA0:
 $ BACKUP [SIMS] DBA0:SIMS.BCK/SAVE_SET
 This command saves all files in the directory [SIMS] to a sequential-disk save set named SIMS.BCK.
Input Save-Set Qualifier

Selects the specified files for processing.

Format

```
input-save-set-spec/SELECT=(file-spec[,...]) output-specifier
```

Description

If you specify more than one file, separate the file specifications with commas and enclose the list in parentheses. Do not use a device specification when you define the files to be selected. You can use most standard wildcard characters, but you cannot use wildcard characters denoting latest version of files (;) and relative versions of files (;-n).

Note that BACKUP does not apply temporary file specification defaults within the list. Each file specification independently takes its defaults from the file specification [000000 . . .]*.+;*.

Example

```
$ BACKUP DBA1:JUL20.BCK/SAVE_SET/SELECT=[SNOW]BALL.PAS [WINTER.GAME]BALL.PAS
```

This command selects a file named [SNOW]BALL.PAS from a sequential-disk save set and restores it to the directory [WINTER.GAME] on the current default device.
/SINCE

Input File-Selection Qualifier
Selects files dated equal to or later than the specified date and time.

Format
input-specifier/SINCE=time output-specifier

Description
The /SINCE qualifier selects files by comparing the date and time in the specified field of each file header record with the date and time you specify in the command line. The following table shows the input file-selection qualifiers you can use with /SINCE and their functions. Use only one of these qualifiers at a time in your command line.

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BACKUP</td>
<td>Selects files last saved or copied by BACKUP/RECORD since the date specified. Also selects files with no BACKUP date.</td>
</tr>
<tr>
<td>/CREATED</td>
<td>Selects files created since the date specified.</td>
</tr>
<tr>
<td>/EXPIRED</td>
<td>Selects files that have expired since the date specified.</td>
</tr>
<tr>
<td>/MODIFIED</td>
<td>Selects files last modified since the date specified. If you specify /SINCE without another qualifier, /MODIFIED is used by default.</td>
</tr>
</tbody>
</table>

Specify the date and time as a delta time or as an absolute time using the format [dd-mmm-yyyy[:]](hh:mm:ss.cc). You can also use one of the following reserved words to specify the date and time:

- BACKUP: The BACKUP/RECORD operation (available only on Files–11 Structure Levels 2 and 5 volumes)
- TODAY: The current day, month, and year at 00:00:00.0 o'clock
- TOMORROW: 24 hours after midnight last night
- YESTERDAY: 24 hours before midnight last night

Be sure to perform an image backup, using the BACKUP/IMAGE/RECORD command, before performing regular incremental backups. The image backup saves a copy of the entire disk and marks each file as having been saved. Regularly performed subsequent incremental backups assume an image backup was already performed and therefore will save new or modified files. If an image backup was not performed first, the incremental backups will save more files than may be necessary, in an attempt to ensure that an incremental restore will be successful.
Example

$ BACKUP [PLI.WORK]/SINCE=YESTERDAY/MODIFIED [PLI.SAV]

This command copies selected files in the directory [PLI.WORK] to the directory [PLI.SAV]. Only those files that have been modified since 24 hours preceding midnight last night are processed. Even though it is used in this example, the /MODIFIED qualifier is not required because its action is the default when the /SINCE qualifier is specified.
/TAPE_EXPIRATION

Output Save-Set Qualifier

Writes a file expiration date other than the current date to the file header label of
the save set.

Format

input-specifier output-save-set-spec/TAPE_EXPIRATION[=date]

Description

When you specify the output save-set qualifier /REWIND during a save operation
to magnetic tape, BACKUP checks that the expiration date of the first file on the
tape has expired before initializing the tape. Initializing the tape removes access
to data previously stored on the tape.

HP recommends that you specify an expiration date whenever you create a
BACKUP save set on magnetic tape using /REWIND. Daily BACKUP tapes
should expire in seven days, weekly BACKUP tapes should expire in one month,
and monthly BACKUP tapes should expire in one year.

Specify the date in the following format:

dd:mmm:yyyy

where:

dd is the date.
mmm is a 3-letter abbreviation of the month.
yyyy is the year.

BACKUP writes the expiration date into the file's HDR1 ANSI label on the tape.
If you do not use the /TAPE_EXPIRATION qualifier, BACKUP uses today's date
as the expiration date.

Example

$ BACKUP DBA1:
 _To: MTA0:13SEPBAK.BCK/REWIND/TAPE_EXPIRATION=20-SEP-2002/LABEL=SEP02

In this example, the save set file 13SEPBAK.BCK receives an expiration date of
September 20, 2002. Because this command includes the /REWIND qualifier,
13NOVBAK.BCK is the first file on the tape and its expiration date indicates that
the tape expires after seven days.
/TRUNCATE

Command Qualifier

Controls whether a copy or restore operation truncates a sequential output file at the end-of-file (EOF) when creating it.

Format

/\[NO\]TRUNCATE input-specifier output-specifier

Description

By default, a copy or restore operation uses the allocation of the input file to determine the size of the output file. Specify /TRUNCATE if you want the output files to be truncated at the end-of-file (EOF).

Example

$ DIRECTORY/SIZE [FRANKIE]ORIGINAL.DAT
Directory DMA0:[FRANKIE]
ORIGINAL.DAT 35
Total of 1 file, 35 blocks
$ COPY ORIGINAL.DAT EXTENDED.DAT/ALLOCATION=500
$ BACKUP [FRANKIE]EXTENDED.DAT MFA0:20JUL.BCK/LABEL=WKLY03
$ BACKUP/TRUNCATE MFA0:20JUL.BCK/LABEL=WKLY03 DMA0:[FRANKIE]

This sequence of commands performs the following tasks:

- Determines that the file ORIGINAL.DAT is 35 blocks long.
- Copies ORIGINAL.DAT to EXTENDED.DAT, allocating 500 blocks for EXTENDED.DAT.
- Saves the file EXTENDED.DAT to a save set named 20JUL.BCK on MFA0. BACKUP writes the file allocation size in the file header record of the saved file but saves only 35 blocks in the save set.
- Restores the save set file on MFA0 to a volume mounted on DMA0 and truncates the output files at the EOF. The restored file is 35 blocks long.
/VERIFY

Command Qualifier

Specifies that the contents of the output specifier be compared with the contents of the input specifier after a save, restore, or copy operation is completed.

Format

/VERIFY input-specifier output-specifier

Description

The /VERIFY qualifier is different from the command qualifier /COMPARE. Unlike the /VERIFY qualifier, the command qualifier /COMPARE cannot be used in a save, restore, copy, or list operation. The /VERIFY qualifier directs BACKUP to perform the copy, save, or restore operation first and then to perform the compare operation.

On file-structured copy operations, each file is compared after it is copied. On physical copy operations, the volume is compared after it is copied. For a save or restore operation, the verification is performed in a separate pass and is preceded by the following informational message:

%BACKUP-I-STARTVERIFY, starting verification pass

If a file does not compare successfully, BACKUP displays the following error message:

%BACKUP-E-VERIFYERR, verification error for block ‘block-number’ of ‘disk:[directory]file_name.file_type;version_number’

The /VERIFY qualifier does not work on a restore or copy operation when the /NEW_VERSION output file qualifier is also used. Because the /NEW_VERSION qualifier reassigns output file versions, it is not possible to correctly associate the created output files with the input files from which they were copied.

Example

$ BACKUP/VERIFY/LOG *.LIS MFA0:LIST.BCK
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]CRE.LIS;1
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]CRETIME.LIS;1
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]EXC.LIS;1
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]NOREB.LIS;1
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]REB.LIS;1
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]SETREB.LIS;1
%BACKUP-S-COPIED, copied DISK$DEFAULT:[WONDER]VERS.LIS;1
%BACKUP-I-STARTVERIFY, starting verification pass
%BACKUP-S-COMPARED, compared DISK$DEFAULT:[WONDER]CRE.LIS;1
%BACKUP-S-COMPARED, compared DISK$DEFAULT:[WONDER]CRETIME.LIS;1
%BACKUP-S-COMPARED, compared DISK$DEFAULT:[WONDER]EXC.LIS;1
%BACKUP-S-COMPARED, compared DISK$DEFAULT:[WONDER]NOREB.LIS;1
%BACKUP-S-COMPARED, compared DISK$DEFAULT:[WONDER]REB.LIS;1
%BACKUP-S-COMPARED, compared DISK$DEFAULT:[WONDER]SETREB.LIS;1
%BACKUP-S-COMPARED, compared DISK$DEFAULT:[WONDER]VERS.LIS;1

This example creates a magnetic tape save set on MFA0 and starts the verification pass after the save operation is completed. The /LOG qualifier displays the file names as they are processed.
/VOLUME

Command qualifier
Indicates that a specific disk volume in a disk volume set is to be processed. The /VOLUME qualifier is valid only when used with the /IMAGE qualifier.

Format
/IMAGE/VOLUME=n input-specifier output-specifier

Description
The /VOLUME qualifier allows you to perform an image save, restore, or copy operation using one more disk drive than the number of disks in the input volume set. When you use /VOLUME, you must write-lock the entire input volume set.

When you perform an image copy or save operation with the /VOLUME qualifier, all disks in the input volume set must be mounted. Mount the volumes of the target volume set one at a time. Enter a separate BACKUP command for each disk in the input volume set. A save set created with the /VOLUME qualifier must be restored using the /VOLUME qualifier.

You can restore any image save set with the /VOLUME qualifier. All disks in the output volume set must be mounted. Mount the disks in the input volume set one at a time. You cannot use the command qualifier /NOINITIALIZE in the restore operation with the command qualifier /VOLUME.

In a compare operation that uses the /VOLUME qualifier to compare two disk volume sets, all disks in both volume sets must be mounted. In a selected-volume compare operation between a save set on tape and a disk volume set, all disks in the disk volume set must be mounted.

Example
$ BACKUP/IMAGE/VOLUME=3 DISK$PUBLIC DRA1:

This command creates a functionally equivalent copy of the third volume of a volume set named DISK$PUBLIC to DRA1. The disk mounted in DRA1 becomes the third volume of the image-copy volume set.
7.6 BACKUP Examples

Table 7–3 shows BACKUP command formats for save operations and some of the qualifiers you can use with a save operation.

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
</table>
| Saves a file to a save set on magnetic tape | BACKUP file-spec save-set-specifier/LABEL=label
$ BACKUP STRATDAT1.DAT
MTA0:STRATDAT1.BCK/LABEL=TAPE01 |
| Saves the most recent versions of files in a directory to magnetic tape | BACKUP [directory]*.*; save-set-specifier/LABEL=label
$ BACKUP [LYKINS...]*.*;
MTA0:1409MAR17.BCK/LABEL=WKY102 |
| Saves a disk volume to a save set on magnetic tape | BACKUP/IMAGE ddcu: save-set-specifier/LABEL=label
$ BACKUP/IMAGE DBA1:
MTA0:000FEB4.BCK/LABEL=MTH101 |
| Saves a disk volume to a multivolume save set on more than one magnetic tape drive | BACKUP/IMAGE ddcu: save-set-specifier,ddcu: . . . /LABEL=(label1, . . .)
$ BACKUP/IMAGE DBA1: MTA0:17MAR.BCK,MTA1:/ -
$_$ LABEL=(WKY101,WKY102) |
| Saves a list of files to a save set on magnetic tape | BACKUP file-spec,file-spec,... save-set-specifier/LABEL=label
$ BACKUP DBA1:[LYKINS...]*.PAS,DMA0:[DAKOTA...]*.PAS -
$_$ MTA0:PAS17MAR.BCK/LABEL=TAPE01 |
| Saves a disk volume for incremental backups for the first time | BACKUP/RECORD/IMAGE/LOG ddcu: save-set-specifier/LABEL=label
$ BACKUP/RECORD/IMAGE/LOG DBA1:
MTA0:985FEB4.BCK/ -
$_$ LABEL=DLY101 |
| Saves a disk volume for incremental backups (not the first time) | BACKUP/RECORD/FAST/LOG ddcu:[*...]/SINCE=BACKUP save-set-specifier/LABEL=label
$ BACKUP/RECORD/FAST/LOG DBA1:[*...]/SINCE=BACKUP -
$_$ MTA0:988FEB4.BCK/LABEL=DLY101 |
| Saves an unstructured disk volume | BACKUP/PHYSICAL ddcu: save-set-specifier/LABEL=label
$ BACKUP/PHYSICAL DMA1:
MTA0:985FEB4.BCK/LABEL=MTH101 |

(continued on next page)
7.6 BACKUP Examples

Table 7–3 (Cont.) Save Operation Quick Reference

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saves a directory to a save set on a Files–11 disk</td>
<td>BACKUP [directory] save-set-specifier/SAVE_SET</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP [LYKINS] DBA2:[BACKUP]1609FEB3.BCK/SAVE_SET</td>
</tr>
<tr>
<td>Saves a directory tree to a save set on magnetic tape</td>
<td>BACKUP [directory...] save-set-specifier/LABEL=label</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP [LYKINS...] MTA0:1612FEB3.BCK/LABEL=TAPE01</td>
</tr>
<tr>
<td>Saves a directory tree to a save set on magnetic tape and creates a listing file</td>
<td>BACKUP/LIST=file-spec [directory...] save-set-specifier/LABEL=label</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP/LIST=8SEP.LOG [LYKINS...] MTA0:8SEP.BCK/LABEL=WKL101</td>
</tr>
<tr>
<td>Saves a directory tree to a save set on magnetic tape using data compaction to increase the amount of data stored on a tape cartridge</td>
<td>BACKUP [directory...] save-set-specifier/MEDIA_FORMAT=COMPACTION</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP [TESTFILES...].;* MUA0:TEST.SAV/MEDIA_FORMAT=COMPACTION/REWIND</td>
</tr>
</tbody>
</table>

Table 7–4 shows BACKUP command formats for restore operations and some of the qualifiers you can use with restore operations. In the examples in this table, it is assumed that save sets already exist on the magnetic tape and disk.

Table 7–4 Restore Operation Quick Reference

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restores from save set on disk to Files–11 disk with original UICs</td>
<td>BACKUP save-set-specifier/SAVE_SET ddcu:[*...]/BY_OWNER=ORIGINAL</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP DBA2:[BACKUP]FEB2.BCK/SAVE_SET DBA1:[*...]-$_$/BY_OWNER=ORIGINAL</td>
</tr>
<tr>
<td>Restores from a save set on magnetic tape to a Files–11 disk with original UICs</td>
<td>BACKUP save-set-specifier ddcu:[*...]/BY_OWNER=ORIGINAL</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP MTA0:1618FEB2.BCK DBA1:[*...]/BY_OWNER=ORIGINAL</td>
</tr>
<tr>
<td>Restores a selected file in a save set on magnetic tape to a Files–11 disk</td>
<td>BACKUP save-set-specifier/SELECT=file-spec file-spec</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP MTA0:FEB2.BCK/SELECT=[POUDRE]UPLIFT.PAS -$_$/DBA1:[GEO.PAS]UPLIFT.PAS</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 7–4 (Cont.) Restore Operation Quick Reference

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restores files with a specific UIC to a Files–11 disk</td>
<td>BACKUP save-set-specifier/BY_OWNER=[uic] file-spec</td>
</tr>
<tr>
<td>$ BACKUP MTA0:1641FEB2.BCK/BY_OWNER=[360,052] - $ DBA1:[LYKINS...]</td>
<td></td>
</tr>
<tr>
<td>Restores files to a Files–11 disk with a new UIC</td>
<td>BACKUP save-set-specifier file-spec/BY_OWNER=[uic]</td>
</tr>
<tr>
<td>$ BACKUP MTA0:1641FEB2.BCK - $ DBA1:[TESTS...]/BY_OWNER=[100,150]</td>
<td></td>
</tr>
<tr>
<td>Restores files to a Files–11 disk; if file exists, creates new version</td>
<td>BACKUP save-set-specifier file-spec/NEW_VERSION</td>
</tr>
<tr>
<td>$ BACKUP MTA0:1641FEB2.BCK DBA1:[LYKINS...]/NEW_VERSION</td>
<td></td>
</tr>
<tr>
<td>Restores files to a Files–11 disk; if file exists, replaces with new version</td>
<td>BACKUP save-set-specifier file-spec/REPLACE</td>
</tr>
<tr>
<td>$ BACKUP MTA0:1641FEB2.BCK DBA1:[LYKINS...]/REPLACE</td>
<td></td>
</tr>
<tr>
<td>Restores files to a Files–11 disk selecting certain files</td>
<td>BACKUP save-set-specifier/SELECT=file-spec file-spec</td>
</tr>
<tr>
<td>$ BACKUP MTA0:1641FEB2.BCK/SELECT=[LYKINS.PAS] - $ DBA1:[LYKINS...]</td>
<td></td>
</tr>
<tr>
<td>Restores a directory tree, placing files in a different subtree</td>
<td>BACKUP save-set-specifier/SELECT=[directory...] [directory2...]</td>
</tr>
<tr>
<td>$ BACKUP MTA0:1641FEB2.BCK/SELECT=[FIELD...] - $ DBA1:[LYKINS.NEWDATA...]</td>
<td></td>
</tr>
<tr>
<td>Restores a Files–11 volume from a physical save set</td>
<td>BACKUP/PHYSICAL save-set-specifier ddcu:</td>
</tr>
<tr>
<td>$ BACKUP/PHYSICAL MTA0:26MAR.BCK DMA3:</td>
<td></td>
</tr>
<tr>
<td>Restores a Files–11 volume from an image save set</td>
<td>BACKUP/IMAGE save-set-specifier ddcu:</td>
</tr>
<tr>
<td>$ BACKUP/IMAGE MTA0:17AUG.BCK DMA3:</td>
<td></td>
</tr>
<tr>
<td>Restores a Files–11 volume, maintaining the initialization parameters specified in the DCL command INITIALIZE</td>
<td>INITIALIZE ddcu: volume-name/new-parameters</td>
</tr>
<tr>
<td>MOUNT/FOREIGN ddcu:</td>
<td></td>
</tr>
<tr>
<td>BACKUP/IMAGE save-set-specifier ddcu:/NOINITIALIZE</td>
<td></td>
</tr>
<tr>
<td>$ INITIALIZE DBA1: UTTLPACK/CLUSTER=5</td>
<td></td>
</tr>
<tr>
<td>$ MOUNT/FOREIGN DBA1:</td>
<td></td>
</tr>
<tr>
<td>$ BACKUP/IMAGE MTA0:17AUG.BCK DBA1:/NOINITIALIZE</td>
<td></td>
</tr>
</tbody>
</table>

Table 7–5 shows BACKUP command formats for copy operations, including some of the qualifiers you can use with a copy operation.
Table 7–5 Copy Operation Quick Reference

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copies a directory tree to another directory tree</td>
<td><code>BACKUP [directory...] [directory...]</code>
$ BACKUP [DAKOTA...] [SUNDANCE...]</td>
</tr>
<tr>
<td>Copies a file to another file</td>
<td><code>BACKUP file-spec file-spec</code>
$ BACKUP LOGIN.COM [.SAVE]OLDLOGIN.COM</td>
</tr>
<tr>
<td>Copies a disk volume to another disk volume</td>
<td><code>BACKUP/IMAGE ddcu: ddcu:</code>
$ BACKUP/IMAGE DBA1: DBA2:</td>
</tr>
<tr>
<td>Copies a disk volume to another disk volume using the /PHYSICAL qualifier</td>
<td><code>BACKUP/PHYSICAL ddcu: ddcu:</code>
$ BACKUP/PHYSICAL DYA1: DYA2:</td>
</tr>
<tr>
<td>Copies two disk volume sets using the /IMAGE qualifier</td>
<td><code>BACKUP/IMAGE volume-set-name ddcu;ddcu:</code>
$ BACKUP/IMAGE USER$: DBA1;DBA2:</td>
</tr>
</tbody>
</table>

Table 7–6 shows BACKUP command formats for compare operations, including some of the qualifiers you can use with a compare operation.

Table 7–6 Compare Operation Quick Reference

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compares two Files–11 files</td>
<td><code>BACKUP/COMPARE file-spec file-spec</code>
$ BACKUP/COMPARE UPLIFT.EXE;3 UPLIFT.EXE;2</td>
</tr>
<tr>
<td>Compares a selected file from a save set and a Files–11 file</td>
<td><code>BACKUP/COMPARE save-set-specifier/select=file-spec file-spec</code>
$ BACKUP/COMPARE MTA0:FEB2.BCK/SELECT=[POUDRE]UPLIFT.PAS - _$ UPLIFT.PAS</td>
</tr>
<tr>
<td>Compares an image save set and Files–11 files</td>
<td><code>BACKUP/COMPARE/IMAGE save-set-specifier ddcu:</code>
$ BACKUP/COMPARE/IMAGE MTA0:12OCT.BCK DRA3:</td>
</tr>
</tbody>
</table>

Table 7–7 shows BACKUP command formats for a list operation, including some of the qualifiers you can use with a list operation.

Table 7–7 List Operation Quick Reference

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists the files in a save set at the terminal</td>
<td><code>BACKUP/LIST save-set-specifier</code>
$ BACKUP/LIST MTA0:1618FEB2.BCK</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 7–7 (Cont.) List Operation Quick Reference

<table>
<thead>
<tr>
<th>Command Action</th>
<th>Command Format and Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists the files in a save set,</td>
<td>BACKUP/LIST=file-spec save-set-specifier</td>
</tr>
<tr>
<td>writes to a file</td>
<td>$ BACKUP/LIST=NEWLIST.LIS MTA0:1618FEB2.BCK</td>
</tr>
<tr>
<td>Lists the files in a save set in</td>
<td>BACKUP/LIST/FULL save-set-specifier</td>
</tr>
<tr>
<td>full format</td>
<td>$ BACKUP/LIST/FULL MTA0:1618FEB2.BCK</td>
</tr>
<tr>
<td>Lists selected files in a journal file</td>
<td>BACKUP/LIST/JOURNAL=journal-name/selection-qualifiers</td>
</tr>
<tr>
<td></td>
<td>$ BACKUP/LIST/JOURNAL=SYS$MANAGER:INCBACKUP -</td>
</tr>
<tr>
<td></td>
<td>_$/SELECT=[LYKINS.WORK...]/SINCE=1-JAN-2002</td>
</tr>
</tbody>
</table>
Crash Log Utility Extractor (CLUE) (VAX Only)
8.1 CLUE Description (VAX Only)

On VAX systems, you can use the Crash Log Utility Extractor (CLUE) to display the contents of a crash history file. The crash history file, which is created and updated by CLUE, contains key parameters from crash dump files. Unlike crash dumps, which are overwritten with each system failure (crash) and are therefore typically available only for the most recent failure, the crash history file is a permanent record of system failures. By examining the contents of the crash history file with the CLUE/DISPLAY command, you can understand and resolve the issues responsible for some crashes and you can also obtain other useful data.

On Alpha systems, CLUE features are provided through System Dump Analyzer (SDA) utility commands. Refer to the OpenVMS Alpha System Dump Analyzer Utility Manual for more information.

8.2 CLUE Usage Summary (VAX Only)

When a system fails, physical memory is copied to the crash dump file, and CLUE automatically appends the relevant parameters to a file named CLUE$OUTPUT:CLUE$HISTORY.DATA. You can use CLUE to display and examine the data in this file.

Format

CLUE /DISPLAY

Parameters
None.

Description

Before you run CLUE, define the CLUE command (either interactively or in a procedure such as a login command procedure), as follows:

$ CLUE :== $CLUE

To invoke CLUE, enter the CLUE/DISPLAY command. To terminate CLUE, enter the EXIT command at the CLUE_DISPLAY> prompt or press Ctrl/Z.

Note that you can also issue CLUE/DISPLAY commands directly from DCL, as in the following example:

$ CLUE/DISPLAY = DIR/T YPE=INVEXCEPTN/SINCE=21-NOV-2002/OUT=CLUE.LIS

8.3 CLUE Commands (VAX Only)

This section describes and provides examples of the CLUE/DISPLAY commands. You can abbreviate any command, keyword, or qualifier as long as the abbreviation is not ambiguous. The asterisk and the percent sign can be used as wildcard characters in the specification of user names, node names, and UICs.

The following table lists the commands described in this section:
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELETE</td>
<td>Deletes an entry from the crash history file</td>
</tr>
<tr>
<td>DIRECTORY</td>
<td>Displays a list of entries from the crash history file</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exits from CLUE</td>
</tr>
<tr>
<td>EXTRACT</td>
<td>Extracts data from an entry in the crash history file to a file</td>
</tr>
<tr>
<td>HELP</td>
<td>Provides online help for CLUE/DISPLAY commands</td>
</tr>
<tr>
<td>SHOW</td>
<td>Displays specific information for an entry in the crash history file</td>
</tr>
</tbody>
</table>
DELETE (VAX Only)

Deletes an entry from the list and writes the remaining entries to a binary file.

Format

DELETE n

Parameter

n
The number of the entry that you want to delete from the crash history file. The number of the entry corresponds to the entry number shown by the DIRECTORY command.

Description

Entries in the CLUE.BIN file can be permanently removed using the DELETE command. This command deletes the specified entry and writes the remaining entries to an output file. When an entry is deleted from the crash history file, a new history file (with a higher version number) is created.

Example

CLUE_DISPLAY> DELETE 4
Deletes the fourth entry in the list.
DIRECTORY (VAX Only)

Displays a brief summary of each entry in the crash history file.

Format

DIRECTORY

Qualifiers

/MODULE=
Lists all failures that correspond to the specified module (that is, failures that start with the specified string).

/OFFSET=
Lists all failures that correspond to the specified offset (that is, failures that start with the specified string).

/SINCE=
Lists all failures that have occurred since the specified date. If the /SINCE qualifier is used and no date is specified, all failures that have occurred on the current day are listed.

/TYPEx=
Lists all failures that correspond to the specified type (that is, failures that start with the specified string).

Description

The DIRECTORY command lists the record entries in the crash history file, beginning with the most recent entry. Six headings are displayed for each entry:

- Entry number
- Date and time of crash
- Type
- Process
- Module
- Offset

You can use one or more qualifiers for the DIRECTORY command to limit the crash entries that are displayed. You can also use more than one qualifier in the same command line. For example, the command DIRECTORY/SINCE=18-APR-2002/MODULE=NETACP lists only those crash entries that have taken place since April 18, 2002, and for which the module is NETACP.
Examples

1. CLUE_DISPLAY> DIRECTORY

<table>
<thead>
<tr>
<th>#</th>
<th>Time</th>
<th>Type</th>
<th>Process name</th>
<th>Module</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-JUL-2002 09:07:45.78</td>
<td>INVEXCEPTN</td>
<td>batman</td>
<td>NETACP</td>
<td>14B9</td>
</tr>
<tr>
<td>2</td>
<td>01-JAN-2002 11:32:55.23</td>
<td>SSRVEXCEPT</td>
<td>startrek</td>
<td>SYSLOA</td>
<td>10A8</td>
</tr>
<tr>
<td>3</td>
<td>15-MAY-2002 07:26:12.34</td>
<td>BADFID</td>
<td>evolushun</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>4</td>
<td>22-APR-2002 10:45:20.60</td>
<td>INVEXCEPTN</td>
<td>aprocess</td>
<td>IOBUF</td>
<td>015D</td>
</tr>
</tbody>
</table>

This example lists all entries in the crash history file.

2. CLUE_DISPLAY> DIRECTORY /MODULE=SYSLOA

<table>
<thead>
<tr>
<th>#</th>
<th>Time</th>
<th>Type</th>
<th>Process name</th>
<th>Module</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>01-JAN-2002 11:32:55.23</td>
<td>SSRVEXCEPT</td>
<td>startrek</td>
<td>SYSLOA</td>
<td>10A8</td>
</tr>
</tbody>
</table>

This example lists only those entries for which the module is SYSLOA.
EXIT (VAX Only)

Exits from CLUE.

Format

EXIT

Description

This command exits from CLUE and returns you to the DCL level.

Example

CLUE_DISPLAY> EXIT
$

This example exits from CLUE.
EXTRACT (VAX Only)

Extracts all of the data from an entry in the crash history file to either an ASCII or a binary file.

Format

EXTRACT n

Parameter

n
The number of the entry that you want to extract to a file. The number of the entry corresponds to the entry number shown by the DIRECTORY command.

Qualifiers

/BINARY=filename.bin
The /BINARY qualifier writes the output to a binary file.

/OUTPUT=filename.txt
The /OUTPUT qualifier writes the output to an ASCII file. The /OUTPUT qualifier is the default.

Description

Use the EXTRACT command to save record entries from the crash history file to an ASCII or a binary file. If no qualifier is used, entry is written to a text file with the name CLUE$HISTORY.TXT.

Example

CLUE_DISPLAY> EXTRACT 3 /OUTPUT=15MAYCRASH.TXT
This command writes the data from entry number 3 in the crash history file to an ASCII file named 15MAYCRASH.TXT.
HELP (VAX Only)

Provides online help for CLUE commands.

Format

HELP [command]

Parameter

command
The command for which you want help.

Example

CLUE_DISPLAY> HELP DIRECTORY

This command provides online help for the DIRECTORY command in CLUE.
SHOW (VAX Only)

Displays specific information for an entry in the crash history file.

Format

SHOW info_type n

Parameters

info_type
You must choose one of the following information types:

- CRASH—displays information similar to the SHOW CRASH command in the System Dump Analyzer (SDA) utility.
- STACK—displays information similar to the SHOW STACK command in SDA.
- EXEC—displays information similar to the SHOW EXEC and SHOW DEVICE commands in SDA.
- ISTREAM—displays the instruction stream around the failing PC.
- SUMMARY—displays the active processes on the system, similar to the SHOW SUMMARY/IMAGE command in SDA.
- ALL—displays all the information from the preceding types.

For more information about SDA commands, refer to the OpenVMS VAX System Dump Analyzer Utility Manual.

n
The number of the entry for which you want to display information. The number of the entry corresponds to the entry number shown by the DIRECTORY command.

Description

This command lets you see all the data associated with a particular failure. This information is split into several sections; you can choose to see either individual sections or all of the information.

If the crash number is not specified, information for the most recent entry in the crash history file is displayed. You must, however, specify one of the keywords for info_type.

If you request a specific entry from the crash history list (using the SHOW n command), the display will include some parameters that are useful only to HP service representatives.
Examples

1. **CLUE_DISPLAY> SHOW ISTREAM 4**

Instructions around the failing PC:

```
80A9F841 RSB
80A9F842  BUG_CHECK #019C
80A9F846  BUG_CHECK #019C
80A9F84A  PUSHL  R4
80A9F84C  MOVL  R5,R4
80A9F84F  BEQL  00002C88
80A9F851 JSB  @#-7FFFFC48
80A9F857 MOVL  (SP)+,R4
80A9F85A RSB
80A9F85B  BUG_CHECK #019C
PC->80A9F85F  BUG_CHECK #019C  =>  CLUSTRLOA + 09B6F
80A9F863 MOVL  #00,R1
80A9F866 MOVB  #01,R0
80A9F869 RSB
80A9F86A INCL  00002301
80A9F86E TSTW  000022FF
80A9F872 BLSS  00002CA5
```

This example displays instruction stream information around the failing PC from the crash history file for entry number 4.

2. **CLUE_DISPLAY> SHOW CRASH 4**

Version of system: VAX/VMS VERSION V7.3-1
System Version Major ID/Minor ID: 1/0
VAXcluster node: HERMES, a VAX 6000-420
Crash CPU ID/Primary CPU ID: 03/01
Bitmask of CPUs active/available: 00000000A/00000000A
CPU bugcheck codes: CPU 03 INCONSTATE
1 other CPUEXIT
Current Process name: OPCOM
Current IPL: 8
CPU database address: 801AA000

General registers:

```
R0 = 80A9F85B  R1 = 00000002  R2 = 80A15B08  R3 = 00010008
R4 = 80A15AD0  R5 = 00000000  R6 = 00000001  R7 = 00000042
R8 = 00022520  R9 = 000020F18  R10 = 00021000  R11 = 00020EC0
```

This example displays information about the state of the system at the time of the failure. The actual output from this command may contain significantly more information than is shown in this example.
DECEvent Utility
9.1 DECevent Description

The DECevent utility is an event management utility that provides the interface between a system user and the operating system's event log files. This allows system users to produce ASCII reports derived from system event entries. The format of the ASCII reports depends on the command entered on the command line interface (CLI), with a maximum character limit of 255 characters. This is the bit-to-text translation functionality of DECevent, which is discussed in this chapter.

DECevent also provides for the analysis and interpretation of data contained in event log files. This is the analysis functionality of DECevent, which is not included in this chapter but is, rather, discussed in the DECevent User's Guide available online at the following URL:

http://techpubs.cxo.cpqcorp.net/doc_event.html

Note

On Alpha DS, ES, and GS systems (other than the AlphaServer GS60 and GS140 systems) running OpenVMS, use the Web-Based Enterprise Services (WEBES), which includes the System Event Analyzer (SEA), Computer Crash Analysis Tool, and the Revision and Configuration Management (RCM) tools.

You can find information and updates to released versions of WEBES at the following location:

http://h18000.www1.hp.com/support/svctools/

You cannot use WEBES on the AlphaServer GS60 or the AlphaServer GS140. DECevent and the WEBES tools can be used together in a cluster.

DECevent uses the system event log file SYS$ERRORLOG:ERRLOG.SYS as the default input file, unless another input file is specified.

9.2 DECevent Usage Summary

The DECevent utility translates the contents of one or more event log files for inclusion into a report. DECevent produces five types of reports: full (default), brief, terse, summary, and FSTERR. These report types are mutually exclusive when selected within a command; no combinations are allowed. DECevent also provides for the analysis and interpretation of that data.

Format

DIAGNOSE[/primary qualifier[/secondary qualifier[,...]] [file-spec[,...]]

Parameters

/primary qualifier
A primary function that the DIAGNOSE command is to perform.

/secondary qualifier[,...]
Secondary function (or functions) that the DIAGNOSE command is to perform.
file-spec[,...]
Specifies one or more files that contain binary error information to be translated for the specified report. You can include wildcard characters in the file specification. If you omit the file specification, the default file is SYS$ERRORLOG:ERRLOG.SYS. (Refer to the HP OpenVMS System Manager’s Manual for information about maintaining this file).

Refer to the OpenVMS User’s Manual for details on file specifications.

Description

To invoke DECevent, enter the following DCL command:

```
DIAGNOSE [/primary qualifier] [/secondary qualifier[,...][file-spec][,...]
```

Note that typing the /TRANSLATE qualifier on the command line is not necessary because it is the default primary qualifier.

A brief discussion of valid qualifiers, their uses, and their order is provided in the following sections. For a more detailed discussion, see the DECevent User’s Guide available online at the following URL:

http://techpubs.cxo.cpqcorp.net/doc_event.html

To exit DECevent, press Ctrl/C and the Return key (to display the system prompt).

You must have SYSPRV privilege to run DECevent. However, only read access is required to access the ERRLOG.SYS file. For the /CONTINUOUS primary qualifier to work, enabling the continuous display of events on a terminal screen, you must have DIAGNOSE privilege.

9.3 DECevent Primary and Secondary Qualifiers

The primary and secondary qualifiers for the DIAGNOSE command are described in this section. The following tables list both types of qualifiers.

```
You can use only one primary qualifier but multiple secondary qualifiers. The secondary qualifiers that you can use with each primary qualifier are listed in the separate descriptions of each primary qualifier later in this chapter.
```

```
Table 9–1 Primary Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ANALYZE</td>
<td>Provides analysis of the event log or real time analysis of the event logging utilities.</td>
</tr>
<tr>
<td>/BINARY</td>
<td>Controls whether the binary error log records are converted to ASCII text or copied to the specified output file. Do not use this qualifier with any report type qualifier (/FULL, /BRIEF, /TERSE, /SUMMARY, and /FSTERR) or with the /OUTPUT qualifier.</td>
</tr>
</tbody>
</table>
```

(continued on next page)
Table 9–1 (Cont.) Primary Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/CONTINUOUS</td>
<td>Specifies that events are formatted in real time, as they are logged by the operating system event logger.</td>
</tr>
<tr>
<td>/DUMP</td>
<td>Specifies the output to be a brief report followed by a dump of information from the input event log file.</td>
</tr>
<tr>
<td>/INTERACTIVE</td>
<td>Allows users to exit from the command line interface and enter the DECevent command shell.</td>
</tr>
<tr>
<td>/INTERFACE</td>
<td>Allows the user to tell DECevent which user interface to run: command line interface (CLI) or graphical user interface (GUI).</td>
</tr>
<tr>
<td>/TRANSLATE (default)</td>
<td>Provides translation of event log files into reports.</td>
</tr>
</tbody>
</table>

Table 9–2 (Optional) Secondary Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BEFORE</td>
<td>Specifies that only those entries dated earlier than the stated date and time are to be selected for the event report.</td>
</tr>
<tr>
<td>/BRIEF</td>
<td>Generates a brief report</td>
</tr>
<tr>
<td>/ENTRY</td>
<td>Generates a report that includes the specified entry range or starts at the specified entry number.</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Excludes events generated by the specified device class, device name, or error log entry type from the report.</td>
</tr>
<tr>
<td>/FSTERR</td>
<td>Generates a quick, one-line-per-entry report of an event log entry for disks and tapes.</td>
</tr>
<tr>
<td>/FULL (default)</td>
<td>Generates a full report, which provides all available information about an event log entry.</td>
</tr>
<tr>
<td>/INCLUDE</td>
<td>Includes events generated by the specified device class, device name, or error log entry type in the report.</td>
</tr>
<tr>
<td>/LOG</td>
<td>Controls whether informational messages that specify the number of entries selected and rejected for each input file are sent to SYS$OUTPUT.</td>
</tr>
<tr>
<td>/NODE</td>
<td>Generates a report consisting of event entries for specific nodes in an OpenVMS Cluster system.</td>
</tr>
<tr>
<td>/OUTPUT</td>
<td>Specifies the output file for the report.</td>
</tr>
<tr>
<td>/REJECTED</td>
<td>Allows you to specify the name of a file that will contain binary records for rejected entries.</td>
</tr>
<tr>
<td>/REVERSE</td>
<td>Specifies that event records are to be translated in reverse chronological order.</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Specifies that only those entries dated later than the stated date and time are to be selected for the report.</td>
</tr>
<tr>
<td>/SUMMARY</td>
<td>Generates an event report that consists of a statistical summary.</td>
</tr>
<tr>
<td>/TERSE</td>
<td>Generates an event report consisting of binary event information, register values, and ASCII messages in a condensed format.</td>
</tr>
</tbody>
</table>

In addition to the qualifiers listed in these tables, the DECevent utility contains a set of DIRECTORY commands and a set of SHOW commands:

- DIRECTORY commands allow a user to display a list of rulesets that DECevent requires for translating events into user-readable format.
DECEvent
9.3 DECEvent Primary and Secondary Qualifiers

The DIRECTORY commands currently implemented in DECEvent are DIRECTORY EVENT and DIRECTORY CANONICAL.

- The SHOW commands allow a user to view specific settings and selections. The SHOW commands currently implemented in DECEvent are SHOW SELECT and SHOW SETTINGS:
 - By appending a specific selection keyword name to the SHOW SELECT command, you view only that specific selection keyword.
 - By appending a specific setting's name to the SHOW SETTINGS command, you view only that specific setting's name and value.
Primary Qualifier: /ANALYZE

The /ANALYZE qualifier provides analysis of the event log or real time analysis of the event logging utilities.

Format

/ANALYZE [=file-spec]

You can use any of the following qualifiers after the primary qualifier /ANALYZE:

- [/BEFORE=time]
- [/ENTRY=(START:start_number[,END:end_number])]
- [/EXCLUDE=(keyword[=value][,...])]
- [/INCLUDE=(keyword[=value][,...])]
- [/NODE=(node-name[,...])]
- [/OUTPUT=output-type]
- [/SINCE=time]

Description

The /ANALYZE qualifier provides for detailed analysis to be performed on the event log file.

Example

$ DIAGNOSE/ANALYZE ERRLOG.OLD;97/OUTPUT=ERRLOG.OLD_ANA

In this example, analysis is performed on the error log ERRLOG.OLD;97, and the output from this analysis is written into a newly created file, ERRLOG.OLD_ANA.
Primary Qualifier: /BINARY

Controls whether the binary error log records are converted to ASCII text or are copied to the specified output file.

Format

/BINARY [=file-spec]

You can use any of the following secondary qualifiers after the primary qualifier /BINARY:

[/BEFORE=time]
[/ENTRY=(START:start_number][,END:end_number)]
[/EXCLUDE=(keyword[=value][,...])]
[/INCLUDE=(keyword[=value][,...])]
[/LOG]
[/NODE=(node-name[,...])]
[/REJECTED]
[/REVERSE]
[/SINCE=time]

Parameter

file-spec

Specifies the output file selected to contain image copies of the input records.

Description

The /BINARY qualifier creates a binary file that contains copies of the original binary event log entry if the command line also specifies an interval (/SINCE, /BEFORE, or /ENTRY qualifier) or a filter (/INCLUDE or /EXCLUDE qualifier). If no interval or filter is specified, all event log entries are copied.

If you specify /BINARY=file-spec, the selected output file contains image copies of the binary input records (the records are not translated to ASCII). If you omit the device or directory specification, the current device and the default directory are used. If you omit the file name, the file name of the input file is used. If you omit the file type, the default file type is .DAT.

Do not use /BINARY with the /BRIEF, /FSERR, /FULL, /OUTPUT, /SUMMARY, or /TERSE qualifiers. These qualifiers generate an ASCII report; /BINARY generates a binary file.

Example

$ DIAGNOSE/INCLUDE=DBA1/BINARY=DBA1_ERR.DAT ERRLOG.OLD;5

In this example, the output file DBA1_ERR.DAT contains image copies of the entries that apply to DBA1.
Primary Qualifier: /CONTINUOUS

Allows events to be displayed on a terminal screen, in real time, as the events are logged by the operating system’s event logger.

Format

/CONTINUOUS

You can use any of the following secondary qualifiers after the primary qualifier /CONTINUOUS:

- [/BRIEF]
- [/EXCLUDE=(keyword [=value][,...])]
- [/FSTERR]
- [/FULL]
- [/INCLUDE=(keyword [=value][,...])]
- [/OUTPUT=output-file]
- [/TERSE]

Description

The /CONTINUOUS qualifier specifies that events are formatted as they are logged by the operating system event logger in real time. No input file can be specified. The real-time output is directed to the terminal screen by default. You may redirect the real-time output to a file, specified with the /OUTPUT qualifier.

Example

$ DIAGNOSE/CONTINUOUS/BRIEF/OUTPUT=ERRLOG.CONT

In this example, the brief report containing real time event logger information, generated from the default input event log file, SYS$ERRORLOG:ERRLOG.SYS, is directed to the output file ERRLOG.CONT.
Primary Qualifier: /DUMP

Allows a user to dump out criteria, selected by qualifiers, from the input event log file.

Format

/DUMP

You can use any of the following secondary qualifiers after the primary qualifier /DUMP:

- /BEFORE=time
- /ENTRY=(START:start_number|,[END:end_number])
- /EXCLUDE=(keyword=value|[, ...])
- /INCLUDE=(keyword=value|[, ...])
- /[NO]LOG
- /NODE=(node-name|[, ...])
- /OUTPUT=output-type
- /REVERSE
- /SINCE=time

Description

The /DUMP qualifier allows users to selectively dump information from the input event log file. The resulting output is a brief report type, followed by a dump of the canonical buffer for the input event.

Example

$ DIAGNOSE/DUMP/INCLUDE=(RA90) ERRLOG.OLD;97/OUTPUT=97.OUT

In this example, the brief report generated from ERRLOG.OLD;97 contains information about RA90 disk drives. The report is directed to the output file 97.OUT.
Primary Qualifier: /INTERACTIVE

Allows users to exit the command line interface (CLI) and enter the DECevent interactive command shell.

Format

/INTERACTIVE

Description

All commands valid from the CLI are valid from within the interactive command shell. You do not need to precede qualifiers with DIAGNOSE when in the interactive command shell. In addition to CLI commands, the interactive command shell accepts SET, SAVE, and RESTORE commands.

Example

$ DIAGNOSE/INTERACTIVE

In this example, a user requests to exit the command line interface and enter the DECevent interactive command shell.

The DIAG> prompt is displayed when the user is in the interactive command shell.
Primary Qualifier: /INTERFACE

Allows the user to tell DECevent which user interface to run: command line interface (CLI) or graphical user interface (GUI).

Format

/INTERFACE= interface_name

Parameter

interface_name

You can enter either of the following interface names:

- CHARACTER_CELL
- DECWINDOWS
Primary Qualifier: /TRANSLATE

Translates the contents of an event log file. This qualifier is the default qualifier to the DIAGNOSE verb.

Format

/TRANSLATE [qualifier(s)][infile][,...]

You can use any of the following secondary qualifiers after the primary qualifier /TRANSLATE:

- [/BEFORE=time]
- [/BRIEF]
- [/ENTRY=(START:start_number[,END:end_number])]
- [/EXCLUDE=(keyword=[value][,...])]
- [/FSTERR]
- [/FULL]
- [/INCLUDE=(keyword=[value][,...])]
- [/NOLOG]
- [/NODE=(node-name[,...])]
- [/OUTPUT=output-type]
- [/REVERSE]
- [/SINCE=time]
- [/SUMMARY]
- [/TERSE]

Description

The /TRANSLATE qualifier translates the contents of the default event log file, SYS$ERRORLOG:ERRLOG.SYS, or a selected input event log file.

Example

$ DIAGNOSE/BRIEF ERRLOG.OLD;97

In this example, the brief report generated from ERRLOG.OLD;97 contains minimal information.
Secondary Qualifier: /BEFORE

Specifies that only those entries dated earlier than the stated date and time are to be selected for the report.

Format

/BEFORE [=date-time]

Parameter

date-time
Limits the report to those entries dated earlier than the specified time.

Description

You can specify an absolute time, a delta time, or a combination of absolute and delta times. Refer to the OpenVMS User’s Manual for details on specifying times.

If you omit the /BEFORE qualifier or specify /BEFORE without a date or time, all entries are processed.

Example

$ DIAGNOSE/BEFORE=19-APR-2002:10:00 ERRLOG.OLD;5

In this example, the full (default) report generated for ERRLOG.OLD;5 contains entries that were logged before 10:00 A.M. on April 19, 2002.
Secondary Qualifier: /BRIEF

Generates a brief report.
Section 9.4 contains an example of the format of a typical brief error log report.

Format

/BRIEF

Description

Do not use /BRIEF with the /BINARY qualifier.

Example

$ DIAGNOSE/BRIEF ERRLOG.OLD;97

In this example, the brief report generated from ERRLOG.OLD;97 contains minimal information.
Secondary Qualifier: /ENTRY

Generates a report that includes the specified entry range or starts at the specified entry number.

Format

/ENTRY [=START:decimal-value[,END:decimal-value]]

Parameter

(START:decimal-value[,END:decimal-value])
Specifies the range of entries to be included in the report.

Description

If you specify /ENTRY without the entry range or omit the qualifier, the entry range defaults to START:1,END:end-of-file.

Example

$ DIAGNOSE/ENTRY=(START:1,END:18) ERRLOG.SYS

In this example, the entry range for the full (default) report generated from file ERRLOG.SYS is limited to entry numbers 1 to 18.
Secondary Qualifier: /EXCLUDE

Excludes errors generated by the specified device class, device name, or event entry type from the report.

Format

/EXCLUDE= [device-class | device-name | entry-type] [,...]

Parameters

device-class
device-name
entry-type

Specifies one or more keywords denoting the device class, device name, or event log entry type. If you specify more than one keyword, you must specify a comma-separated list of values that is enclosed in parentheses.

Device Class Keywords

ADAPTER
BUSES
CACHE
DISKS
INFORMATIONAL
LINE_PRINTER
REALTIME
SYNC_COMMUNICATIONS
TAPES
VECTOR
WORKSTATION

Examples of Device Name Constructs

DB Group of devices
DBA1 Specific device/unit number
(DBA1,HSC1$DUA1,DYA0) List of devices
(DB,DR,XF) List of device groups

Entry-Type Keywords

ATTENTIONS Exclude device attention entries from the report.
BUGCHECKS Exclude all types of bugcheck entries from the report.
CONFIGURATION Exclude system configuration entries from the report.
CONTROL_ENTRIES Exclude control entries from the report. Control entries include the following entry types:
- System power failure restarts
- Time stamps
- System startups
- $SNDERR messages (system service to send messages to error log)
- Operator messages
- Network messages
- ERRLOG.SYS created

CPU_ENTRIES Exclude CPU-related entries from the report. CPU entries include the following entry types:
- SBI alerts/faults
- Undefined interrupts
- MBA/UBA adapter errors
- Asynchronous write errors
- UBA errors

DEVICE_ERRORS Exclude device error entries from the report.

ENVIRONMENTAL_ENTRIES Exclude environmental entries from the report.

MACHINE_CHECKS Exclude machine check entries from the report.

MEMORY Exclude memory errors from the report.

SNAPSHOT_ENTRIES Exclude snapshot entries from the report.

SYNDROME Exclude firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.

TIMEOUTS Exclude device timeout entries from the report.

UNKNOWN_ENTRIES Exclude any entry that had either an unknown entry type or an unknown device type or class.

UNSOLICITED_MSCP Exclude unsolicited MSCP entries from the report.

VOLUME_CHANGES Exclude volume mount and dismount entries from the report.

Description

You can specify one or more devices by device class, device name, or one or more keywords that identify entry types.

Unless you specify the UNKNOWN_ENTRIES keyword to explicitly exclude from a report any entries from unsupported (unknown) devices, any unknown device is reported.

Any known information for the entry is translated; the remaining information is output in hexadecimal longwords.
If you specify a device class keyword or a device name construct with both the /INCLUDE and /EXCLUDE qualifiers, the /INCLUDE qualifier takes precedence.

The BUSES keyword also excludes event log entries for the BI bus. The DEVICE_ERRORS keyword also excludes entries for the BI adapter.

Examples

1. **DIAGNOSE/EXCLUDE=MTA0**

 In this example, entries for the device MTA0 are excluded from the full (default) report for the file ERRLOG.SYS.

2. **DIAGNOSE/EXCLUDE=(MTA0,DRA5) ERRLOG.OLD**

 In this example, the devices MTA0 and DRA5 are excluded from the full (default) report for the file ERRLOG.OLD.

3. **DIAGNOSE/EXCLUDE=(DISKS,BUGCHECKS)**

 In this example, all disk devices and all bugcheck entries are excluded from the full (default) report for the file ERRLOG.SYS.

4. **DIAGNOSE/EXCLUDE=TAPES/INCLUDE=MTA0**

 In this example, the device MTA0 is included in the full (default) report for the file ERRLOG.SYS. All other magnetic tape devices are excluded from the report.

5. **DIAGNOSE/EXCLUDE=(DISKS,VOLUME_CHANGES)**

 In this example, entries for disks and entries for all volume information are excluded from the full (default) report for the file ERRLOG.SYS.

6. **DIAGNOSE/EXCLUDE=(DISKS,VOLUME_CHANGES,DEVICE_ERRORS)**

 In this example, entries for all volume changes, for all disks, and for all device error information about disks are excluded from the full (default) report for the file ERRLOG.SYS.

7. **DIAGNOSE/EXCLUDE=(DISKS,VOLUME_CHANGES,DEVICE_ERRORS,BUGCHECKS)**

 In this example, all entries for disks, all entries for volume changes, all entries for device error information about disks, and all entries for bugcheck errors are excluded from the full (default) report for the file ERRLOG.SYS.
Generates a quick, one-line-per-entry report for various disk and tape devices.
Section 9.4 shows the format of a typical FSTERR report.

Format

/FSTERR

Description

The FSTERR report provides the information that HP support representatives
need when troubleshooting tape or disk device problems.
Do not use /FSTERR with the /BINARY qualifier.

Example

$ DIAGNOSE/FSTERR ERRLOG.OLD;72

In this example, the command produces a FSTERR report for tape and disk
devices from information contained in the event log ERRLOG.OLD;72.
Secondary Qualifier: /FULL

Generates a full report, which provides all available information for an event entry. This is the default report format.

Section 9.4 contains an example of the format of a typical full report.

Format

/FULL

Description

The full report format provides a translation of all available information for each entry in the event log. The full report is the default report type if a report type is not specified in the command line.

Do not use /FULL with the /BINARY qualifier.

Examples

1. DIAGNOSE/FULL ERRLOG.OLD;72
 In this example, the command produces a full (default) report.

2. DIAGNOSE ERRLOG.OLD;72
 In this example, the command produces a full (default) report. The default report type is /FULL; it is not necessary to specify it in the command line.
Includes events generated by the specified device class, device name, or event log entry type in the report.

Format

\[/\text{INCLUDE}= \{ \text{device-class} | \text{device-name} | \text{entry-type} \} [,\ldots] \]

Parameters

- **device-class**
- **device-name**
- **entry-type**
 Specifies one or more keywords denoting the device class, device name, or entry type. If you specify more than one keyword, you must specify a comma-separated list of values that is enclosed in parentheses.

Device Class Keywords

- ADAPTER
- BUSES
- CACHE
- DISKS
- INFORMATIONAL
- LINE_PRINTER
- REALTIME
- SYNC_COMMUNICATIONS
- TAPES
- VECTOR
- WORKSTATION

Examples of Device Name Constructs

- **DB** Group of devices
- **DBA1** Specific device/unit number
- **(DBA1,HSC1$DUA1,DYA0)** List of devices
- **(DB,DR,XF)** List of device groups

Entry-Type Keywords

- **ATTENTIONS** Include device attention entries in the report.
- **BUGCHECKS** Include all types of bugcheck errors in the report.
- **CONFIGURATION** Include system configuration entries in the report.
CONTROL_ENTRIES Include control entries in the report. Control entries include the following entry types:
- System power failure restarts
- Time stamps
- System startups
- $SNDERR messages (system service to send messages to error log)
- Operator messages
- Network messages
- ERRLOG.SYS created

CPU_ENTRIES Include CPU-related entries in the report. CPU entries include the following entry types:
- SBI alerts/faults
- Undefined interrupts
- MBA/UBA adapter errors
- Asynchronous write errors
- UBA errors

DEVICE_ERRORS Include device errors in the report.

ENVIRONMENTAL_ENTRIES Include environmental entries in the report.

MACHINE_CHECKS Include machine check errors in the report.

MEMORY Include memory errors in the report.

SNAPSHOT_ENTRIES Include snapshot entries in the report.

SYNDROME Include firmware-generated entries that describe a symptom set used by HP support representatives to identify problems.

TIMEOUTS Include device timeout errors in the report.

UNKNOWN_ENTRIES Include any entry that had either an unknown entry type or an unknown device type or class.

UNSOLICITED_MSCP Include unsolicited MSCP entries in the report.

VOLUME_CHANGES Include volume mount and dismount entries in the report.

Description

You can specify one or more devices by device class, device name, or one or more keywords that identify entry types.

Use the UNKNOWN_ENTRIES keyword to obtain a report that contains the contents of the device registers logged by unsupported devices.

Any known information for the entry is translated; the remaining information is output in hexadecimal longwords.

If you specify a device class keyword or a device name construct with both the /INCLUDE and /EXCLUDE qualifiers, the /INCLUDE qualifier takes precedence.
The BUSES keyword also includes error log entries for the BI bus. The DEVICE_ERRORS keyword also includes entries for the BI adapter.

Examples

1. **DIAGNOSE/INCLUDE=MTA0**

 In this example, the full (default) report consists of entries for the device MTA0, which are in the default error log file ERRLOG.SYS.

2. **DIAGNOSE/INCLUDE=MTA0/EXCLUDE=TAPES**

 In this example, the device MTA0 is included in the full (default) report for the file ERRLOG.SYS. All other magnetic tape devices are excluded from the report.

3. **DIAGNOSE/INCLUDE=(MTA0,VOL)**

 In this example, the full (default) report consists of all entries and volume mounts and dismounts for the device MTA0, which are in the default error log file ERRLOG.SYS.

4. **DIAGNOSE/INCLUDE=(DISKS,VOLUME CHANGES)**

 In this example, the full (default) report consists of all entries for all disks and all entries for volume information, which are in the default error log file ERRLOG.SYS.

5. **DIAGNOSE/INCLUDE=(DISKS,VOLUME CHANGES,DEVICE_ERROR)**

 In this example, the report consists of all entries for disks, all volume entries and all device error information on disks, which are in the default error log file ERRLOG.SYS.

6. **DIAGNOSE/INCLUDE=(DISKS,VOLUME CHANGES,DEVICE_ERROR,BUGCHECK)**

 In this example, the full (default) report consists of all entries for disks, all entries for volume changes, all entries for device error information on disks, and all entries for bugcheck events. These entries are in the default error log file ERRLOG.SYS.
Secondary Qualifier: /LOG

Controls whether informational messages that specify the number of entries selected and rejected for each input file are sent to SYS$OUTPUT. By default, these messages are not displayed.

Format

/\[NO\]LOG

Example

$ DIAGNOSE/LOG ERRLOG.OLD;5

In this example, informational messages generated about ERRLOG.OLD;5 are sent to SYS$OUTPUT.
DECevent
Secondary Qualifier: /NODE

Secondary Qualifier: /NODE

Generates a report consisting of error log entries for specific nodes in an OpenVMS Cluster system.

Format

/NODE=(node-name[,...])

Parameter

node-name
Specifies the names of one or more OpenVMS Cluster members. Names cannot exceed six characters. If more than one node name is entered, you must specify a comma-separated list of node names that is enclosed in parentheses.

Example

$ DIAGNOSE/NODE=(GARCIA,LESH) SYS$SYSROOT:[SYS*.SYSERR]ERRLOG.SYS

In this example, the cluster system consists of members BROOME, GARCIA, LESH, and PUTNAM. The output full (default) report contains only those entries that were logged for nodes GARCIA and LESH.
Secondary Qualifier: /OUTPUT

Specifies the output file for a report.

Format

/OUTPUT [=file-spec]

Parameter

file-spec
The output file selected for the report. Refer to the OpenVMS User’s Manual for details on specifying files.

Description

If you omit the /OUTPUT qualifier, output is directed to SYS$OUTPUT. If you specify /OUTPUT=file-spec, the selected output file contains the report. If you omit the device or directory specification, the current device and default directory are used. If you omit the file name, the file name of the input file is used. If you omit the file type, the default file type is .LIS.

Do not use /OUTPUT with the /BINARY qualifier.

Example

$ DIAGNOSE/OUTPUT=ERROR_LOG.LIS ERRLOG.OLD;72

In this example, the default full report ERROR_LOG.LIS contains entries generated from ERRLOG.OLD;72.
Secondary Qualifier: /REJECTED

Allows you to specify the name of a file that will contain binary records for rejected entries.

Format

/REJECTED [=file-spec]

Parameter

file-spec
Specifies the name of the file that is to contain the rejected entries.

Description

The /REJECTED qualifier creates a binary file that contains copies of the original binary event log entry. If the event log entry is rejected because the command line also specifies an interval (/SINCE, /BEFORE, or /ENTRY qualifier) or a filter (/INCLUDE or /EXCLUDE qualifier), the entry is written to the specified file.

Rejected entries are not translated because they fall into one of the following categories:

- All entries specified with the /EXCLUDE qualifier
- All entries not specified with the /INCLUDE qualifier
- Any entry that does not occur within the period specified by the /SINCE and /BEFORE qualifiers
- Any entry that is not in the range of entries specified by the /ENTRY qualifier

If you specify /REJECTED=file-spec, the output file contains image copies of the rejected records. If you omit the device or directory specification, the current device and default directory are used. If you omit the file name, the file name of the input file is used. If you omit the file type, the default file type is .REJ.

Example

$ DIAGNOSE/INCLUDE/BINARY=MTA0/REJECTED=REAL_ERRS.DAT ERRLOG.OLD;5

In this example, the output file REAL_ERRS.DAT contains image copies of all entries from ERRLOG.OLD;5, with the exception of those entries that apply to the MTA0 device. Note the use of the /BINARY qualifier.
Secondary Qualifier: /REVERSE

Allows you to specify that event records are to be translated in reverse chronological order, with the most recent events first. The default is to display events in forward chronological order.

Format

/REVERSE

Example

$ DIAGNOSE/DUMP ALPHA.ERROR /REVERSE

The command in this example dumps the contents of the event file in reverse chronological order.
Secondary Qualifier: /SINCE

Specifies that only those entries dated later than the stated date and time are to be selected for the report.

Format

/SINCE [=date-time]

Parameter

date-time
Limits the error report to those entries dated later than the specified time.

Description

Only absolute date and time specifications are valid. Refer to the OpenVMS User's Manual for details on specifying times.

If you omit the /SINCE qualifier, all entries are processed. If you specify /SINCE without a date and time, the default is TODAY.

Example

$ DIAGNOSE/SINCE=19-APR-2002:15:00 ERRLOG.OLD;56

In this example, the full (default) report generated from ERRLOG.OLD;56 contains entries that have been logged since 15:00 on April 19, 2002.
Secondary Qualifier: /SUMMARY

Generates summary information of all events in the event log.

Section 9.4 contains an example of summary information.

Format

/SUMMARY

Description

The /SUMMARY qualifier generates a summary report from the specified input event log file.

Do not use the /BINARY qualifier with /SUMMARY.

Example

$ DIAGNOSE/SUMMARY ERRLOG.OLD;5

The output generated by the command in this example is a summary report of all entries in ERRLOG.OLD;5.
Secondary Qualifier: /TERSE

Generates a terse report.
Section 9.4 shows the format of a typical terse report.

Format

/TERSE

Description

The /TERSE qualifier specifies that the registers and header of each event entry be formatted in the standard report type format, but the contents of each register are not translated into readable messages.

Do not use the /TERSE report qualifier with the /BINARY qualifier.

Example

$ DIAGNOSE/TERSE ERRLOG.OLD;97

In this example, the terse report generated from ERRLOG.OLD;97 contains register and header information.
9.4 DECevent Examples

Sample Event Log Reports
The DECevent event management utility provides the following five report types:

- Full
- Brief
- Terse
- Summary
- FSTERR

The following sections show examples of each report type with a brief explanation of each.

Full Report Example
To produce a full report, use the /FULL qualifier. The full report format provides a translation of all available information for each entry in the event log. The full report is the default report type if a report type is not specified in the command line.

Either of the following commands will produce a full report format:

```bash
$ DIAGNOSE/FULL
$ DIAGNOSE
```

The following example shows the format of a full report:

```
************************************************ ENTRY 1 ************************************************
Logging OS 1. OpenVMS
System Architecture 2. Alpha
OS version V7.3-1
Event sequence number 1583.
Timestamp of occurrence 18-APR-2002 09:21:18
System uptime in seconds 58004.
Error mask x00000000
Flags x0001 Dynamic Device Recognition present
Host name COGENT
Alpha HW model DEC 3000 Model 400
System type register x00000004 DEC 3000
Unique CPU ID x00000002
mpnum x000000FF
mperr x000000FF
Event validity -1. Unknown validity code
Event severity -1. Unknown severity code
Entry type 100.
Major Event class 3. IO Subsystem
IO Minor Class 1. MSCP
IO Minor Sub Class 5. Logged Message
---- Device Profile ----
Vendor
Product Name RAID 0 - Host Based
Unit Name COGENT$DPA
Unit Number 10.
Device Class x0001 Disk
```
DECevent
9.4 DECevent Examples

---- IO SW Profile ----
VMS DC$_CLASS 1.
VMS DT$_TYPE 175.

---- MSCP Logged Msg ----
Logged Message Type Code 22. RAID Message
RAID Event Type 8. Remove Member
Distinguished Member 0.
Member Index 1.
RAID Urgency 4. Global Disk Error
RAID Status x00180009 Bit 00 – Reduced
Bit 03 – Striped
Bit 19 – FE Dis FE
Bit 20 – BC Buff Copy Off
RAIDset Name KGB

**
Brief Report Example
To produce a brief report, use the /BRIEF qualifier. The brief report format provides translation of key information for each entry in the event log.

For a brief report format, enter the following command:

$ DIAGNOSE/BRIEF

The following example shows the format for a brief report:

** ENTRY 1 **
Logging OS 1. OpenVMS
System Architecture 2. Alpha
OS version V7.3-1
Event sequence number 1583.
Timestamp of occurrence 18-APR-2002 09:21:18
System uptime in seconds 58004.
Error mask x00000000
Host name COGENT
Alpha HW model DEC 3000 Model 400
System type register x00000004 DEC 3000
Unique CPU ID x00000002
mpnum x000000FF
mper x000000FF
Event validity -1. Unknown validity code
Event severity -1. Unknown severity code
Major Event class 3. IO Subsystem
IO Minor Class 1. MSCP
IO Minor Sub Class 5. Logged Message

---- Device Profile ----
Vendor
Product Name RAID 0 – Host Based
Unit Name COGENT$DPA
Unit Number 10.
Device Class x0001 Disk
Logged Message Type Code 22. RAID Message
RAID Event Type 8. Remove Member
Distinguished Member 0.
Member Index 1.
RAID Urgency 4. Global Disk Error
RAID Status x00180009 Bit 00 - Reduced
 Bit 03 - Striped
 Bit 19 - FE Dis FE
 Bit 20 - BC Buff Copy Off
RAIDset Name KGB

Terse Report Example
To produce a terse report, use the /TERSE qualifier. The terse report format provides binary event information and displays register values and other ASCII messages in a condensed format.

For a terse report format, enter the following command:

$ DIAGNOSE/TERSE

The following example shows the format for a terse report:

** ENTRY 1 **

Logging OS 1.
System Architecture 2.
OS version V7.3-1
Event sequence number 1583.
Timestamp of occurrence 2000041809211800
System uptime in seconds 58004.
Error mask x00000000
Flags x0001
Host name COGENT
Alpha HW model DEC 3000 Model 400
System type register x00000004
Unique CPU ID x00000002
mpnum x000000FF
mperr x000000FF
Event validity -1.
Event severity -1.
Entry type 100.
Major Event class 3.
IO Minor Class 1.
IO Minor Sub Class 5.
---- Device Profile ----
Vendor
Product Name RAID 0 - Host Based
Unit Name COGENT$DPA
Unit Number 10.
Device Class x0001
---- IO SW Profile ----
VMS DC$_CLASS 1.
VMS DT$_TYPE 175.
---- MSCP Logged Msg ----
Logged Message Type Code 22.
RAID Event Type 8.
Distinguished Member 0.
Member Index 1.
RAID Urgency 4.
RAID Status x00180009
RAIDset Name KGB

Summary Report Example
To produce a summary report, use the /SUMMARY qualifier. The summary report format provides a statistical summary of the event entries in the event log.

For a summary report format, enter the following command:

```
$ DIAGNOSE/SUMMARY
```

The following example shows the format for a summary report:

```
***************************************************************************
SUMMARY OF ALL ENTRIES LOGGED ON NODE COGENT
***************************************************************************
```

FSTERR Report Example
To produce a FSTERR report, use the /FSTERR qualifier:

```
$ DIAGNOSE/FSTERR
```

The FSTERR report provides a quick, one-line-per-entry report of your event log for a variety of disks and tape devices. This makes event analysis and system troubleshooting much easier by eliminating extraneous event information.

The FSTERR report includes only the information that HP support representatives need when troubleshooting a problem with a tape or disk device.

The following example shows the format for a FSTERR report:

```
Drive/ Name yymmd hhmms Entry MSCP Event LED LBN Cyl Hd Sec RA RP Serial
-------------- ----------------- -------------- --- --- === === === === --- ===
LUKE$DU0070 921119 160754 3 00EB 255 70 71 V00717
LUKE$DU0070 921119 160754 4 00EB 255 70 71 V00717
HSC015$DU028 910323 113204 5 00EB 70 51 V15039
HSC015$DU028 910323 113204 6 00EB 71 51 V15039
BATES$DU6197 921118 002116 7 00EB 72 32 V17524
CHEWIE$DU101 911205 114908 8 00EB 73 81 V 17PMASON$DU006 921207 165007 15 00EB 255 90 42 D23387
PMASON$DU006 921207 165007 16 00EB 255 90 42 D23387
C3P0$DU282 870218 060031 17 01AB 90 42 D23387
ICHERRY$DU101 911205 114908 8 00EB 73 81 V 17
10

Error Log Report Formatter (ERF) Utility
### 10.1 ERF Description

The Error Log Report Formatter (ERF) utility is a system management tool that selectively reports the contents of one or more error log files. The operating system automatically writes messages to the latest version of an error log file named SYS$ERRORLOG:ERRLOG.SYS as the following events occur:

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors</td>
<td>Device errors, device timeouts, machine checks, bus errors, memory errors</td>
</tr>
<tr>
<td></td>
<td>(hard or soft error correcting code (ECC) errors), asynchronous write errors,</td>
</tr>
<tr>
<td></td>
<td>undefined interrupts, and bugchecks</td>
</tr>
<tr>
<td>Volume changes</td>
<td>Volume mounts and dismounts</td>
</tr>
<tr>
<td>System events</td>
<td>Cold startups, warm startups, system failure (crash) startups, messages</td>
</tr>
<tr>
<td></td>
<td>from the Send Message to Error Logger ($SNDERR) system service</td>
</tr>
</tbody>
</table>

You can use the Error Log Report Formatter (ERF) with most system-supported hardware, such as adapters, disks, tapes, CPUs, and memories, but not with all communications devices (for example, the DEQNA). Some synchronous communications devices are supported.

Starting with OpenVMS Version 7.2, before using ERF, you must translate error log files using the Binary Error Log Translation utility, which is part of DECEvent. For more information, refer to DECEvent documentation, which is included in the DECEvent kit.

### 10.2 ERF Usage Summary

You can use the the Error Log Report Formatter (ERF) to process one or more types of error log entries for inclusion in a report. ERF generates six types of optional formatted output: full (default), brief, summary, register dump of device entries, binary copy of selected entries, and binary copy of rejected entries.

The the Error Log Report Formatter (ERF) utility selectively reports the contents of an error log file.

### Format

```
ANALYZE/ERROR_LOG [/qualifier(s)] [file-spec[,...]]
```

**Parameters**

- `/qualifier(s)`
  The function to be performed by the ANALYZE/ERROR_LOG command.

- `file-spec[,...]`
  Specifies one or more files that contain binary error information to be interpreted for the error log report. You can include wildcard characters in the file specification. If you omit the file specification, the default file is SYS$ERRORLOG:ERRLOG.SYS (Refer to the *HP OpenVMS System Manager’s Manual* for information about maintaining this file).

Refer to the *OpenVMS User’s Manual* for details on file specifications.
To invoke ERF, enter the following DCL command:

```
ANALYZE/ERROR_LOG [/qualifier{s}] [file-spec][,...]
```

ERF does not prompt you. To exit from ERF, press Ctrl/C. You also exit the utility when end-of-file (EOF) is detected. To direct output, use the /OUTPUT, /BINARY, and /REJECTED qualifiers with the ANALYZE/ERROR_LOG command.

You must have SYSPRV privilege to run ERF; however, only read access is required to access the file ERRORLOG.SYS. (It is not necessary to rename the file ERRORLOG.SYS to ERRORLOG.OLD before using ERF.) Do not use the /BINARY qualifier with the /FULL, /BRIEF, /OUTPUT, or /REGISTER_DUMP qualifiers.

### 10.3 ERF Qualifiers

The qualifiers for the Error Log Report Formatter (ERF) utility are described in this section. The following table lists the qualifiers for the ANALYZE/ERROR_LOG command.

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BEFORE</td>
<td>Specifies that only those entries dated earlier than the stated date and time are to be selected for the error report</td>
</tr>
<tr>
<td>/BINARY</td>
<td>Controls whether the binary error log records are converted to ASCII text or copied to the specified output file</td>
</tr>
<tr>
<td>/BRIEF</td>
<td>Generates a brief report</td>
</tr>
<tr>
<td>/ENTRY</td>
<td>Generates an error log report that includes the specified entry range or starts at the specified entry number</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Excludes errors generated by the specified device class, device name, or error log entry type from the error log report</td>
</tr>
<tr>
<td>/FULL</td>
<td>Generates a full report (default), which provides all available information for an error log entry</td>
</tr>
<tr>
<td>/INCLUDE</td>
<td>Includes errors generated by the specified device class, device name, or error log entry type in the error log report</td>
</tr>
<tr>
<td>/LOG</td>
<td>Controls whether informational messages that specify the number of entries selected and rejected for each input file are sent to SYS$OUTPUT</td>
</tr>
<tr>
<td>/MODEL</td>
<td>Generates a report consisting of event log entries for the specified CPU (Alpha only)</td>
</tr>
<tr>
<td>/NODE</td>
<td>Generates a report consisting of error log entries for specific nodes in an OpenVMS Cluster system</td>
</tr>
<tr>
<td>/OUTPUT</td>
<td>Specifies the output file for the error log report</td>
</tr>
<tr>
<td>/REGISTER_DUMP</td>
<td>Used in conjunction with the /INCLUDE qualifier, generates, in a hexadecimal longword format, a report that consists of device register information</td>
</tr>
<tr>
<td>/REJECTED</td>
<td>Allows you to specify the name of a file that will contain binary records for rejected entries</td>
</tr>
<tr>
<td>/SID_REGISTER</td>
<td>Generates a report consisting of error log entries that occurred on the specified CPU (VAX only)</td>
</tr>
</tbody>
</table>
## 10.3 ERF Qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SINCE</td>
<td>Specifies that only those entries dated on or later than the stated date and time are to be selected for the report</td>
</tr>
<tr>
<td>/STATISTICS</td>
<td>Generates run-time statistical information</td>
</tr>
</tbody>
</table>
Specifies that only those entries dated earlier than the stated date and time are to be selected for the error report.

Format

/BEFORE  [=date-time]

Parameter

date-time
Limits the error report to those entries dated earlier than the specified time. If you do not specify a date or time, all entries are processed.

Description

You can specify an absolute time, a delta time, or a combination of absolute and delta times. Refer to the OpenVMS User’s Manual for details on specifying times.

If you omit the /BEFORE qualifier, all entries are processed.

Example

$ ANALYZE ERROR_LOG/BEFORE=19-APR-2002:10:00 ERRLOG.OLD;5

In this example, the error log report generated for ERRLOG.OLD;5 contains entries that were logged before 10:00 A.M. on April 19, 2002.
/BINARY

Controls whether the binary error log records are converted to ASCII text or copied to the specified output file.

Format

/BINARY  [=file-spec]
/NOBINARY

Parameter

file-spec
Specifies the output file selected to contain image copies of the input records.

Description

The /BINARY qualifier creates a binary file that contains copies of the original binary error log entry if the command line also specifies an interval (/SINCE, /BEFORE, or /ENTRY qualifier) or a filter (/INCLUDE or /EXCLUDE qualifier). If no interval or filter is specified, all error log entries are copied.

If you specify /BINARY=file-spec, the selected output file contains image copies of the binary input records (the records are not translated to ASCII). If you omit the device or directory specification, the current device and the default directory are used. If you omit the file name, the file name of the input file is used. If you omit the file type, the default file type is .DAT.

Do not use /BINARY with the /FULL, /BRIEF, /OUTPUT, or /REGISTER_DUMP qualifiers. These qualifiers generate an ASCII report; /BINARY generates a binary file.

Example

$ ANALYZE/ERROR_LOG/INCLUDE=DBA1 -
  _$ /BINARY=DBA1_ERR.DAT ERRLOG.OLD;5

In this example, the output file DBA1_ERR.DAT contains image copies of the entries that apply to DBA1.
/BRIEF

Generates a brief report.

Format

/BRIEF

Description

Do not use /BRIEF with the /BINARY qualifier.

The Example section shows the format of a typical brief error log report.

Example

$ ANALYZE/ERROR_LOG/BRIEF ERRLOG.OLD;97

In this example, the error log report generated from ERRLOG.OLD;97 contains minimal information.
/ENTRY

Generates an error log report that includes the specified entry range or starts at the specified entry number.

Format

/ENTRY  [=START:decimal-value[,END:decimal-value]]

Parameter

(START:decimal-value[,END:decimal-value])
Specifies the range of entries to be included in the error log report.

Description

If you specify /ENTRY without the entry range or omit the qualifier, the entry range defaults to START:1,END:end-of-file.

Example

$ ANALYZE/ERROR_LOG/ENTRY=(START:1,END:18) ERRLOG.SYS

In this example, the entry range for the error log report generated from file ERRLOG.SYS is limited to entry numbers 1 to 18.
Excludes errors generated by the specified device class, device name, or error log entry type from the error log report.

**Format**

```
/EXCLUDE=(device-class | device-name | entry-type [,..])
```

**Parameters**

- **device-class**
- **device-name**
- **entry-type**

Specifies one or more keywords denoting the device class, device name, or error log entry type. If you specify more than one keyword, you must specify a comma-separated list of values that is enclosed in parentheses.

**Device Class Keywords**

- ADAPTER
- BUSINES
- CACHE
- DISKS
- INFORMATIONAL
- LINE_PRINTER
- REALTIME
- SYNC_COMMUNICATIONS
- TAPES
- VECTOR
- WORKSTATION

**Examples of Device Name Constructs**

<table>
<thead>
<tr>
<th>Construct</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>Group of devices</td>
</tr>
<tr>
<td>DBA1</td>
<td>Specific device/unit number</td>
</tr>
<tr>
<td>(DBA1,HSC1$DUA1,DYA0)</td>
<td>List of devices</td>
</tr>
<tr>
<td>(DB,DR,XF)</td>
<td>List of device groups</td>
</tr>
</tbody>
</table>

**Entry-Type Keywords**

- **ATTENTIONS**
  - Exclude device attention entries from the report.
- **BUGCHECKS**
  - Exclude all types of bugcheck entries from the report.
- **CONFIGURATION**
  - Exclude system configuration entries from the report.
<table>
<thead>
<tr>
<th>Keywords</th>
<th>Description</th>
</tr>
</thead>
</table>
| CONTROL_ENTRIES      | Exclude control entries from the report. Control entries include the following entry types:  
                        | • System power failure restarts  
                        | • Time stamps  
                        | • System startups  
                        | • $SNDERR messages (system service to send messages to error log)  
                        | • Operator messages  
                        | • Network messages  
                        | • ERRLOG.SYS created  
| CPU_ENTRIES          | Exclude CPU-related entries from the report. CPU entries include the following entry types:  
                        | • SBI alerts/faults  
                        | • Undefined interrupts  
                        | • MBA/UBA adapter errors  
                        | • Asynchronous write errors  
                        | • UBA errors  
| DEVICE_ERRORS        | Exclude device error entries from the report.  
| ENVIRONMENTAL_ENTRIES| Exclude environmental entries from the report.  
| MACHINE_CHECKS       | Exclude machine check entries from the report.  
| MEMORY               | Exclude memory errors from the report.  
| SNAPSHOT_ENTRIES     | Exclude snapshot entries from the report.  
| SYNDROME             | Exclude firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.  
| TIMEOUTS             | Exclude device timeout entries from the report.  
| UNKNOWN_ENTRIES      | Exclude any entry that had either an unknown entry type or an unknown device type or class.  
| UNSOLICITED_MSCP     | Exclude unsolicited MSCP entries from the report.  
| VOLUME_CHANGES       | Exclude volume mount and dismount entries from the report.  

**Description**

You can specify one or more devices by device class, device name, or one or more keywords that identify entry types.

Unless you specify the UNKNOWN_ENTRIES keyword to explicitly exclude from a report any entries from unsupported (unknown) devices, any unknown device is reported.

Any known information for the entry is translated; the remaining information is output in hexadecimal longwords.
If you specify a device class keyword or a device name construct with both the /INCLUDE and /EXCLUDE qualifiers, the /INCLUDE qualifier takes precedence. The BUSES keyword also excludes error log entries for the BI bus. The DEVICE_ERRORS keyword also excludes entries for the BI adapter.

Examples

1. $ ANALYZE/ERROR_LOG/EXCLUDE=MTA0
   In this example, the error log entries for the device MTA0 are excluded from the error log report for the file ERRLOG.SYS.

2. $ ANALYZE/ERROR_LOG/EXCLUDE=(MTA0,DRA5) ERRLOG.OLD
   In this example, the devices MTA0 and DRA5 are excluded from the error log report for the file ERRLOG.OLD.

3. $ ANALYZE/ERROR_LOG/EXCLUDE=(DISKS,BUGCHECKS)
   In this example, all disk devices and all bugcheck entries are excluded from the error log report for the file ERRLOG.SYS.

4. $ ANALYZE/ERROR_LOG/EXCLUDE=TAPES/INCLUDE=MTA0
   In this example, the device MTA0 is included in the error log report for the file ERRLOG.SYS. All other magnetic tape devices are excluded from the report.

5. $ ANALYZE/ERROR_LOG/EXCLUDE=(DISK,VOLUME_CHANGES)
   In this example, entries for disk volume information are excluded from the error log report for the file ERRLOG.SYS.

6. $ ANALYZE/ERROR_LOG/EXCLUDE=(DISK,VOLUME_CHANGES,DEVICE_ERROR)
   In this example, entries for volume and device error information on disks are excluded from the error log report for the file ERRLOG.SYS.

7. $ ANALYZE/ERROR_LOG/EXCLUDE=(DISK,VOLUME_CHANGES,DEVICE_ERROR,BUGCHECK)
   In this example, entries for volume and device error information on disks, and bugcheck errors are excluded from the error log report for the file ERRLOG.SYS.
/FULL

Generates a full report, which provides all available information for an error log entry. This is the default report format.

Format

/\[NO\]FULL

Description

Do not use /FULL with the /BINARY qualifier.

Examples

1. $ ANALYZE/ERROR_LOG/FULL ERRLOG.OLD;72
   The command in this example produces a full report.

2. $ ANALYZE/ERROR_LOG ERRLOG.OLD;72
   The command in this example produces a full report. The default report type is /FULL; it is not necessary to specify it in the command line.
/INCLUDE

Includes errors generated by the specified device class, device name, or error log entry type in the error log report.

Format

/INCLUDE=(device-class | device-name | entry-type [,...])

Parameters

device-class
device-name
entry-type
Specifies one or more keywords denoting the device class, device name, or entry type. If you specify more than one keyword, you must specify a comma-separated list of values that is enclosed in parentheses.

Device Class Keywords

- ADAPTER
- BUSES
- CACHE
- DISKS
- INFORMATIONAL
- LINE_PRINTER
- REALTIME
- SYNC_COMMUNICATIONS
- TAPES
- VECTOR
- WORKSTATION

Examples of Device Name Constructs

- DB
- DBA1
- (DBA1,HSC1$DUA1,DYA0)
- (DB,DR,XF)

Entry-Type Keywords

ATTENTIONS
- Include device attention entries in the report.

BUGCHECKS
- Include all types of bugcheck errors in the report.

CONFIGURATION
- Include system configuration entries in the report.
CONTROL_ENTRIES

Include control entries in the report. Control entries include the following entry types:

- System power failure restarts
- Time stamps
- System startups
- $SNDDERR messages (system service to send messages to error log)
- Operator messages
- Network messages
- ERRLOG.SYS created

CPU_ENTRIES

Include CPU-related entries in the report. CPU entries include the following entry types:

- SBI alerts/faults
- Undefined interrupts
- MBA/UBA adapter errors
- Asynchronous write errors
- UBA errors

DEVICE_ERRORS

Include device errors in the report.

ENVIRONMENTAL_ENTRIES

Include environmental entries in the report.

MACHINE_CHECKS

Include machine check errors in the report.

MEMORY

Include memory errors in the report.

SNAPSHOT_ENTRIES

Include snapshot entries in the report.

SYNDROME

Include firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.

TIMEOUTS

Include device timeout errors in the report.

UNKNOWN_ENTRIES

Include any entry that had either an unknown entry type or an unknown device type or class.

UNSOLICITED_MSCP

Include unsolicited MSCP entries in the report.

VOLUME_CHANGES

Include volume mount and dismount entries in the report.
**Description**

You can specify one or more devices by device class, device name, or one or more keywords that identify entry types.

Use the `UNKNOWN_ENTRIES` keyword to obtain a report that contains the contents of the device registers logged by unsupported devices.

Any known information for the entry is translated; the remaining information is output in hexadecimal longwords.

If you specify a device class keyword or a device name construct with both the `/INCLUDE` and `/EXCLUDE` qualifiers, the `/INCLUDE` qualifier takes precedence.

The `BUSES` keyword also includes error log entries for the BI bus. The `DEVICE_ERRORS` keyword also includes entries for the BI adapter.

**Examples**

1. `$ ANALYZE/ERROR_LOG/INCLUDE=MTA0`
   
   In this example, the report consists of error log entries for the device MTA0, which are in the default error log file `ERRLOG.SYS`.

2. `$ ANALYZE/ERROR_LOG/INCLUDE=MTA0/EXCLUDE=TAPES`
   
   In this example, the device MTA0 is included in the error log report for the file `ERRLOG.SYS`. All other magnetic tape devices are excluded from the report.

3. `$ ANALYZE/ERROR_LOG/INCLUDE=(MTA0,VOL)`
   
   In this example, the report consists of error log entries and volume mounts and dismounts for the device MTA0, which are in the default error log file `ERRLOG.SYS`.

4. `$ ANALYZE/ERROR_LOG/INCLUDE=(DISK,VOLUME_CHANGES)`
   
   In this example, the report consists of error log entries for disk volume information, which are in the default error log file `ERRLOG.SYS`.

5. `$ ANALYZE/ERROR_LOG/INCLUDE=(DISK,VOLUME_CHANGES,DEVICE_ERROR)`
   
   In this example, the report consists of error log entries for volume and device error information on disks, which are in the default error log file `ERRLOG.SYS`.

6. `$ ANALYZE/ERROR_LOG/INCLUDE=(DISK,VOLUME_CHANGES,DEVICE_ERROR,BUGCHECK)`
   
   In this example, the report consists of error log entries for volume and device error information on disks, and bugcheck errors. These entries are in the default error log file `ERRLOG.SYS`. 
Controls whether informational messages that specify the number of entries selected and rejected for each input file are sent to SYS$OUTPUT. By default, these messages are not displayed.

Format

/\[NO\]LOG

Example

$ ANALYZE/ERROR_LOG/LOG ERRLOG.OLD;5

In this example, informational messages generated about ERRLOG.OLD;5 are sent to SYS$OUTPUT.
On Alpha systems, generates a report consisting of event log entries that occurred on the specified CPU.

**Format**

```
/MODEL=(hexadecimal-value[,...])
```

**Parameter**

- **hexadecimal-value**
  Specifies a value obtained from the system console.

  In an OpenVMS Cluster environment, you can specify a hexadecimal value for each member. If you specify more than one hexadecimal value, you must specify a comma-separated list of values that is enclosed in parentheses.

**Example**

```
$ ANALYZE/ERROR_LOG/MODEL=415 ERRLOG.SYS
```

In this example, the output consists of only those entries that were logged for the system with a model type of 00000415 (hexadecimal).
Generates a report consisting of error log entries for specific nodes in an OpenVMS Cluster system.

Format

/NODE=(node-name[,...])

Parameter

node-name
Specifies the names of one or more OpenVMS Cluster members. Names cannot exceed six characters. If more than one node name is entered, you must specify a comma-separated list of node names that is enclosed in parentheses.

Example

$ ANALYZE/ERROR_LOG/NODE=(ORANGE,NASSAU) -
_SYS$SYSROOT:[SYS*.SYSERR]ERRLOG.SYS

In this example, the OpenVMS Cluster system consists of members BROOME, NASSAU, ORANGE, and PUTNAM. The output contains only those entries that were logged for nodes NASSAU and ORANGE.
/OUTPUT

Specifies the output file for the error log report.

Format

/OUTPUT  [=file-spec]

Parameter

file-spec
Specifies the output file selected for the error log report. Refer to the OpenVMS User’s Manual for details on specifying files. If you omit the output file specification, output is directed to SYS$OUTPUT.

Description

If you omit the /OUTPUT qualifier, output is directed to SYS$OUTPUT. If you specify /OUTPUT=file-spec, the selected output file contains the error log report. If you omit the device or directory specification, the current device and default directory are used. If you omit the file name, the file name of the input file is used. If you omit the file type, the default file type is .LIS.

Do not use /OUTPUT with the /BINARY qualifier.

Example

$ ANALYZE/ERROR_LOG/OUTPUT=ERROR_LOG.LIS ERRLOG.OLD;72

In this example, the output file ERROR_LOG.LIS contains entries generated from ERRLOG.OLD;72.
Controls whether page breaks are generated when the screen is full. The default is /NOPAGE.

**Format**

/[/NO]PAGE
ERROR LOG
/REGISTER_DUMP

/REGISTER_DUMP

Used in conjunction with the /INCLUDE qualifier to generate, in a hexadecimal longword format, a report that consists of device register information.

Format

/REGISTER_DUMP

Description

Use the /REGISTER_DUMP qualifier to get a report that lists the hexadecimal contents of the device registers for the device specified by the /INCLUDE qualifier. The /INCLUDE qualifier must be used with the /REGISTER_DUMP qualifier.

The /REGISTER_DUMP qualifier reports register contents for memory, device error, and device timeout entries. No translation is available of any of the device register information.

Do not use /REGISTER_DUMP with the /BINARY qualifier.

Example

$ ANALYZE/ERROR_LOG/INCLUDE=DB/REGISTER_DUMP ERRLOG.OLD;72

In this example, the output is in the format of a REGISTER_DUMP report containing entries that apply only to the DB device.
/REJECTED

Allows you to specify the name of a file that will contain binary records for rejected entries.

Format

/REJECTED [=file-spec]

Parameter

file-spec
Specifies the name of the file that is to contain the rejected entries. If you do not specify an output file, the rejected entries are written to the file ERRLOG.REJ in your current directory.

Description

The /REJECTED qualifier creates a binary file that contains copies of the original binary error log entry. If the error log entry is rejected because the command line also specifies an interval (/SINCE, /BEFORE, or /ENTRY qualifier) or a filter (/INCLUDE or /EXCLUDE qualifier), the entry is written to the specified file.

Rejected entries are not translated because they fall into one of the following categories:

- All entries specified with the /EXCLUDE qualifier
- All entries not specified with the /INCLUDE qualifier
- Any entry that does not occur within the period specified by the /SINCE and /BEFORE qualifiers
- Any entry that is not in the range of entries specified by the /ENTRY qualifier

If you specify /REJECTED=file-spec, the output file contains image copies of the rejected records. If you omit the device or directory specification, the current device and default directory are used. If you omit the file name, the file name of the input file is used. If you omit the file type, the default file type is .REJ.

Example

$ ANALYZE/ERROR_LOG/INCLUDE=MTA0/REJECTED=REAL_ERRS.DAT ERRLOG.OLD;5

In this example, the output file REAL_ERRS.DAT contains image copies of all entries from ERRLOG.OLD;5, with the exception of those entries that apply to the MTA0 device.
On VAX systems, generates a report consisting of error log entries that occurred on the specified CPU.

Format

/SID_REGISTER=(hexadecimal-value[,...])

Parameter

hexadecimal-value
Specifies a value obtained from the system ID register. Use the $GETSYI system service to obtain this value, which is unique to each system. The *HP OpenVMS System Services Reference Manual* describes the $GETSYI system service.

In an OpenVMS Cluster environment, you can specify a hexadecimal value for each member. If you specify more than one hexadecimal value, you must specify a comma-separated list of values that is enclosed in parentheses.

Example

$ ANALYZE/ERROR_LOG/SID_REGISTER=02006148 ERRLOG.OLD;72

In this example, the output consists of only those entries that were logged for the system with an ID of 02006148 (hexadecimal).
/SINCE

Specifies that only those entries dated later than the stated date and time are to be selected for the report.

Format

/SINCE [=date-time]

Parameter

date-time

Limits the error report to those entries dated later than the specified time. If you specify /SINCE without a date and time, the default is TODAY. If you omit the /SINCE qualifier, all entries are processed.

Description

Only absolute date and time specifications are valid. Refer to the OpenVMS User’s Manual for details on specifying times.

Example

$ ANALYZE/ERROR_LOG/SINCE=19-APR-2002:15:00 ERRLOG.OLD;56

In this example, the error log report generated from ERRLOG.OLD;56 contains entries that have been logged since 15:00 on April 19, 2002.
/STATISTICS

Generates run-time statistical information.

Format

/STATISTICS

Description

Use the /STATISTICS qualifier to generate a report that consists of the page faults, buffered I/O, direct I/O, and CPU time used in the execution of the ANALYZE/ERROR_LOG command.

Example

$ ANALYZE/ERROR_LOG/STATISTICS ERRLOG.OLD;4

In this example, the output generated by this command consists of a full report of all entries in ERRLOG.OLD;4 and the run-time statistics for the execution of the command.
Sample Error Log Report

An error log report entry contains two sections: identification and device-dependent data. The identification section consists of the first four lines and is generated for all reports. The device-dependent data section, which follows the identification section, contains information about the selected error log entries.

The first line of the identification section gives the error entry number. This number can be used to refer to a particular error log entry in an error log file. The second line contains the error sequence number and the system identification value. The error sequence number is a value assigned by the operating system to an error log entry to help determine if error log entries are being lost. This sequence number value is reset to zero only when the system is rebooted. The third and fourth lines of this section specify the type of error log entry being reported, the date and time the entry was made, the processor type and revision level, and the system serial number.

The first line of the device-dependent data section identifies the device or subsystem on which the error occurred. The remainder of this section consists of hardware information, which shows the contents of the device registers, and software information, which shows the contents of the I/O database at the time of the error.

The HP OpenVMS System Manager’s Manual contains additional information about error log reports, including descriptions of error log entries. These descriptions specify the action recommended for specific entries.

The following output report is an example of the report generated by device errors, device attention, and device timeouts from a disk on the system:

```
Error Log Report Generator
// ENTRY 904.//
ERROR SEQUENCE 709.
DATE/TIME 20-AUG-2002 15:21:10.79
SYSTEM UPTIME: 1 DAYS 01:35:47
SCS NODE: LSR3
DEVICE ERROR SYS_TYPE = 03
RZ57 SUB-SYSTEM, UNIT _LSR3$DKA0:
 HW REVISION 30303035
 ERROR TYPE 03
 SCSI ID 00
 SCSI LUN 00
 SCSI SUBLUN 00
 PORT STATUS 00000054
 HW REVISION = 5000
 COMMAND TRANSMISSION FAILURE
 SCSI ID = 0.
 SCSI LUN = 0.
 SCSI SUBLUN = 0.
 %SYSTEM-P-CTRLERR, FATAL CONTROLLER ERROR
```
ERROR LOG
10.4 ERF Examples

SCSI CMD 00000000 0000 TEST UNIT RDY
SCSI STATUS FF NO STATUS RECEIVED
UCB$B_ERTCNT 0F 15. RETRIES REMAINING
UCB$B_ERTMAX 00 0. RETRIES ALLOWABLE
ORB$L_OWNER 00000000 OWNER UIC [000,000]
UCB$L_CHAR 1CC54008 DIRECTORY STRUCTURED
FILE ORIENTED
SHARABLE
AVAILABLE
ERROR LOGGING
ALLOCATED
CAPABLE OF INPUT
CAPABLE OF OUTPUT
RANDOM ACCESS
UCB$L_STS 56544552 INTERRUPT EXPECTED
ONLINE
TIMED OUT
BUSY
DEALLOCATE AT DISMOUNT
"MOUNT VERIFICATION" IN-PROGRESS
UCB$L_OPCNT 00000000 0. QIO'S THIS UNIT
UCB$W_ERRCNT 0001 1. ERRORS THIS UNIT
Error Log Report Generator Version 7.3-1
IRP$L_BCNT 00000000 TRANSFER SIZE 0. BYTE(S)
IRP$L_BOFF 00000000 TRANSFER PAGE ALIGNED
IRP$L_PID 00010042 REQUESTOR "PID"
IRP$Q_IOSB 0000014E 430A0002 IOSB, 0. BYTE(S) TRANSFERRED

Time Stamp, Volume Mount, and Volume Dismount Entries Examples
The following examples show a system time stamp, volume mount, and volume dismount. The time-stamp entry contains only an identification section, which is logged by the operating system at 10-minute intervals. If no other error log entries are made during the 10-minute period, the previous time stamp is overwritten with the current time stamp.

The mount volume entry contains an identification section followed by a device-dependent data section. The device-dependent data section shows the name of the device the volume is mounted on, the volume label (if the volume has a label), and the I/O operations and error counts for the device.

The dismount volume entry contains, in addition to the data provided in the volume mount entry, the I/O operations and error counts for the device on which the volume was mounted.
ERROR LOG
10.4 ERF Examples

*************************** ENTRY 93. ****************************
ERROR SEQUENCE 421. LOGGED ON SID 01380101
TIME STAMP, 4-MAR-00 11:10:08.79
KA780 REV# 7. SERIAL# 7.
*************************** ENTRY 94. ****************************
ERROR SEQUENCE 422. LOGGED ON SID 01380101
MOUNT VOLUME, 4-MAR-00 11:14:12.51
KA780 REV# 7. SERIAL# 7.
UNIT _DMA0:, VOLUME LABEL "TEST"
656. QIO OPERATIONS THIS UNIT, 1. ERRORS THIS UNIT
*************************** ENTRY 95. ****************************
ERROR SEQUENCE 423. LOGGED ON SID 01380101
DISMOUNT VOLUME, 4-MAR-00 11:14:41.30
KA780 REV# 7. SERIAL# 7.
UNIT _DMA0:, VOLUME LABEL "TEST"
697. QIO OPERATIONS THIS UNIT, 1. ERRORS THIS UNIT
41. QIO OPERATIONS THIS VOLUME, 0. ERRORS THIS VOLUME

Machine Check Entries Examples

The following examples show machine check error reports. Each report consists of three sections: the identification section, the program counter and summary code section, and an error-dependent section.

The program counter and summary code section of the report displays the contents of the program counter, the processor status longword, and the summary code. The contents of the processor status longword and the summary code are described in the text on the right side of the report.

The error-dependent section consists of CPU-dependent information that was logged as a result of the machine check.

*************************** ENTRY 2. ****************************
ERROR SEQUENCE 2. LOGGED ON: CPU_TYPE 00000002
DATE/TIME 4-SEP-2002 09:39:51.19
SYS_TYPE 00000002
SYSTEM UPTIME: 90 DAYS 00:01:25
SCS NODE: COBRA6
MACHINE CHECK SYS_TYPE = 02
KERNEL EVENT HEADER
FRAME REVISION 0000
SCB VECTOR 0670
1ST MOST PRB FRU 00

FIELD NOT VALID
2ND MOST PRB FRU 00
FIELD NOT VALID
SEVERITY 0000
FIELD NOT VALID
CPU ID 0000
ERROR COUNT 0001
THRESHOLD 0000
FAIL CODE 0000
ERR FIELD LOW 00000005
00000008

CPU 0 BUS COMMAND NO-ACK
CPU 0 BUS READ PARITY ERROR
CPU CYCLE ABORTED WITH HARD ERROR
ERR FIELD HIGH 00000000
00000000
RETRY/BYTE CNT 00000250
00000000
BYTE COUNT = 00000250(X)
CAN’T RETRY
PALTEMP0 00000001
00000000
PALTEMP1 000000BE
00000000
PALTEMP2 00000004
001FC0F8
PALTEMP3 00000000
00000000
PALTEMP4 805C3FC0
FFFFFFFF
PALTEMP5 00000000
00000000
PALTEMP6 84FDE000
FFFFFFFF
PALTEMP7 00004200
00000000
PALTEMP8 00000400
00000000
PALTEMP9 00000003
00000000
PALTEMP10 29CB0233
00000003
PALTEMP11 00000000
00000000
PALTEMP12 00000000
00000000
PALTEMP13 8042F4C0
FFFFFFFF
PALTEMP14 00000000
00000000
PALTEMP15 00000000
00000000
PALTEMP16 00000000
00000000
PALTEMP17 00000000
00000000
PALTEMP18 BEBC2000
00000000
PALTEMP19 7F9F9224
00000000
PALTEMP20 00002041
00000000
PALTEMP21 40000000
00000002
PALTEMP22 00000000
00000000
PALTEMP23 00000000
00000000
PALTEMP24 805C0000
FFFFFFFF
PALTEMP25 00000000
00000000
PALTEMP26 7FF96000
00000000
ERROR LOG

10.4 ERF Examples

PALTEMP27  00000000
           00000000
PALTEMP28  00D7C000
           00000000
PALTEMP29  00000000
           00000002
PALTEMP30  002F6000
           00000000
PALTEMP31  00D62080
           00000000
EXCP ADDR REG 0000815E
            00000000

Not PALmode instruction
EXCEPTION PC = 0000000000002057(X)

EXCP SUM REG  00000000
             00000000
EXCP MASK REG 00000000
              00000000
ICCS REG      00000004
              001FC0F8
PAL BASE      00008000
              00000000

HW INTR EN REG FFFFDCF0
             00000001

PAL BASE PA = 000008000(X)

CRD ERROR INT. ENABLE
HARDWARE INT. ENABLED ON PIN 3
HARDWARE INT. ENABLED ON PIN 4
HARDWARE INT. ENABLED ON PIN 5
PC1 INT. DISABLED
PC0 INT. DISABLED
HARDWARE INT. ENABLED ON PIN 0
HARDWARE INT. ENABLED ON PIN 1
HARDWARE INT. ENABLED ON PIN 2
SLU INT. DISABLE
SOFTWARE INT. LEVEL 1 ENABLED
SOFTWARE INT. LEVEL 2 ENABLED
SOFTWARE INT. LEVEL 3 ENABLED
SOFTWARE INT. LEVEL 4 ENABLED
SOFTWARE INT. LEVEL 5 ENABLED
SOFTWARE INT. LEVEL 6 ENABLED
SOFTWARE INT. LEVEL 7 ENABLED
SOFTWARE INT. LEVEL 8 ENABLED
SOFTWARE INT. LEVEL 9 ENABLED
SOFTWARE INT. LEVEL 10 ENABLED
SOFTWARE INT. LEVEL 11 ENABLED
SOFTWARE INT. LEVEL 12 ENABLED
SOFTWARE INT. LEVEL 13 ENABLED
SOFTWARE INT. LEVEL 14 ENABLED
SOFTWARE INT. LEVEL 15 ENABLED
KERNEL MODE AST INT. ENABLED
EXEC. MODE AST INT. ENABLED
SUPER. MODE AST INT. ENABLED
USER MODE AST INT. ENABLED
### 10.4 ERF Examples

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW INTR REQ REG</td>
<td>00000702</td>
</tr>
<tr>
<td>HW INTR. REQ</td>
<td>00000000</td>
</tr>
<tr>
<td>PCI INTR REQ.</td>
<td></td>
</tr>
<tr>
<td>PC0 INTR REQ.</td>
<td></td>
</tr>
<tr>
<td>CPU INTR REQ. on pin 0</td>
<td></td>
</tr>
<tr>
<td>MEM MGMT ER/DTB</td>
<td>00005110</td>
</tr>
<tr>
<td>Integer Reg. used is R = 11(X) OP code = 28(X)</td>
<td></td>
</tr>
<tr>
<td>D-CACHE STA REG</td>
<td>000002E0</td>
</tr>
<tr>
<td>D-CACHE ADD REG</td>
<td>FFFFFFFF</td>
</tr>
<tr>
<td>ABOX CTL REG</td>
<td>0000040E</td>
</tr>
<tr>
<td>MCHECK ENABLED for UNCOR. ERR CRD INTR. ENABLE ICACHE STREAM BUFFER ENABLED DCACHE ENABLED</td>
<td></td>
</tr>
<tr>
<td>BIU STATUS REG</td>
<td>00002041</td>
</tr>
<tr>
<td>Hard Error</td>
<td></td>
</tr>
<tr>
<td>Dcache fill error</td>
<td></td>
</tr>
<tr>
<td>READ_BLOCK</td>
<td></td>
</tr>
<tr>
<td>BIU ADD REG</td>
<td>40000000</td>
</tr>
<tr>
<td>BIU CTL REG</td>
<td>30006337</td>
</tr>
<tr>
<td>Error Log Report Generator Version 7.3-1</td>
<td></td>
</tr>
<tr>
<td>ECC SYNDROMES</td>
<td>00000000</td>
</tr>
<tr>
<td>FILE ADDR REG</td>
<td>00006120</td>
</tr>
<tr>
<td>MACHINE CHK VA</td>
<td>00006190</td>
</tr>
<tr>
<td>B-CACHE TAG REG</td>
<td>12491412</td>
</tr>
<tr>
<td>B-Cache Read Speed in cycles = 4(X) BCache Write Speed in cycles = 4(X)</td>
<td></td>
</tr>
<tr>
<td>CSR0</td>
<td>400001C1</td>
</tr>
<tr>
<td>BCC</td>
<td>400001C1</td>
</tr>
<tr>
<td>CSR1</td>
<td>00000000</td>
</tr>
<tr>
<td>FCCE</td>
<td>00000000</td>
</tr>
<tr>
<td>CSR2</td>
<td>00000000</td>
</tr>
<tr>
<td>DCU</td>
<td>00000000</td>
</tr>
<tr>
<td>CSR4</td>
<td>00D40A2D</td>
</tr>
<tr>
<td>BCUEA</td>
<td>00D40A2D</td>
</tr>
<tr>
<td>TAG Control P</td>
<td></td>
</tr>
<tr>
<td>TAG Control V</td>
<td></td>
</tr>
<tr>
<td>B-Cache TAG = 48A0(X)</td>
<td></td>
</tr>
</tbody>
</table>
Error Log Report Generator Version 7.3-1

*************** ENTRY 6. ********************
ERROR SEQUENCE 3. LOGGED ON SID 03003700
MACHINE CHECK, 6-MAR-2002 10:11:34.70
KA730 REV# 0. MIC# 55.

EXCEPTION PC 80038DC0
ERROR PSL 01C00000

INTERRUPT PRIORITY LEVEL = 00.
PREVIOUS MODE = USER
CURRENT MODE = EXECUTIVE

SUMMARY CODE 00000007
1ST PARAMETER 00166200

*************** ENTRY 60. ********************
ERROR SEQUENCE 4872. LOGGED ON SID 02006148
MACHINE CHECK, 6-MAR-2002 03:50:08.28
KA750 REV# 72. MIC# 97.

EXCEPTION PC 80006173
ERROR PSL 00C80009

C-BIT
N-BIT
INTERRUPT PRIORITY LEVEL = 08.
PREVIOUS MODE = USER
CURRENT MODE = KERNEL
## Error Log

### 10.4 ERF Examples

<table>
<thead>
<tr>
<th>Summary Code</th>
<th>Translation Buffer or Bus Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Va Last Ref</td>
<td>800A079E</td>
</tr>
<tr>
<td>MDR</td>
<td>8006178</td>
</tr>
<tr>
<td>SMR</td>
<td>8009F38C</td>
</tr>
<tr>
<td>RLTO</td>
<td>00000000</td>
</tr>
<tr>
<td>TBER</td>
<td>00000007</td>
</tr>
<tr>
<td>CAER</td>
<td>00000000</td>
</tr>
<tr>
<td>BER</td>
<td>00000000</td>
</tr>
<tr>
<td>MCESR</td>
<td>00000004</td>
</tr>
<tr>
<td>Exception PC</td>
<td>000004890</td>
</tr>
<tr>
<td>Error PSL</td>
<td>03C00000</td>
</tr>
<tr>
<td>Summary Code</td>
<td>00000000</td>
</tr>
<tr>
<td>CES</td>
<td>00010084</td>
</tr>
<tr>
<td>Micro PC</td>
<td>00000200</td>
</tr>
<tr>
<td>Va/Viba</td>
<td>7FF735D4</td>
</tr>
<tr>
<td>D Register</td>
<td>FFFFC284</td>
</tr>
<tr>
<td>Tbero</td>
<td>0000DC81</td>
</tr>
<tr>
<td>Tber1</td>
<td>00000040</td>
</tr>
<tr>
<td>Sbita</td>
<td>E00B83F5</td>
</tr>
<tr>
<td>Cache Pe Reg</td>
<td>00004000</td>
</tr>
<tr>
<td>Sbier</td>
<td>00001802</td>
</tr>
</tbody>
</table>

CPU Mode = Kernel

Virtual Read

---

**Machine Check, 6-Mar-2002 15:09:11.31**

**Machine Check, 6-Mar-2002 15:09:11.31**

**Ka780 Rev# 7, Serial# 1317.**

**Exception PC** 000004890

**Error PSL** 03C00000

**Summary Code** 00000000

**CP Read Timeout**

- or Error Confirmation Fault

**Ces** 00010084

**Supervisor Ast Pending**

**ALU C31**

**Nested Error**

**Micro PC** 00000200

**Va/Viba** 7FF735D4

**D Register** FFFFC284

**Tbero** 0000DC81

**Enable Memory Management**

**TB Hit Group 1**

**Micro Code "MCT" Field = 07**

**Micro Code "ADS"**

**Micro Code "FS"**

**Tber1** 00000040

**Last TB Write Pulse to Group 1**

**Sbita** E00B83F5

**Timeout Console Addr = 002E0FD4**

**Protection checked reference**

**Timeout Reference in User Mode**

**Cache Pe Reg** 00004000

**Sbier** 00001802

**CP Error**

**Sbi Not Busy**

**Waiting for Read Data Timeout**

**CPU Timeout**
ERROR SEQUENCE 1077.
KA86 REV# 255. SERIAL# 4095. MFG PLANT 7.
EHMSTS 40000802

VMS ERROR CODE = EBOX
MICRO TRAP VECTOR = 08 (X)
EHM ENTERED

EVMQSAV 00000004
VIRTUAL ADDRESS FOR EBOX PORT
REQUESTS

EBCS 00000800
ECS PARITY ERROR

EDPSR 00000000
C BUS ADDRESS = 1F (X)
C BUS DATA = 3D (X)
INTERRUPT PRIORITY REQUEST = 8.
INTERNAL SOURCE
I/O ADAPTER = 0.
INTERNAL TIMER

CBLINT 04183D1F

IBESR 00004000
UOP SEL = IBOX REGISTER SELECT
UTPR <2:0> = EBOX PORT
ENABLE ETRAP

EBXWD1 00000004
TOP OF "SP STACK"
CONTENT IS ONE OF THE LAST
LONGWORDS WRITTEN TO MBOX

EBXWD2 7FF593D0
TOP OF "SP STACK" MINUS ONE
CONTENT IS ONE OF THE LAST
LONGWORDS WRITTEN TO MBOX

VASAV 7FF593F8
VIRTUAL ADDRESS FOR OP FETCH
PORT REQUEST ADDRESS
CALCULATION FOR OPERAND
PRE-FETCH AND RESULT DELIVERY

VIBASAV 0000E7FF
VIRTUAL ADDRESS OF NEXT IBUF
PORT REQUEST TO FILL BUFFER

ESASAV 0000E7F2
PC OF INSTRUCTION DURING EBOX
EXECUTION AND RESULT STORAGE

ISASAV 0000E7F2
PC OF INSTRUCTION WHICH VA
CALCULATION UNIT IS DOING ADDRESS
CALCULATION OR OPERAND PRE-FETCH
OR IS PASSING OPERAND DATA

CPC 0000E7F4
PC OF INSTRUCTION IN
DECODE UNIT

MSTAT1 84006004
CD TAG MISS
BLOCK HIT
ABUS ADAPTER = 0.
WORD COUNT = 0.
CYCLE TYPE = READ REGISTER
DEST CP = EBOX

MSTAT2 00004F00
DIAGNOSTIC STATUS FROM SBIA
RD COM/MSK <3:0> = F (X)
RD DAT L/S <1:0> = 0 (X)
ABUS BAD DATA CODE
PAMM DATA = ARRAY #0.,SLOT #1.
**Memory Error Entries Example**

Memory error log entries consist of two types: fatal and nonfatal. A nonfatal memory error indicates that a single bit has failed within a memory location, and that the ECC (error code correctable) was able to compensate for the error and correct the data. A fatal error indicates that multiple bits were erroneous, and that the ECC could not correct the data.

Both the fatal and nonfatal memory entries are similar in their format. The memory error log reports can be divided into two logical areas of information. The first section of a memory error log report is the identification area. The second section contains memory controller-specific information. This data represents the information contained within the memory controller registers at the time of the memory error. Bit-to-text translation of the registers is performed and then listed on the right side of the report.
ERROR LOG
10.4 ERF Examples

**************************** ENTRY 91. ***************************

ERROR SEQUENCE 342.
LOGGED ON SID 0138207A

FATAL MEMORY ERROR, 4-MAR-00 08:16:45.20
KA780 REV# 7. SERIAL# 122.

CONTROLLER AT TR #5.

PRTCFNG 00000040  ADAPTER IS MULTI-PORT MEMORY
         PORT NUMBER = 0.

PRTC 00000003  MASTER INTERRUPT ENABLE
         PORT INTERFACE INTERRUPT ENABLE
         RAM COUNT 0.

PCSR 07870003  ERROR INTERRUPT ENABLE

IVDTCR 01870001  INVALIDATE CACHE DEVICE ID = 0.
                   8. ARRAY BOARD(S) PRESENT
                   MEMORY BASE ADDRESS = 6144.K

AER 16A70005  ERROR SYNDROME = 05
             RDS ERROR
             ARRAY #6. IN ERROR
             ARRAY BANK #1. IN ERROR
             ERROR LOG REQUEST

CSR0 0000C2C8  MEMORY CONTAINS VALID DATA
              PORT #2. POWERED DOWN
              PORT #3. POWERED DOWN
              ERROR INTERRUPT FROM PORT #1.
              PORT #2. OFFLINE
              PORT #3. OFFLINE

CSR1 0000380A  PORT #0. CONNECTED TO AN SBI
              PORT #1. CONNECTED TO AN SBI
              PORT #2. NOT PRESENT
              PORT #3. NOT PRESENT
              INVALIDATION MAP PRESENT
              PORT #0. INVALIDATION ACK RECEIVED
              PORT #1. INVALIDATION ACK RECEIVED

MAT 0000C000

Nonfatal and User Bugchecks Entry Example
The following example shows a fatal bugcheck. Nonfatal and user bugcheck reports have the same format. These reports consist of three sections: identification, bugcheck reason and process information, and system register information.
10.4 ERF Examples

**ERROR LOG**

Error Log Report Generator
Version 7.3-1

*ERROR SEQUENCE 15.*
LOGGED ON: CPU_TYPE 00000002
SYS_TYPE 00000003
SYSTEM UPTIME: 90 DAYS 00:07:26
SCS NODE: LSR3
OpenVMS V7.3-1

**FATAL BUGCHECK** SYS_TYPE = 03

OPERATOR, Operator requested system shutdown

**PROCESS NAME** Aut
**PROCESS ID** 00010004
**ERROR PC** 00000000 000304A0

Process Status = 08000000 00001F03, SW = 03, Previous Mode = USER
System State = 00, Current Mode = KERNEL
VMM = 00 IPL = 31, SP Alignment = 8

**STACK POINTERS**
KSP 00000000 7FF95F08 ESP 00000000 7FF9A000 SSP 00000000 7FFA04C0
USP 00000000 7FE63B80

**GENERAL REGISTERS**
R0 00000000 00000001 R1 00000000 00000000 R2 FFFFFFFF 805ED100
R3 00000000 00000001 R4 00000000 00000000 R5 00000000 00000001
R6 00000000 00000000 R7 00000000 00000000 R8 00000000 00000000
R9 7FFA0800 00000000 00000000 00000000 R10 00000000 00000000
R11 00000000 7FFBE3E0 R12 00000000 00000000 R13 00000000 00000000
R14 00000000 00000000 R15 80403C30 FFFFFFFF 805D100
R16 00000000 00000000 00000000 00000000 R17 00000000 00000000
R18 00000000 00000000 00000000 00000000 R19 00000000 00000000
R20 00000000 00000000 00000000 00000000 R21 00000000 00000000
R22 80403C30 00000000 00000000 00000000 R23 80403C30 00000000
R24 80403C30 00000000 00000000 00000000 R25 80403C30 00000000
R26 80403C30 00000000 00000000 00000000 R27 00000000 00000000
R28 00000000 00000000 00000000 00000000 R29 00000000 00000000
R30 00000000 00000000 00000000 00000000 R31 00000000 00000000

**SYSTEM REGISTERS**
PTBR 00000000 00000000 Page Table Base Register
PCBB 00000000 00000000 Privileged Context Block Base
PRBR FFFFFFFF 805D100 Processor Base Register
SCBB 00000000 00000000 System Control Block Base
SISR 00000000 00000000 Software Interrupt Summary Register
ASN 00000000 00000000 Address Space Number
ASTSR_ASTEN 00000000 00000000 AST Summary/AST Enable
AT 00000000 00000000 Absolute Time
Unknown Entries Examples

The following examples are sample reports for error log entries of unknown type. Each report has an identification section and an error log record section. The error log record section contains two types of records: interpretable and noninterpretable. If ERROR LOG can interpret the fields of the record, the utility gives the name of the field, its contents, and interprets what the field is. If the utility cannot interpret the fields of a record, it gives the longword value of the field and its contents in hexadecimal format.

************************ ENTRY 95. ****************************
ERROR SEQUENCE 2.
LOGGED ON SID 03003600
"UNKNOWN DEVICE" ENTRY, 4-MAR-00 10:12:12.44
KA730 REV# 0. MIC# 54.

ERROR LOG RECORD

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERF$L_SID</td>
<td>03003600</td>
<td>System ID Register</td>
</tr>
<tr>
<td>ERL$W_ENTRY</td>
<td>0062</td>
<td>Error Entry Type</td>
</tr>
<tr>
<td>EXE$GQ_SYSTIME</td>
<td>C9764980</td>
<td>Error Entry Type</td>
</tr>
<tr>
<td>ERL$G_L_SEQUENCE</td>
<td>0062</td>
<td>64 Bit Time When Error Logged</td>
</tr>
<tr>
<td>UCB$W_STS</td>
<td>0110</td>
<td>Device Status</td>
</tr>
<tr>
<td>UCB$B_DEVCLASS</td>
<td>42</td>
<td>Device Class = 66.</td>
</tr>
<tr>
<td>UCB$B_DEVTYPE</td>
<td>42</td>
<td>Device Type = 66.</td>
</tr>
<tr>
<td>UCB$W_UNIT</td>
<td>0000</td>
<td>Physical Unit Number = 0.</td>
</tr>
<tr>
<td>UCB$W_ERRCNT</td>
<td>0001</td>
<td>Unit Error Count = 1.</td>
</tr>
<tr>
<td>UCB$L_OPCNT</td>
<td>00000001</td>
<td>Unit Operation Count = 1.</td>
</tr>
<tr>
<td>ORB$L_OWNER</td>
<td>00010004</td>
<td>Owner UIC = [001, 004]</td>
</tr>
<tr>
<td>UCB$L_DEVCHAR</td>
<td>0C440007</td>
<td>Device Characteristics</td>
</tr>
<tr>
<td>UCB$B_SLAVE</td>
<td>00</td>
<td>Device Slave Controller = 0.</td>
</tr>
<tr>
<td>DDB$T_NAME</td>
<td>41515403</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 1</td>
<td>00000008</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 2</td>
<td>00000007</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 3</td>
<td>00000502</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 4</td>
<td>04000000</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 5</td>
<td>00010000</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 6</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 7</td>
<td>00000080</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 8</td>
<td>00000000</td>
<td></td>
</tr>
<tr>
<td>LONGWORD 9</td>
<td>00000000</td>
<td></td>
</tr>
</tbody>
</table>

Error Log Report Formatter (ERF) Utility 10–39
**ERROR LOG**

10.4 ERF Examples

**************************************** ENTRY 161. ****************************************
ERROR SEQUENCE 213.
LOGGED ON SID 070001FF

"UNKNOWN ENTRY", 4-MAR-00 11:35:15.73
UVAX1 REV# 255. MIC# 1.

ERROR LOG RECORD

ERFS$L_SID 070001FF
SYSTEM ID REGISTER
ERL$W_ENTRY 0008
ERROR ENTRY TYPE
EXE$GQ_SYS_TIME 89953F20 0C83E2A
64 BIT TIME WHEN ERROR LOGGED
ERL$GL_SEQUENCE 0055
UNIQUE ERROR SEQUENCE = 213.

LONGWORD 1. 00000001
/.../
LONGWORD 2. 00410001
/..A/.

Example of a Brief Report

The following example shows a report generated with the /BRIEF qualifier:

Error Log Report Generator

**************************************** ENTRY 1. ****************************************
ERROR SEQUENCE 11.
LOGGED ON: SID 08000000
SYS_TYPE 00000000

DEVICE ERROR KA630
RD32 SUB-SYSTEM, UNIT _RICHIE$DUA0:

DMA ADDRESS 000000

<table>
<thead>
<tr>
<th>DSECT</th>
<th>CHEAD</th>
<th>DHEAD</th>
<th>CCYL</th>
<th>DCYL</th>
<th>SCNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>14</td>
<td>14</td>
<td>9C</td>
<td>9C</td>
<td>01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTCNT</th>
<th>CSTAT</th>
<th>MODE</th>
<th>DSTAT</th>
<th>TERM</th>
<th>ISTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>08</td>
<td>C0</td>
<td>B2</td>
<td>BD</td>
<td>28</td>
</tr>
</tbody>
</table>

CMD 56
11

Error Log Viewer Utility (ELV)
11.1 ELV Description

The Error Log Viewer (ELV) utility allows you to quickly examine, from the command line, an error log file in a user-readable format before deciding whether the data warrants a more comprehensive analysis with a tool such as the System Event Analyzer (SEA).

ELV is particularly useful with error logs created on systems with newer devices or on newer systems such as most of the DS, ES, and GS series. ELV can also be used with error logs created on some older systems or on systems equipped with older devices.

ELV provides detailed information for all error log events of the following types:

- Bugchecks
- Volume mounts and dismounts
- Correctable error throttling notifications
- Software parameters
- Control entries:
  - System service messages
  - Network messages
  - Operator messages
  - ERRLOG.SYS created
  - Time stamps
  - System startup messages

ELV provides detailed information for some error log events of the following types:

- Machine checks
- Device errors
- Device timeouts
- Asynchronous device attentions
- Logged messages
- Logged MSCP messages

This chapter describes the ELV commands, along with their parameters and qualifiers, that support the Error Log Viewer utility. It also contains a section of sample reports produced using the ELV TRANSLATE command.
11.2 ELV Usage Summary

You can execute ELV commands directly from the DCL command level or from ELV's interactive shell mode.

Format

```
ANALYZE/ERROR_LOG/ELV [command]
```

Parameter

- **command**: Specifies an ELV operation to be performed. If you do not specify an operation, the utility enters interactive shell mode, displays the ELV> prompt, and waits for command input.

To invoke ELV, enter the following DCL command:

```
$ ANALYZE/ERROR_LOG/ELV
```

If you do not enter an ELV command, the utility enters interactive shell mode and displays the ELV prompt:

```
ELV>
```

You can then enter an ELV command. After ELV executes the command, it again displays the ELV> prompt.

To return directly to DCL after executing an ELV command from the ELV prompt, use the /NOINTERACTIVE qualifier.

You can also enter an ELV command directly from DCL; for example:

```
$ ANALYZE/ERROR_LOG/ELV TRANSLATE ERRLOG.SYS;42
```

After ELV executes the command, you are returned to the DCL prompt by default.

To enter interactive shell mode after executing an ELV command directly from DCL, use the /INTERACTIVE qualifier.
11.3 Understanding Categories of Events

ELV recognizes several categories of events for inclusion in (or exclusion from) various operations. The first major distinction is between valid and invalid events. Within the category of valid events are selected and rejected events. Explanations of these categories follow.

- **Valid**
  An event is considered valid if it can be read into a buffer and its header is translatable. The body of the event, however, does not need to be translatable; in this case, the event is valid but untranslatable. With the exception of the DUMP/INVALID command, all ELV operations are performed on valid events.
  
  - **Selected**
    By default, all valid events are considered to be selected events. Except when you use the /REJECTED qualifier, ELV operations are performed on selected events.
  
  - **Rejected**
    A valid event is considered to be rejected if it does not fall into an interval specified with the /BEFORE, /SINCE, or /ENTRY qualifier, or is filtered out with the /EXCLUDE, /INCLUDE, or /[NO]NODE qualifier.
    
    You can combine certain intervals and filters to further refine event selection. In addition, you can use the /REJECTED qualifier to force ELV operations to be performed on rejected (rather than selected) events.
    
    For more information, refer to the qualifiers for individual commands.

- **Invalid**
  An event is considered to be invalid if it cannot be read into a buffer or its header is not translatable. You can use the ELV command DUMP/INVALID to output invalid events to an output dump file for further examination.

11.4 ELV Commands

This section describes and provides examples of the following ELV commands:

- **CONVERT**
- **DUMP**
- **EXIT**
- **HELP**
- **TRANSLATE**
- **WRITE**
CONVERT

Converts and writes events from one or more binary error log files written in the newer format to a single new error log file written in the older format. The new file can then be read by ANALYZE/ERROR_LOG.

This command is primarily used to enable translation of older error log events whose translation is not supported by ELV.

Format

CONVERT [input-file,...]

Parameter

input-file
Supplies one or more names of binary error log files to be converted to the older format.

If you do not specify an input file, the default input file is SYS$ERRORLOG:ERRLOG.SYS. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file name, the default file name is ERRLOG. If you do not specify a file type, the default file type is .SYS.

Qualifiers

/BEFORE[=date-time]
Specifies that only those events dated earlier than the stated date and time are to be selected.

For date-time, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the OpenVMS User’s Manual for details on specifying times.

If you omit a date and time, TODAY is used.

/ENTRY[=keyword,...]
Specifies the range of entries to be selected.

You can specify one or both of the following keywords:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>START[:decimal-value]</td>
<td>Indicates the start of a range of entries to be selected.</td>
</tr>
<tr>
<td>END[:decimal-value]</td>
<td>Indicates the end of a range of entries to be selected.</td>
</tr>
</tbody>
</table>

Usage Notes:

- You can specify one or both of these keywords. If you specify both keywords, you must enclose them in parentheses.
- If you specify /ENTRY without an entry range, the entry range defaults to START:1,END:end-of-file.
If you specify the START or END keyword without a value, the keyword is ignored.

/EXCLUDE=event-class[,...]
Specifies an event class or classes to be rejected. Do not use /EXCLUDE with /INCLUDE.

For event-class, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTIONS</td>
<td>Reject device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Reject all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Reject system configuration entries.</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>Reject control entries. Control entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• System power failure restarts</td>
</tr>
<tr>
<td></td>
<td>• Time stamps</td>
</tr>
<tr>
<td></td>
<td>• System startups</td>
</tr>
<tr>
<td></td>
<td>• $SNDERR messages (system service to send messages to error log)</td>
</tr>
<tr>
<td></td>
<td>• Operator messages</td>
</tr>
<tr>
<td></td>
<td>• Network messages</td>
</tr>
<tr>
<td></td>
<td>• ERRLOG.SYS created</td>
</tr>
<tr>
<td>CPU_ENTRIES</td>
<td>Reject CPU-related entries. CPU entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• SBI alerts/faults</td>
</tr>
<tr>
<td></td>
<td>• Undefined interrupts</td>
</tr>
<tr>
<td></td>
<td>• MBA/UBA adapter errors</td>
</tr>
<tr>
<td></td>
<td>• Asynchronous write errors</td>
</tr>
<tr>
<td></td>
<td>• UBA errors</td>
</tr>
<tr>
<td>DEVICE_ERRORS</td>
<td>Reject device error entries.</td>
</tr>
<tr>
<td>ENVIRONMENTAL_ENTRIES</td>
<td>Reject environmental entries.</td>
</tr>
<tr>
<td>MACHINE_CHECKS</td>
<td>Reject machine check entries.</td>
</tr>
<tr>
<td>MEMORY</td>
<td>Reject memory errors.</td>
</tr>
<tr>
<td>SNAPSHOT_ENTRIES</td>
<td>Reject snapshot entries.</td>
</tr>
<tr>
<td>SYNDROME</td>
<td>Reject firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.</td>
</tr>
<tr>
<td>TIMEOUTS</td>
<td>Reject device timeout entries.</td>
</tr>
</tbody>
</table>
### Keyword Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNKNOWN_ENTRIES</td>
<td>Reject any entry that has an unknown entry class.</td>
</tr>
<tr>
<td>UNSOLICITED_MSCP</td>
<td>Reject unsolicited MSCP entries.</td>
</tr>
<tr>
<td>VOLUME_CHANGES</td>
<td>Reject volume mount and dismount entries.</td>
</tr>
</tbody>
</table>

### `/INCLUDE=event-class[,...]`

Specifies an event class or classes to be selected. All other event classes are implicitly rejected. Do not use `/INCLUDE` with `/EXCLUDE`.

For `event-class`, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTIONS</td>
<td>Select device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Select all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Select system configuration entries.</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>Select control entries. Control entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• System power failure restarts</td>
</tr>
<tr>
<td></td>
<td>• Time stamps</td>
</tr>
<tr>
<td></td>
<td>• System startups</td>
</tr>
<tr>
<td></td>
<td>• <code>$SNDERR</code> messages (system service to send messages to error log)</td>
</tr>
<tr>
<td></td>
<td>• Operator messages</td>
</tr>
<tr>
<td></td>
<td>• Network messages</td>
</tr>
<tr>
<td></td>
<td>• ERRLOG.SYS created</td>
</tr>
<tr>
<td>CPU_ENTRIES</td>
<td>Select CPU-related entries. CPU entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• SBI alerts/faults</td>
</tr>
<tr>
<td></td>
<td>• Undefined interrupts</td>
</tr>
<tr>
<td></td>
<td>• MBA/UBA adapter errors</td>
</tr>
<tr>
<td></td>
<td>• Asynchronous write errors</td>
</tr>
<tr>
<td></td>
<td>• UBA errors</td>
</tr>
<tr>
<td>DEVICE_ERRORS</td>
<td>Select device error entries.</td>
</tr>
<tr>
<td>ENVIRONMENTAL_ENTRIES</td>
<td>Select environmental entries.</td>
</tr>
<tr>
<td>MACHINE_CHECKS</td>
<td>Select machine check entries.</td>
</tr>
<tr>
<td>MEMORY</td>
<td>Select memory errors</td>
</tr>
<tr>
<td>SNAPSHOT_ENTRIES</td>
<td>Select snapshot entries</td>
</tr>
</tbody>
</table>
Keyword | Description
---|---
SYNDROME | Select firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.
TIMEOUTS | Select device timeout entries.
UNKNOWN_ENTRIES | Select any entry that has an unknown entry class.
UNSOLICITED_MSCP | Select unsolicited MSCP entries.
VOLUME_CHANGES | Select volume mount and dismount entries.

/INTERACTIVE
/NOINTERACTIVE
Specifies whether or not ELV is to run in interactive shell mode after you execute the ELV command. By default, interactive shell mode results from the way the current ELV command is entered.

For more information, refer to Section 11.2.

/LOG
/NOLOG
Specifies whether or not ELV is to output control and informational messages to the terminal. The default /NOLOG does not output these messages to the terminal.

/NODE[=node-name,...]
/NONODE[=node-name,...]
Specifies that events occurring on a node or nodes are to be selected or rejected.

If you enter /NODE without a value, only events that occur on the node on which you are running ELV are selected.

If you enter /NONODE without a value, events occurring on all nodes that are represented in the error log file are selected.

/OUTPUT[=output-file]
Specifies the output file that is to contain converted copies of events.

If you do not specify an output file name, the input file name is used. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file type, the default file type is .CVT.

/REJECTED
Specifies that rejected (rather than selected) events are to be converted. For more information, refer to Section 11.3.

/SINCE[=date-time]
Specifies that only those events dated later than the stated date and time are to be selected.

For date-time, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the OpenVMS User’s Manual for details on specifying times.

If you omit a date and time, TODAY is used.
Examples

1. `$ ANALYZE/ERROR_LOG/ELV CONVERT /INTERACTIVE /NONODE=(BEAVIS,BUTTHD)`
   
   The command in this example, executed from DCL command level, converts selected events in the default SYS$ERRORLOG:ERRLOG.SYS file to the older format and writes these events to the ERRLOG.CVT file. After the command executes, the system displays the ELV> prompt.
   
   The selected events are from all nodes except BEAVIS and BUTTHD.

2. `ELV> CONVERT /LOG /OUTPUT=OUTFILE`
   
   The command in this example converts events in the default SYS$ERRORLOG:ERRLOG.SYS file to the older format and writes the converted events to OUTFILE.CVT.
   
   In addition, control and informational messages are output to the terminal.

3. `$ ANALYZE/ERROR_LOG/ELV CONVERT /NODE /BEFORE=YESTERDAY ERROR_LOG.SYS`

   The command in this example converts selected events from ERROR_LOG.SYS to the older format and writes the converted events to ERROR_LOG.CVT.
   
   The selected events are those that occurred before YESTERDAY on the current node.

4. `ELV> CONVERT /ENTRY=START:5 /EXCLUDE=BUGCHECKS`

   The command in this example converts events in the default SYS$ERRORLOG:ERRLOG.SYS file to the older format and writes the converted events to ERRLOG.CVT.
   
   The selected events, which start with entry 5, do not include the BUGCHECKS event class.
DUMP

Writes events from one or more binary error log files to a single new ASCII output file in an OpenVMS dump-style format.

Format

DUMP [input-file,...]

Parameter

input-file
Supplies one or more names of binary error log files to be used to produce an output dump file.

If you do not specify an input file, the default input file is SYS$ERRORLOG:ERRLOG.SYS. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file name, the default file name is ERRLOG. If you do not specify a file type, the default file type is .SYS.

Qualifiers

/BEFORE[=date-time]
Specifies that only those events dated earlier than the stated date and time are to be selected. Do not use /BEFORE with /INVALID.

For date-time, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the OpenVMS User’s Manual for details on specifying times.

If you omit a date and time, TODAY is used.

/ENTRY[=keyword,...]
Specifies the range of entries to be selected. Do not use /ENTRY with /INVALID.

You can specify one or both of the following keywords:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>START[:decimal-value]</td>
<td>Indicates the start of a range of entries to be selected.</td>
</tr>
<tr>
<td>END[:decimal-value]</td>
<td>Indicates the end of a range of entries to be selected.</td>
</tr>
</tbody>
</table>

Usage Notes:

- You can specify one or both of these keywords. If you specify both keywords, you must enclose them in parentheses.
- If you specify /ENTRY without an entry range, the entry range defaults to START:1,END:end-of-file.
- If you specify the START or END keyword without a value, the keyword is ignored.
/EXCLUDE=event-class[,...]
Specifies an event class or classes to be rejected. Do not use /EXCLUDE with /INCLUDE.

For event-class, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTIONS</td>
<td>Reject device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Reject all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Reject system configuration entries.</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>Reject control entries. Control entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>- System power failure restarts</td>
</tr>
<tr>
<td></td>
<td>- Time stamps</td>
</tr>
<tr>
<td></td>
<td>- System startups</td>
</tr>
<tr>
<td></td>
<td>- $SNDERR messages (system service to send messages to error log)</td>
</tr>
<tr>
<td></td>
<td>- Operator messages</td>
</tr>
<tr>
<td></td>
<td>- Network messages</td>
</tr>
<tr>
<td></td>
<td>- ERRLOG.SYS created</td>
</tr>
<tr>
<td>CPU_ENTRIES</td>
<td>Reject CPU-related entries. CPU entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>- SBI alerts/faults</td>
</tr>
<tr>
<td></td>
<td>- Undefined interrupts</td>
</tr>
<tr>
<td></td>
<td>- MBA/UBA adapter errors</td>
</tr>
<tr>
<td></td>
<td>- Asynchronous write errors</td>
</tr>
<tr>
<td></td>
<td>- UBA errors</td>
</tr>
<tr>
<td>DEVICE_ERRORS</td>
<td>Reject device error entries.</td>
</tr>
<tr>
<td>ENVIRONMENTAL_ENTRIES</td>
<td>Reject environmental entries.</td>
</tr>
<tr>
<td>MACHINE_CHECKS</td>
<td>Reject machine check entries.</td>
</tr>
<tr>
<td>MEMORY</td>
<td>Reject memory errors.</td>
</tr>
<tr>
<td>SNAPSHOT_ENTRIES</td>
<td>Reject snapshot entries.</td>
</tr>
<tr>
<td>SYNDROME</td>
<td>Reject firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.</td>
</tr>
<tr>
<td>TIMEOUTS</td>
<td>Reject device timeout entries.</td>
</tr>
</tbody>
</table>
Keyword | Description
--- | ---
UNKNOWN_ENTRIES | Reject any entry that has an unknown entry class.
UNSOLICITED_MSCP | Reject unsolicited MSCP entries.
VOLUME_CHANGES | Reject volume mount and dismount entries.

/INCLUDE=event-class[,...]
Specifies an event class or classes to be selected. All other event classes are implicitly rejected. Do not use /INCLUDE with /EXCLUDE.

For event-class, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTEYNATIONS</td>
<td>Select device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Select all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Select system configuration entries.</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>Select control entries. Control entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• System power failure restarts</td>
</tr>
<tr>
<td></td>
<td>• Time stamps</td>
</tr>
<tr>
<td></td>
<td>• System startups</td>
</tr>
<tr>
<td></td>
<td>• $SNDERR messages (system service to send messages to error log)</td>
</tr>
<tr>
<td></td>
<td>• Operator messages</td>
</tr>
<tr>
<td></td>
<td>• Network messages</td>
</tr>
<tr>
<td></td>
<td>• ERRLOG.SYS created</td>
</tr>
<tr>
<td>CPU_ENTRIES</td>
<td>Select CPU-related entries. CPU entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• SBI alerts/faults</td>
</tr>
<tr>
<td></td>
<td>• Undefined interrupts</td>
</tr>
<tr>
<td></td>
<td>• MBA/UBA adapter errors</td>
</tr>
<tr>
<td></td>
<td>• Asynchronous write errors</td>
</tr>
<tr>
<td></td>
<td>• UBA errors</td>
</tr>
<tr>
<td>DEVICE_ERRORS</td>
<td>Select device error entries.</td>
</tr>
<tr>
<td>ENVIRONMENTAL_ENTRIES</td>
<td>Select environmental entries.</td>
</tr>
<tr>
<td>MACHINE_CHECKS</td>
<td>Select machine check entries.</td>
</tr>
<tr>
<td>MEMORY</td>
<td>Select memory errors.</td>
</tr>
<tr>
<td>SNAPSHOT_ENTRIES</td>
<td>Select snapshot entries.</td>
</tr>
</tbody>
</table>
### Keyword Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNDROME</td>
<td>Select firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.</td>
</tr>
<tr>
<td>TIMEOUTS</td>
<td>Select device timeout entries.</td>
</tr>
<tr>
<td>UNKNOWN_ENTRIES</td>
<td>Select any entry that has an unknown entry class.</td>
</tr>
<tr>
<td>UNSOLICITED_MSCP</td>
<td>Select unsolicited MSCP entries.</td>
</tr>
<tr>
<td>VOLUME_CHANGES</td>
<td>Select volume mount and dismount entries.</td>
</tr>
</tbody>
</table>

### /INTERACTIVE

**/NOINTERACTIVE**

Specifies whether or not ELV is to run in interactive shell mode after you execute the ELV command. By default, interactive shell mode results from the way the current ELV command was entered.

For more information, refer to Section 11.2.

### /INVALID

Specifies that invalid (rather than valid) events are to be written to an output dump file. Do not use /INVALID with /BEFORE, /ENTRY, /EXCLUDE, /INCLUDE, /[NO]NODE, /REJECTED, or /SINCE.

For more information, refer to Section 11.3.

### /LOG

**/NOLOG**

Specifies whether or not ELV is to output control and informational messages to the terminal. The default /NOLOG does not output these messages to the terminal.

### /NODE[=node-name,...]

**/NONODE[=node-name,...]**

Specifies that events occurring on a node or nodes are to be selected or rejected. Do not use /NODE or /NONODE with /INVALID.

If you enter /NODE without a value, only events that occur on the node on which you are running ELV are selected.

If you enter /NONODE without a value, events occurring on all nodes that are represented in the error log file are selected.

### /OUTPUT[=output-file]

Specifies the output file that is to contain OpenVMS dump-style records for events.

If you do not specify an output file name, the input file name is used. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file type, the default file type is .DMP.

### /REJECTED

Specifies that rejected (rather than selected) events are to be written to an output dump file. Do not use /REJECTED with /INVALID.

For more information, refer to Section 11.3.
/SINCE[=date-time]
Specifies that only those events dated later than the stated date and time are to be selected. Do not use /SINCE with /INVALID.

For date-time, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the OpenVMS User’s Manual for details on specifying times.

If you omit a date and time, TODAY is used.

Examples

1. ELV> DUMP /NODE=DUMBO /ENTRY=END:10 ERROR_FILE.SYS,ERRLOG.SYS
   The command in this example writes OpenVMS dump-style records created from selected events in two input files, ERROR_FILE.SYS and ERRLOG.SYS, to an output dump file named ERROR_FILE.DMP. The name of the output file comes from the name of the first input file in the list.
   The selected events, which end with entry 10, are those that occurred on node DUMBO.

2. $ ANALYZE/ERROR_LOG/ELV DUMP /INCLUDE=(DEVICE_ERRORS,TIMEOUTS) /LOG
   The command in this example writes OpenVMS dump-style records created from selected events in the default SYS$ERRORLOG:ERRLOG.SYS file to an output dump file named ERRLOG.DMP.
   The selected events include only the DEVICE_ERRORS and TIMEOUTS event classes. In addition, control and informational messages are output to the terminal.

3. ELV> DUMP /SINCE=22-MAY-2003:01:00:00.00 /BEFORE=24-MAY-2003:04:51:33.87
   The command in this example writes OpenVMS dump-style records created from selected events in the default SYS$ERRORLOG:ERRLOG.SYS file to an output dump file named ERRLOG.DMP.
   The selected events fall in the interval between the two specified dates.

4. ELV> DUMP /SINCE=22-MAY-2003:01:00:00.00 /BEFORE=24-MAY-2003:04:51:33.87 /REJECTED
   This example is identical to the previous example except that rejected events are written rather than selected events.
   The rejected events are those that fall outside the interval between the two specified dates.

5. $ ANALYZE/ERROR_LOG/ELV DUMP /INVALID /OUTPUT=OUTFILE.OUT
   The command in this example writes OpenVMS dump-style records created from invalid events in the default SYS$ERRORLOG:ERRLOG.SYS file to an output dump file named OUTFILE.OUT.
EXIT

Stops the execution of ELV and returns control to the DCL command level. You can also enter Ctrl/Z to perform the same function.

Format

EXIT

Example

ELV> EXIT
$

The command in this example terminates the ELV session and returns control to the DCL command level.
HELP

Provides online help information for using ELV.

Format

HELP  [help-topic]

Parameter

help-topic
Specifies the topic for which you want help.

Example

ELV> HELP CONVERT
$ ANALYZE/ERROR_LOG/ELV HELP CONVERT

The commands in this example show how to get help information for the ELV CONVERT command from both the interactive shell mode and DCL command level.
TRANSLATE

Perform a bit-to-text translation of events from one or more binary error log files and writes the resulting reports to the terminal or to a single new ASCII output file.

Section 11.5 contains examples of reports.

Format

TRANSLATE  [input-file,...]

Parameter

input-file  
Supplies one or more names of binary error log files to be translated.

If you do not specify an input file, the default input file is SYS$ERRORLOG:ERRLOG.SYS. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file name, the default file name is ERRLOG. If you do not specify a file type, the default file type is .SYS.

Description

When you use the TRANSLATE command, ELV can generate reports in the formats shown in Table 11–1.
Table 11–1 Report Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Standard** | A report that contains detailed bit-to-text translation information for each event. To specify the detail level of a standard report, use the /BRIEF, /FULL, or /ONE_LINE qualifier with the TRANSLATE command. In addition to these qualifiers, you can use the /TERSE qualifier to obtain a report that contains less interpretation of the data, regardless of detail level. At a minimum, the following header information is included for each event in a standard report:  
  - Event Number  
  - Event Type  
  - Timestamp  
  - Node  
  - Event Class  
  With the exception of Event Type, the header information is useful when using the following event filtering and interval qualifiers: /BEFORE, /ENTRY, /EXCLUDE, /INCLUDE, /[NO]NODE, /SINCE. For Event Class, refer to the keywords listed for the /EXCLUDE or /INCLUDE qualifier.  
  **Standard Report Detail Levels:**  
  - If you specify /ONE_LINE, the header information is the only event information that is included in a standard report.  
  - If you specify /BRIEF, only the most essential event information is included with the header information.  
  - If you do not specify a standard report detail level qualifier, only the most commonly useful event information is included with the header information.  
  - If you specify /FULL, all event information is included with the header information.  
| **Summary** | Summary information is broken down by node where applicable, followed by summary information for the entire file. See the example following this table. |
Output for SYS$SYSROOT:[SYSERR]ERRLOG.SYS;1

Total number of events: 19
Number of the first event: 1
Number of the last event: 19
Earliest event occurred: 19-JUN-2003 08:52:46.00

Number of events by event class:

<table>
<thead>
<tr>
<th>Event Class</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUGCHECKS</td>
<td>1</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>2</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>4</td>
</tr>
<tr>
<td>UNKNOWN_ENTRIES</td>
<td>8</td>
</tr>
<tr>
<td>VOLUME_CHANGES</td>
<td>4</td>
</tr>
</tbody>
</table>

Qualifiers

/BEFORE[=date-time]
Specifies that only those events dated earlier than the stated date and time are to be selected.

For *date-time*, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the *OpenVMS User’s Manual* for details on specifying times.

If you omit a date and time, TODAY is used.

/BRIEF
Specifies that ELV is to generate a brief standard report. Do not use /BRIEF with /FULL or /ONE_LINE.

/ENTRY[=keyword,...]
Specifies the range of entries to be selected.

You can specify one or both of the following keywords:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>START[:decimal-value]</td>
<td>Indicates the start of a range of entries to be selected.</td>
</tr>
<tr>
<td>END[:decimal-value]</td>
<td>Indicates the end of a range of entries to be selected.</td>
</tr>
</tbody>
</table>

Usage Notes:

- You can specify one or both of these keywords. If you specify both keywords, you must enclose them in parentheses.
- If you specify /ENTRY without an entry range, the entry range defaults to START:1,END:end-of-file.
- If you specify the START or END keyword without a value, the keyword is ignored.

/EXCLUDE=event-class[,...]
Specifies an event class or classes to be rejected. Do not use /EXCLUDE with /INCLUDE.

For *event-class*, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTIONS</td>
<td>Reject device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Reject all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Reject system configuration entries.</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>Reject control entries. Control entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>- System power failure restarts</td>
</tr>
<tr>
<td></td>
<td>- Time stamps</td>
</tr>
<tr>
<td></td>
<td>- System startups</td>
</tr>
<tr>
<td></td>
<td>- $SNDERR messages (system service to send messages to error log)</td>
</tr>
<tr>
<td></td>
<td>- Operator messages</td>
</tr>
<tr>
<td></td>
<td>- Network messages</td>
</tr>
<tr>
<td></td>
<td>- ERRLOG.SYS created</td>
</tr>
<tr>
<td>CPU_ENTRIES</td>
<td>Reject CPU-related entries. CPU entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>- SBI alerts/faults</td>
</tr>
<tr>
<td></td>
<td>- Undefined interrupts</td>
</tr>
<tr>
<td></td>
<td>- MBA/UBA adapter errors</td>
</tr>
<tr>
<td></td>
<td>- Asynchronous write errors</td>
</tr>
<tr>
<td></td>
<td>- UBA errors</td>
</tr>
<tr>
<td>DEVICE_ERRORS</td>
<td>Reject device error entries.</td>
</tr>
<tr>
<td>ENVIRONMENTAL_ENTRIES</td>
<td>Reject environmental entries.</td>
</tr>
<tr>
<td>MACHINE_CHECKS</td>
<td>Reject machine check entries.</td>
</tr>
<tr>
<td>MEMORY</td>
<td>Reject memory errors.</td>
</tr>
<tr>
<td>SNAPSHOT_ENTRIES</td>
<td>Reject snapshot entries.</td>
</tr>
<tr>
<td>SYNDROME</td>
<td>Reject firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.</td>
</tr>
<tr>
<td>TIMEOUTS</td>
<td>Reject device timeout entries.</td>
</tr>
<tr>
<td>UNKNOWN_ENTRIES</td>
<td>Reject any entry that has an unknown entry class.</td>
</tr>
<tr>
<td>UNSOLICITED_MSCP</td>
<td>Reject unsolicited MSCP entries.</td>
</tr>
<tr>
<td>VOLUME_CHANGES</td>
<td>Reject volume mount and dismount entries.</td>
</tr>
</tbody>
</table>

/FULL
Specifies that ELV is to generate a full standard report. Do not use /FULL with /BRIEF or /ONE_LINE.

/INCLUDE=event-class[,...]
Specifies an event class or classes to be selected. All other event classes are implicitly rejected. Do not use /INCLUDE with /EXCLUDE.
For *event-class*, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTIONS</td>
<td>Select device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Select all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Select system configuration entries.</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>Select control entries. Control entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• System power failure restarts</td>
</tr>
<tr>
<td></td>
<td>• Time stamps</td>
</tr>
<tr>
<td></td>
<td>• System startups</td>
</tr>
<tr>
<td></td>
<td>• $SNDERR messages (system service to send messages to error log)</td>
</tr>
<tr>
<td></td>
<td>• Operator messages</td>
</tr>
<tr>
<td></td>
<td>• Network messages</td>
</tr>
<tr>
<td></td>
<td>• ERRLOG.SYS created</td>
</tr>
<tr>
<td>CPU_ENTRIES</td>
<td>Select CPU-related entries. CPU entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>• SBI alerts/faults</td>
</tr>
<tr>
<td></td>
<td>• Undefined interrupts</td>
</tr>
<tr>
<td></td>
<td>• MBA/UBA adapter errors</td>
</tr>
<tr>
<td></td>
<td>• Asynchronous write errors</td>
</tr>
<tr>
<td></td>
<td>• UBA errors</td>
</tr>
<tr>
<td>DEVICE_ERRORS</td>
<td>Select device error entries.</td>
</tr>
<tr>
<td>ENVIRONMENTAL_ENTRIES</td>
<td>Select environmental entries,</td>
</tr>
<tr>
<td>MACHINE_CHECKS</td>
<td>Select machine check entries.</td>
</tr>
<tr>
<td>MEMORY</td>
<td>Select memory errors.</td>
</tr>
<tr>
<td>SNAPSHOT_ENTRIES</td>
<td>Select snapshot entries.</td>
</tr>
<tr>
<td>SYNDROME</td>
<td>Select firmware-generated entries that describe a symptom set used by HP</td>
</tr>
<tr>
<td></td>
<td>support personnel to identify problems.</td>
</tr>
<tr>
<td>TIMEOUTS</td>
<td>Select device timeout entries.</td>
</tr>
<tr>
<td>UNKNOWN_ENTRIES</td>
<td>Select any entry that has an unknown entry class.</td>
</tr>
<tr>
<td>UNSOLICITED_MSCP</td>
<td>Select unsolicited MSCP entries.</td>
</tr>
<tr>
<td>VOLUME_CHANGES</td>
<td>Select volume mount and dismount entries.</td>
</tr>
</tbody>
</table>
/INTERACTIVE  
/NOINTERACTIVE  
Specifies whether or not ELV is to run in interactive shell mode after you execute the ELV command. By default, interactive shell mode results from the way the current ELV command was entered.

For more information, refer to Section 11.2.

/LOG  
/NOLOG  
Specifies whether or not ELV is to output control and informational messages to the terminal. The default /NOLOG does not output these messages to the terminal.

/NODE[=node-name,...]  
/NONODE[=node-name,...]  
Specifies that events occurring on a node or nodes are to be selected or rejected.

If you enter /NODE without a value, only events that occur on the node on which you are running ELV are selected.

If you enter /NONODE without a value, events occurring on all nodes that are represented in the error log file are selected.

/ONE_LINE  
Specifies that ELV is to generate a one-line-per-event standard report. Do not use /ONE_LINE with /BRIEF or /FULL.

/OUTPUT[=output-file]  
Specifies the output file that is to contain bit-to-text translation reports.

By default, output is written to SYS$OUTPUT. If you do not specify an output file name, the input file name is used. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file type, the default file type is .LIS.

/PAGE  
/NOPAGE  
Specifies whether or not to enable paged output of a report. The default /NOPAGE disables paged output of reports.

/REJECTED  
Specifies that rejected (rather than selected) events are to be translated.

For more information, refer to Section 11.3.

/SINCE[=date-time]  
Specifies that only those events dated later than the stated date and time are to be selected. If you omit a date and time, TODAY is used.

For date-time, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the OpenVMS User’s Manual for details on specifying times.

/SUMMARY  
/NOSUMMARY  
Specifies that a summary report or a standard report is to be generated:

• If you enter /SUMMARY, only a summary report is generated.
ELV
TRANSLATE

- If you enter /NOSUMMARY, only a standard report is generated.
- If you omit the qualifier altogether, the default is to display both a standard and a summary report.

/TERSE
Specifies that the data in a standard report is to be displayed in a less interpreted format, regardless of detail level. /TERSE has no effect on a summary report.

See the /TERSE example in Section 11.5.5.

Examples

1. $ ANALYZE/ERROR_LOG/ELV TRANSLATE /ONE_LINE /PAGE
   
   The command in this example translates selected events from the default SYS$ERRORLOG:ERRLOG.SYS file and writes the resulting standard and summary reports to the terminal in paged output. The standard report is a one-line-per-event report.

2. ELV> TRANSLATE /BRIEF /NOSUMMARY
   
   The command in this example translates selected events from the default SYS$ERRORLOG:ERRLOG.SYS file and writes the resulting standard report to the terminal. The standard report is a brief report.

3. ELV> TRANSLATE /SINCE=TODAY /OUTPUT=REPORT.TXT
   
   The command in this example translates selected events from the default SYS$ERRORLOG:ERRLOG.SYS file and writes the resulting standard report to an ASCII output file named REPORT.TXT.

   The selected events are those that occurred since TODAY.

4. $ ANALYZE/ERROR_LOG/ELV TRANSLATE /FULL /TERSE
   
   The command in this example translates selected events from the default SYS$ERRORLOG:ERRLOG.SYS file and writes the resulting standard and summary reports to the terminal. The standard report is a full report in terse format.

5. ELV> TRANSLATE /INCLUDE=VOLUME_CHANGES /SUMMARY
   
   The command in this example translates selected events from the default SYS$ERRORLOG:ERRLOG.SYS file and writes the resulting summary report to the terminal.

   The selected events include only the VOLUME_CHANGES event class.
WRITE

Performs an image copy of events from one or more binary error log files to a single new binary error log file.

Format

WRITE [input-file,...]

Parameter

input-file
Supplies one or more names of binary error log files to be used to produce a new binary error log file.

If you do not specify an input file, the default input file is SYS$ERRORLOG:ERRLOG.SYS. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file name, the default file name is ERRLOG. If you do not specify a file type, the default file type is .SYS.

Qualifiers

/BEFORE[=date-time]
Specifies that only those events dated earlier than the stated date and time are to be selected.

For date-time, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the OpenVMS User’s Manual for details on specifying times.

If you omit a date and time, TODAY is used.

/ENTRY[=keyword,...]
Specifies the range of entries to be selected.

You can specify one or both of the following keywords:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>START[:decimal-value]</td>
<td>Indicates the start of a range of entries to be selected.</td>
</tr>
<tr>
<td>END[:decimal-value]</td>
<td>Indicates the end of a range of entries to be selected.</td>
</tr>
</tbody>
</table>

Usage Notes:

- You can specify one or both of these keywords. If you specify both keywords, you must enclose them in parentheses.
- If you specify /ENTRY without an entry range, the entry range defaults to START:1,END:end-of-file.
- If you specify the START or END keyword without a value, the keyword is ignored.
/EXCLUDE=\text{event-class} [...]

Specifies an event class or classes to be rejected. Do not use /EXCLUDE with /INCLUDE.

For \text{event-class}, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTIONS</td>
<td>Reject device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Reject all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Reject system configuration entries.</td>
</tr>
<tr>
<td>CONTROL_ENTRIES</td>
<td>Reject control entries. Control entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>- System power failure restarts</td>
</tr>
<tr>
<td></td>
<td>- Time stamps</td>
</tr>
<tr>
<td></td>
<td>- System startups</td>
</tr>
<tr>
<td></td>
<td>- $SNDERR$ messages (system service to send messages to error log)</td>
</tr>
<tr>
<td></td>
<td>- Operator messages</td>
</tr>
<tr>
<td></td>
<td>- Network messages</td>
</tr>
<tr>
<td></td>
<td>- ERRLOG.SYS created</td>
</tr>
<tr>
<td>CPU_ENTRIES</td>
<td>Reject CPU-related entries. CPU entries include the following entry types:</td>
</tr>
<tr>
<td></td>
<td>- SBI alerts/faults</td>
</tr>
<tr>
<td></td>
<td>- Undefined interrupts</td>
</tr>
<tr>
<td></td>
<td>- MBA/UBA adapter errors</td>
</tr>
<tr>
<td></td>
<td>- Asynchronous write errors</td>
</tr>
<tr>
<td></td>
<td>- UBA errors</td>
</tr>
<tr>
<td>DEVICE_ERRORS</td>
<td>Reject device error entries.</td>
</tr>
<tr>
<td>ENVIRONMENTAL_ENTRIES</td>
<td>Reject environmental entries.</td>
</tr>
<tr>
<td>MACHINE_CHECKS</td>
<td>Reject machine check entries.</td>
</tr>
<tr>
<td>MEMORY</td>
<td>Reject memory errors.</td>
</tr>
<tr>
<td>SNAPSHOT_ENTRIES</td>
<td>Reject snapshot entries.</td>
</tr>
<tr>
<td>SYNDROME</td>
<td>Reject firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.</td>
</tr>
<tr>
<td>TIMEOUTS</td>
<td>Reject device timeout entries.</td>
</tr>
</tbody>
</table>
UNKNOWN_ENTRIES Reject any entry that has an unknown entry class.

UNSOLICITED_MSCP Reject unsolicited MSCP entries.

VOLUME_CHANGES Reject volume mount and dismount entries.

/INCLUDE=event-class[,...]
Specifies an event class or classes to be selected. All other event classes are implicitly rejected. Do not use /INCLUDE with /EXCLUDE.

For event-class, specify one or more of the keywords shown in the following table. If you specify more than one keyword, use a comma-separated list of values enclosed in parentheses.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTENTIONS</td>
<td>Select device attention entries.</td>
</tr>
<tr>
<td>BUGCHECKS</td>
<td>Select all types of bugcheck entries.</td>
</tr>
<tr>
<td>CONFIGURATION</td>
<td>Select system configuration entries.</td>
</tr>
</tbody>
</table>
| CONTROL_ENTRIES       | Select control entries. Control entries include the following entry types:
  • System power failure restarts
  • Time stamps
  • System startups
  • $SNDERR messages (system service to send messages to error log)
  • Operator messages
  • Network messages
  • ERRLOG.SYS created
| CPU_ENTRIES           | Select CPU-related entries. CPU entries include the following entry types:
  • SBI alerts/faults
  • Undefined interrupts
  • MBA/UBA adapter errors
  • Asynchronous write errors
  • UBA errors
| DEVICE_ERRORS         | Select device error entries.                     |
| ENVIRONMENTAL_ENTRIES | Select environmental entries.                    |
| MACHINE_CHECKS        | Select machine check entries.                    |
| MEMORY                | Select memory errors.                            |
| SNAPSHOT_ENTRIES      | Select snapshot entries.                         |
### KEYWORDS AND DESCRIPTIONS

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNDROME</td>
<td>Select firmware-generated entries that describe a symptom set used by HP support personnel to identify problems.</td>
</tr>
<tr>
<td>TIMEOUTS</td>
<td>Select device timeout entries.</td>
</tr>
<tr>
<td>UNKNOWN_ENTRIES</td>
<td>Select any entry that has an unknown entry class.</td>
</tr>
<tr>
<td>UNSOLICITED_MSCP</td>
<td>Select unsolicited MSCP entries.</td>
</tr>
<tr>
<td>VOLUME_CHANGES</td>
<td>Select volume mount and dismount entries.</td>
</tr>
</tbody>
</table>

### /INTERACTIVE /NOINTERACTIVE

Specifies whether or not ELV is to run in interactive shell mode after you execute the ELV command. By default, interactive shell mode results from the way the current ELV command was entered.

For more information, refer to Section 11.2.

### /LOG /NOLOG

Specifies whether or not ELV is to output control and informational messages to the terminal. The default /NOLOG does not output these messages to the terminal.

### /NODE[=node-name,...] /NONODE[=node-name,...]

Specifies that events occurring on a node or nodes are to be selected or rejected.

If you /NODE without a value, only events that occur on the node on which you are running ELV are selected.

If you enter /NONODE without a value, events occurring on all nodes that are represented in the error log file are selected.

### /OUTPUT[=output-file]

Specifies the output file that is to contain image copies of events.

If you do not specify an output file name, the input file name is used. If you do not specify a device and directory, your current device and directory are used. If you do not specify a file type, the default file type is .DAT.

### /REJECTED

Specifies that rejected (rather than selected) events are to be copied to a new binary error log file.

For more information, refer to Section 11.3.

### /SINCE[=date-time]

Specifies that only those events dated later than the stated date and time are to be selected.

For date-time, you can specify an absolute time, a delta time, or a combination of absolute and delta times. See the OpenVMS User’s Manual for details on specifying times.

If you omit a date and time, TODAY is used.
Examples

1. `ELV> WRITE /EXCLUDE=CONTROL_ENTRIES /OUTPUT=NEW_ERROR_LOG.SYS`
   The command in this example copies selected events from the default SYS$ERRORLOG:ERRLOG.SYS file to a new error log file named NEW_ERROR_LOG.SYS.
   The selected events do not include the CONTROL_ENTRIES event class.

2. `ELV> WRITE /NONODE=PANDA /SINCE="20-Aug-2003 04:51:33.87"
   The command in this example copies selected events from the default SYS$ERRORLOG:ERRLOG.SYS file to a new error log file named ERRLOG.DAT.
   The selected events are those that occurred since the specified date on all nodes except PANDA.

3. `$ ANALYZE/ERROR_LOG/ELV WRITE /ENTRY=(START:5,END:10)
   The command in this example copies selected events from the default SYS$ERRORLOG:ERRLOG.SYS file to a new error log file named ERRLOG.DAT.
   The selected events start with entry 5 and end with entry 10.

4. `$ ANALYZE/ERROR_LOG/ELV WRITE /ENTRY=(START:5,END:10) /REJECTED
   This example is identical to the previous example except that rejected events are copied rather than selected events.
   The rejected events are those that fall outside the specified entry range."
11.5 ELV Sample Reports

You can use the following TRANSLATE qualifiers to produce variations of the standard report:

- /ONE_LINE
- /BRIEF
- /FULL
- /TERSE

See Table 11–1 for more information about report formats.

The following sections contain examples of the reports that result from using these qualifiers. In addition, an example is shown of using no qualifiers to produce a standard report of the default detail level.

11.5.1 /ONE_LINE Example

The report produced when you use the /ONE_LINE qualifier includes only the header information for each event.

The example that follows contains multiple summary reports, one for each node represented in this error log file, and a summary report for the entire file.

```
Output for SYS$COMMON:[SYSEXE.ERRLOGS]EXAMPLE.DAT;2

<table>
<thead>
<tr>
<th>EVENT</th>
<th>EVENT TYPE</th>
<th>TIMESTAMP</th>
<th>NODE</th>
<th>EVENT_CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Volume Mount</td>
<td>8-FEB-2001 10:15:16.12</td>
<td>WF35P0</td>
<td>VOLUME_CHANGES</td>
</tr>
<tr>
<td>3</td>
<td>Volume Dismount</td>
<td>8-FEB-2001 10:15:16.15</td>
<td>WF35P0</td>
<td>VOLUME_CHANGES</td>
</tr>
<tr>
<td>4</td>
<td>Volume Mount</td>
<td>8-FEB-2001 10:15:16.28</td>
<td>WF35P0</td>
<td>VOLUME_CHANGES</td>
</tr>
</tbody>
</table>

ERROR_LOG_SUMMARY

Summary for node: FRANZ
Total number of events: 1
Number of the first event: 1
Number of the last event: 1
Number of events by event class:
 VOLUME_CHANGES 1

Summary for node: WF35P0
Total number of events: 3
Number of the first event: 2
Number of the last event: 4
Latest event occurred: 8-FEB-2001 10:15:16.28
Number of events by event class:
 VOLUME_CHANGES 3

Summary for node: <ALL NODES>
Total number of events: 4
Number of the first event: 1
Number of the last event: 4
Number of events by event class:
 VOLUME_CHANGES 4
```
11.5.2 /BRIEF Example

The report produced when you use the /BRIEF qualifier includes only the most essential event information along with the header information for each event.

Output for SYSSCOMMON:[SYSEXE.ERRLOGS]EXAMPLE.DAT;1:

<table>
<thead>
<tr>
<th>EVENT</th>
<th>EVENT_TYPE</th>
<th>TIMESTAMP</th>
<th>NODE</th>
<th>EVENT_CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESCRIPTION</td>
<td>RANGE ____ VALUE ____</td>
<td>TRANSLATED_VALUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logging CPU</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of CPU's in Active Set</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Marketing Model</td>
<td>1968</td>
<td></td>
<td>COMPAQ AlphaServer GS160</td>
</tr>
<tr>
<td></td>
<td>Error Mask</td>
<td>&lt;31:00&gt;: 0x00000003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating System Version</td>
<td>X9WY-SSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device Unit Number</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device Generic Name</td>
<td>FRANZ$DKB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume Label</td>
<td>OPAL_X9WY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERROR_LOG_SUMMARY:

Total number of events: 1
Number of the first event: 1
Number of the last event: 1
Number of events by event class: VOLUME_CHANGES 1

11.5.3 No Qualifiers Example

The report produced when you do not use any qualifiers includes only the most commonly useful event information along with the header information for each event.

Output for SYSSCOMMON:[SYSEXE.ERRLOGS]EXAMPLE.DAT;1:

<table>
<thead>
<tr>
<th>EVENT</th>
<th>EVENT_TYPE</th>
<th>TIMESTAMP</th>
<th>NODE</th>
<th>EVENT_CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESCRIPTION</td>
<td>RANGE ____ VALUE ____</td>
<td>TRANSLATED_VALUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware Architecture</td>
<td>4</td>
<td>Alpha</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware System Type</td>
<td>35</td>
<td>Wildfire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logging CPU</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of CPU's in Active Set</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Marketing Model</td>
<td>1968</td>
<td></td>
<td>COMPAQ AlphaServer GS160</td>
</tr>
<tr>
<td></td>
<td>Error Mask</td>
<td>&lt;31:00&gt;: 0x00000003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating System Version</td>
<td>X9WY-SSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device Unit Number</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device Generic Name</td>
<td>FRANZ$DKB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Owner UIC of the Volume</td>
<td>65537</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit Operation Count</td>
<td>378</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device Unit Number</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device Generic Name</td>
<td>FRANZ$DKB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume Number within Set</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of Volumes within Set</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume Label</td>
<td>OPAL_X9WY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERROR_LOG_SUMMARY:

Total number of events: 1
Number of the first event: 1
Number of the last event: 1
Number of events by event class: VOLUME_CHANGES 1
11.5 ELV Sample Reports

11.5.4 /FULL Example

The report produced when you use the /FULL qualifier includes all event information along with the header information for each event.

```
Output for SYS$COMMON:[SYSEX.EERRLOGS]EXAMPLE.DAT;
```

<table>
<thead>
<tr>
<th>EVENT</th>
<th>EVENT_TYPE</th>
<th>TIMESTAMP</th>
<th>NODE</th>
<th>EVENT_CLASS</th>
</tr>
</thead>
</table>

**DESCRIPTION**

- Operating System Type
- Hardware Architecture
- Vendor ID
- Hardware System Type
- Logging CPU
- Number of CPU’s in Active Set
- System Marketing Model
- Error Mask
- Seconds Since Boot
- Chip Type
- Error Sequence Number
- DSR String
- DDR String
- System Serial Number
- Time - ISO 8601 Format
- Operating System Version
- Computer Name
- Owner UIC of the Volume
- Unit Operation Count
- Device Unit Number
- Device Generic Name
- Volume Number within Set
- Number of Volumes within Set
- Volume Label

**ERROR_LOG_SUMMARY**

- Total number of events: 1
- Number of the first event: 1
- Number of the last event: 1
- Number of events by event class: VOLUME_CHANGES 1

11.5.5 /TERSE Example

The following modifications are made to the standard report when you use the /TERSE qualifier:

- Translations of field values are omitted, resulting in a more compressed report layout.
- Field values are displayed in hex rather than their default format.
- Fields that are usually suppressed when they contain a value of zero are output regardless of their value.
- A concatenated field is output as separate fields rather than as a single field.

The example that follows shows the results of using the /TERSE qualifier with the /FULL qualifier. You can also use /TERSE with standard reports of any detail level to output event information in terse format.
<table>
<thead>
<tr>
<th>EVENT</th>
<th>EVENT_TYPE</th>
<th>TIMESTAMP</th>
<th>NODE</th>
<th>EVENT_CLASS</th>
</tr>
</thead>
</table>

**DESCRIPTION**

- Operating System Type: 0x0002
- Hardware Architecture: 0x0004
- Vendor ID: 0x00000DE
- Hardware System Type: 0x0000000000000023
- Logging CPU: 0x00000003
- Number of CPU’s in Active Set: 0x00000004
- Device Class: 0x0000
- System Marketing Model: 0x000007B0
- Device Type: 0x0000
- OS Flags <15:00>: 0x0000
- Error Mask <31:00>: 0x00000003
- Seconds Since Boot: 0x00000011
- Chip Type: 0x0000002E
- DSR String: 265767265536168706C41
- DDR String: 0000000000000000000
- System Serial Number: 0000000000000000000
- Time - ISO 8601 Format: 33331343138303303032
- Operating System Version: 0x4253532D59573958
- Computer Name: 0x000002020205A4E415246
- Owner UIC of the Volume: 0x00010001
- Unit Error Count: 0x00000000
- Unit Operation Count: 0x0000017A
- Device Unit Number: 0x00C8
- Device Generic Name: 000424B44245A4B415246
- Volume Number within Set: 0x0000
- Number of Volumes within Set: 0x0000
- Volume Label: 020595739585F4C41504F

**ERROR_LOG_SUMMARY**

- Total number of events: 1
- Number of the first event: 1
- Number of the last event: 1
- Number of events by event class: VOLUME_CHANGES 1
12

Install Utility
12.1 INSTALL Description

The Install utility (INSTALL) creates **known file entries** to improve the performance of executable and shareable images, especially those that run frequently, run concurrently with several processes, or allow images to run in a privileged context.

Known file entries last only while the system is operating. If the system is shut down or fails for any reason, you must reinstall all known images after the system is rebooted. For this reason, you are encouraged to include additional INSTALL commands for selected images in the site-specific command procedure SYS$MANAGER:SYSTARTUP_VMS.COM.

12.2 INSTALL Usage Summary

Use the Install utility (INSTALL) to enhance the performance of selected executable and shareable images, to assign enhanced privileges to images, and to support user-written system services. The system stores the name and attributes of installed images on known file lists.

**Format**

```
INSTALL [command]
```

**Parameter**

- `command`
  Specifies an INSTALL command. This parameter is optional. If no command is specified, the utility displays its prompt and waits for command input.

**Description**

To invoke INSTALL, enter the DCL command INSTALL at the DCL prompt as follows:

```
$ INSTALL
```

The utility responds with the following prompt:

```
INSTALL>
```

You can then perform INSTALL operations by entering the appropriate INSTALL commands.

To exit from the Install utility, enter the EXIT command at the INSTALL> prompt or press Ctrl/Z. Either method returns control to the DCL command level.

Alternatively, you can enter a single INSTALL command on the same line as the command that invokes the utility, for example:

```
$ INSTALL LIST/FULL SYS$SYSTEM:LOGINOUT
```

12.3 INSTALL Qualifiers

This section describes the /TRANSLATE qualifier and provides examples of its use.
INSTALL
/TRANSLATE

/TRANSLATE

The /TRANSLATE qualifier forces INSTALL to attempt a logical name translation of a file that you specify.

Note

Before you use the /TRANSLATE qualifier, you must invoke INSTALL as a foreign command:

$ INSTALL = "$INSTALL"

Format

/TRANSLATE

Description

Within OpenVMS, when you specify a file name without a device, directory, or file type, OpenVMS usually attempts a logical name translation of the file name before it applies device, directory, or file type defaults. However, if you specify a device, directory, or file type, OpenVMS does not attempt a logical name translation.

Using the /TRANSLATE qualifier forces INSTALL to attempt a logical name translation even if a device, directory, or file type is specified.

Examples

1. DEFINE FILE1 FILE1_EV6
   $ INSTALL = "$INSTALL"
   $ INSTALL
   INSTALL> ADD SYS$SHARE:FILE1.EXE ! SYS$SHARE:FILE1 is added as a known image

   The first command in this example defines FILE1 as a logical name with an equivalence name of FILE1_EV6. However, because a device (SYS$SHARE:) and file type (.EXE) are supplied, INSTALL treats FILE1 as part of a file specification rather than as a logical name.

2. DEFINE FILE1 FILE1_EV6
   $ INSTALL = "$INSTALL"
   $ INSTALL/TRANSLATE
   INSTALL> ADD SYS$SHARE:FILE1.EXE ! SYS$SHARE:FILE1_EV6 is added as a known image

   The first command in this example defines FILE1 as a logical name with an equivalence name of FILE1_EV6. Because /TRANSLATE is specified, INSTALL treats FILE1 as a logical name even though a device (SYS$SHARE:) and file type (.EXE) are supplied.
12.4 INSTALL Commands

This section describes and provides examples of the INSTALL commands. The following table summarizes the INSTALL command functions:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Synonym for the CREATE command</td>
</tr>
<tr>
<td>CREATE</td>
<td>Installs the specified image as a known image</td>
</tr>
<tr>
<td>DELETE</td>
<td>Synonym for the REMOVE command</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exits from INSTALL</td>
</tr>
<tr>
<td>HELP</td>
<td>Describes how to use INSTALL</td>
</tr>
<tr>
<td>LIST</td>
<td>Displays a description of each specified known image, global sections, and the addresses of known image data structures</td>
</tr>
<tr>
<td>PURGE</td>
<td>Deletes all known images installed without the /NOPURGE qualifier</td>
</tr>
<tr>
<td>REMOVE</td>
<td>Deletes a known image</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Associates a known image with the latest version of the image file or modifies the attributes of an installed image</td>
</tr>
</tbody>
</table>
ADD

Installs the specified image file as a known image. The ADD command is a synonym for the CREATE command.

Requires the CMKRNL privilege. Also requires the SYSGBL privilege to create system global sections and the PRMGBL privilege to create permanent global sections.
CREATE

Installs the specified image file as a known image. The CREATE command is a synonym for the ADD command.

Requires the CMKRNL privilege. Also requires the SYSGBL privilege to create system global sections and the PRMGBL privilege to create permanent global sections.

Format

CREATE  file-spec

Parameter

file-spec
Names the file specification of an image to be installed as a known image. The file specification must name an existing executable or shareable image, which must have been linked with the /NOTRACEBACK qualifier. If you omit the device and directory specification, the default SYS$SYSTEM is used. The default file type is .EXE.

The highest existing version of the file is used by default. However, you can specify another version of the file as the known version of the image. Even if other versions of the file exist, the version that you specify will be the version that satisfies all known file lookups for the image.

Qualifiers

/ACCOUNTING
/NOACCOUNTING (default)
Enables image-level accounting for the specified image even if image accounting is disabled (by using the DCL command SET ACCOUNTING/DISABLE=IMAGE). When image accounting is enabled on the local node, it logs all images, and the /NOACCOUNTING qualifier has no effect.

/ARB_SUPPORT=keyword
On Alpha systems, overrides the system parameter ARB_SUPPORT for this installed image.

The following table shows the keywords you can use with the /ARB_SUPPORT qualifier:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The obsolete kernel data cells are not maintained by the system. Fields are initialized to zero or set to invalid pointers at process creation.</td>
</tr>
<tr>
<td>Clear</td>
<td>The obsolete kernel data cells are cleared or set to invalid pointers when the code would have set up values for backward compatibility.</td>
</tr>
<tr>
<td>Read-only</td>
<td>The obsolete cells are updated with corresponding security information stored in the current Persona Security Block (PSB) when a $PERSONA_ASSUME is issued.</td>
</tr>
</tbody>
</table>
### Keyword Behavior

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full (default)</td>
<td>Data is moved from the obsolete cells to the currently active PSB on any security-based operation.</td>
</tr>
</tbody>
</table>

For more information about obsolete kernel cells, refer to the ARB_SUPPORT system parameter in an appendix to this manual or in online help.

/AUTHPRIVILEGES[=(priv-name[,...])]

/NOAUTHPRIVILEGES

Installs the file as a known image installed with the authorized privileges specified.

#### Usage Notes

- If a privileged image is not located on the system volume, the image is implicitly installed /OPEN.
- The set of privileges for a privileged image can be empty. You must, however, list each privilege every time you define or redefine privileges.
- The /AUTHPRIVILEGES qualifier applies only to executable images.
- You cannot specify this qualifier for an executable image linked with the /TRACEBACK qualifier.
- You cannot assign privilege names with the /NOAUTHPRIVILEGES qualifier.

You can specify one or more of the privilege names described in detail in an appendix to the *HP OpenVMS Guide to System Security*. (ALL is the default.)

/EXECUTE_ONLY

/NOEXECUTE_ONLY (default)

The /EXECUTE_ONLY qualifier is meaningful only to main programs. It allows the image to activate shareable images to which the user has execute access but no read access. All shareable images referenced by the program must be installed, and OpenVMS RMS uses trusted logical names (those created for use in executive or kernel mode).

You cannot specify this qualifier for an executable image linked with the /TRACEBACK qualifier.

/HEADER_RESIDENT

/NOHEADER_RESIDENT

Installs the file as a known image with a permanently resident header (native mode images only). An image installed header resident is implicitly installed open.

/LOG

/NOLOG (default)

Lists the newly created known file entry along with any associated global sections created by the installation.

/OPEN

/NOOPEN

Installs the file as a permanently open known image.
/PRIVILEGED[=(priv-name[,...])]  
/NOPRIVILEGED  
Installs the file as a known image with active privileges specified. If a privileged image is not located on the system volume, the image is implicitly installed /OPEN.  

Usage Notes  
- The set of privileges for a privileged image can be empty.  
- You must list each privilege every time you define or redefine privileges.  
- The /PRIVILEGED qualifier applies only to executable images.  
- You cannot specify this qualifier for an executable image linked with the /TRACEBACK qualifier.  
- You cannot assign privilege names with the /NOPRIVILEGED qualifier.  

Installing Shareable Images  
Installing an image with privileges declares that the image is trusted to maintain system integrity and security properly. To maintain that trust, any routine called by the privileged image must also be trusted. For this reason, any shareable images activated for use by a privileged image must be installed. Only trusted logical names (names defined in executive and kernel mode) can be used in locating shareable images to be used by a privileged image.  

Interaction of /PRIVILEGED and /AUTHPRIVILEGES  
When you create a new entry, the privileges you assign are also assigned for Authorized Privileges if you do not assign specific authorized privileges with the /AUTHPRIVILEGED qualifier.  

When you replace an image, any privileges assigned with the /PRIVILEGED qualifier are not repeated as Authorized Privileges. Also, if you use the REPLACE command with the /NOAUTHPRIVILEGES qualifier, the Authorized Privileges become the same as the Default Privileges (set using the /PRIVILEGED qualifier).  

You can specify one or more of the privilege names described in detail in an appendix to the HP OpenVMS Guide to System Security. (ALL is the default.)  

For examples of how to use CREATE commands with /PRIVILEGES qualifiers, see the Examples section at the end of this command.  

/PURGE (default)  
/NOPURGE  
Specifies that the image can be removed by a purge operation; if you specify /NOPURGE, you can remove the image only by a remove operation.
/RESIDENT[=(NO]CODE,[NO]DATA)]
On Alpha systems, causes image code sections or read-only data sections to be placed in the granularity hint regions and compresses other image sections, which remain located in process space. If you do not specify the /RESIDENT qualifier, neither code nor data is installed resident. If you specify the /RESIDENT qualifier without keyword arguments, code is installed resident, and data is not installed resident.

The image must be linked using the /SECTION_BINDING=(CODE,DATA) qualifier. An image installed with resident code or data is implicitly installed header resident and shared.

/SHARED=[NO]ADDRESS_DATA]
/NOSHAED
Installs the file as a shared known image and creates global sections for the image sections that can be shared. An image installed shared is implicitly installed open.

When you use the ADDRESS_DATA keyword with the /SHARED qualifier, P1 space addresses are assigned for shareable images. With the assigned addresses, the Install utility can determine the content of an address data section when the image is installed rather than when it is activated, reducing CPU and I/O time. A global section is created to allow shared access to address data image sections.

/SIGNAL
/NOSIGNAL
Installs the file as an image capable of accepting signals (or exceptions) from other processes. This allows privileged images to be signaled.

/WRITABLE=[GALAXY[=IDENT]]
/NOWRITABLE
Installs the file as a writable known image when you also specify the /SHARED qualifier. The /WRITABLE qualifier applies only to images with image sections that are shareable and writable. The /WRITABLE qualifier is automatically negated if the /NOSHARED qualifier is specified.

You can use the GALAXY keyword with the /WRITABLE qualifier to place write shared image sections in Galaxy global sections. You can also use the IDENT keyword with GALAXY to include the image ident in the name of the Galaxy global section, so that multiple versions of an image can be used simultaneously in a Galaxy system.

Examples

1. INSTALL> CREATE/OPEN/SHARED WRKD$:[MAIN]STATSHR
   The command in this example installs the image file STATSHR as a permanently open shared known image.

2. INSTALL> CREATE/OPEN/PRIVILEGED=(GROUP,GRPNAM) GRPCOMM
   The command in this example installs the image file GRPCOMM as a permanently open known image with the privileges GROUP and GRPNAM.
   Any process running GRPCOMM receives the GROUP and GRPNAM privileges for the duration of the execution of GRPCOMM. The full name of GRPCOMM is assumed to be SYS$SYSTEM:GRPCOMM.EXE.
3. INSTALL> CREATE/LOG GRPCOMM
   The command in this example installs the image file GRPCOMM as a known image and then displays the newly created known file entry.

4. INSTALL> CREATE/SHARED=ADDRESS_DATA WRKD$: [MAIN] INFOSHR
   The command in this example installs the INFOSHR file as a shared known image and creates shared global sections for code sections and read-only data sections. Because the command includes the ADDRESS_DATA keyword, address data is also created as a shared global section.

5. INSTALL> CREATE STATSHR/PRIV
   The command in this example creates the STATSHR image with all privileges.

6. INSTALL> CREATE STATSHR/PRIV=(OPER, SYSPRV)
   The command in this example creates the STATSHR image with the OPER and SYSPRV privileges.

7. INSTALL> CREATE STATSHR/PRIV=NOALL
   The command in this example creates the STATSHR image with an empty set of privileges.

8. INSTALL> CREATE STATSHR/NOPRIV
   The command in this example creates the STATSHR image explicitly with no privileges.
DELETE

Deletes a known image. The DELETE command is a synonym for the REMOVE command.
EXIT

Terminates INSTALL and returns control to the DCL command level. You can also exit from INSTALL by pressing Ctrl/Z.

Format

EXIT
HELP

Displays information about how to use INSTALL.

Format

HELP [command]

Parameter

command

Specifies the name of a command for which help information is to be displayed. If you omit a command name, a list of commands is displayed and you are prompted for a command name.

Examples

1. INSTALL> HELP

The command in this example displays a list of INSTALL topics and a Topic? prompt. Any topic from the list can be entered at the prompt.

2. INSTALL> HELP LIST

LIST

For display of a one-line description of the specified known image, or if no file is specified, then for all known images. Use with /FULL to obtain a multiline description.

Format: LIST [file-spec] /qualifier

QUALIFIER COMBINATION   BEHAVIOR
LIST [file-spec]          List the known image for file-spec
LIST                     List all entries

Additional information available:

Qualifiers
/FULL   /GLOBAL   /STRUCTURE   /SUMMARY

The command in this example displays help information about the LIST command.
LIST

Displays a description of each specified known image or, if no file is specified, all known images.

Format

LIST [file-spec]

Parameter

file-spec
Names the file specification of an image installed as a known image. If you omit the file specification, INSTALL displays all known images.

Description

You can use the LIST command with the /FULL qualifier to display information that is useful in tuning the known image database. For example, a high entry-access count for an image may indicate that system performance could benefit if the image were installed /OPEN. Similarly, high entry-access counts for an image may indicate that installing the image /SHARED—that is, with global sections—could improve performance. For a description of global sections and global pages, including information about how to estimate the size of installed images, refer to the *HP OpenVMS System Services Reference Manual*.

Qualifiers

/FULL
Displays a multiline description of the specified known image, including the number of accesses, the number of concurrent accesses, and the number of global sections created. The /FULL qualifier with the /GLOBAL qualifier shows information about global sections, plus the current owner and protection codes and access control entries.

/GLOBAL
Lists global sections for any specified shared image, or if you omit the file specification, lists all global sections. If a global section is created by INSTALL to support a particular image, that image is also identified.

/RESIDENT
Displays a description of each resident image.

/STRUCTURE
Lists addresses of known image data structures.

/SUMMARY
Used with the /GLOBAL qualifier, displays the global section and global page usage on the system for local and shared memory global sections.
Examples

1. INSTALL> LIST

The command in this example displays a single-line description of all known images. The description includes the file specification of the known image and its attributes.

```
SYS$DISK:<SYS0.SYSCOMMON.SYSEXE>.EXE
ANALIMDMP;1 Prv ①
AUTHORIZE;1 Prv ②
CDU;1 Open Hdr Prv
DCL;1 Open Hdr Shar
FAL;1 Open Hdr Shar
INSTALL;1 Prv
LOGINOUT;1 Open Hdr Shar Prv
MAIL;1 Open Hdr Shar
MAIL_SERVER;1 Open Hdr Shar Prv
REQUEST;1 Prv
SET;1 Open Hdr Shar Prv
SETAUDIT;1 Prv
SETP0;1 Open Hdr Shar Prv
SETRIGHTS;1 Prv
SHOW;1 Open Hdr Shar Prv
SHWCLSRL;1 Open Hdr Shar Prv
SUBMIT;1 Open Hdr Shar Prv
SYSMAN;1 Prv
SYS$DISK:<SYS0.SYSCOMMON.SYSLIB>.EXE
ANALIMDMP$HR;1 Prv
CONVSHR;1
DCLTABLES;1 Open Hdr Shar Lnkbl
.
.
.
LIBOTS;1 Open Hdr Shar Lnkbl Resid
LIBRTL;1 Open Hdr Shar Lnkbl Resid
MAILSHR;1 Open Hdr Shar Lnkbl
.
.
```

① File specification of the known image

② Attribute of known image, as follows:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACNT</td>
<td>Image accounting is enabled for the image (/ACCOUNTING).</td>
</tr>
<tr>
<td>†CMODE</td>
<td>Image is in compatibility mode, set by the VAX–11 RSX Linker.</td>
</tr>
<tr>
<td>HDR</td>
<td>Image header is permanently resident (/HEADER_RESIDENT).</td>
</tr>
<tr>
<td>LNKBL</td>
<td>Image is not executable; it is a shareable (linkable) image set by the OpenVMS Linker.</td>
</tr>
</tbody>
</table>

†VAX specific
### Attribute Meaning

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOPURG</td>
<td>Image cannot be removed by a purge operation; it can only be removed by a delete or remove operation (/NOPURGE).</td>
</tr>
<tr>
<td>OPEN</td>
<td>Image is permanently open (/OPEN).</td>
</tr>
<tr>
<td>PROT</td>
<td>Image contains protected code (/PROTECTED).</td>
</tr>
<tr>
<td>PRV</td>
<td>Image has privileges (/PRIVILEGED).</td>
</tr>
<tr>
<td>RESID</td>
<td>Image is resident (/RESIDENT).</td>
</tr>
<tr>
<td>SAFE</td>
<td>Image is a privileged image registered as being compatible with the running version of OpenVMS. For more information about registered images, refer to the <em>HP OpenVMS System Manager’s Manual, Volume 1: Essentials</em>.</td>
</tr>
<tr>
<td>SHAR</td>
<td>Image is shared (/SHARED).</td>
</tr>
<tr>
<td>WRT</td>
<td>Image is writable (/WRITABLE).</td>
</tr>
<tr>
<td>XONLY</td>
<td>Only execute access to image is allowed (/EXECUTE_ONLY).</td>
</tr>
</tbody>
</table>

‡Alpha specific

2. **INSTALL> LIST/RESIDENT**

The command in this Alpha example displays a single-line description of all resident images. The description includes the location in memory, the size of the code sections, and the type of section.

#### System Resident Sections

**SYSSDISK:<SYS0.SYSCOMM.SYSLIB>.EXE**

<table>
<thead>
<tr>
<th>Base VA</th>
<th>End VA</th>
<th>Length</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>80490000</td>
<td>80490A00</td>
<td>00000A00</td>
<td>Resident Code</td>
</tr>
<tr>
<td>7FC04000</td>
<td>7FC04A00</td>
<td>00000A00</td>
<td>Linkage</td>
</tr>
<tr>
<td>7FC14000</td>
<td>7FC14200</td>
<td>00000200</td>
<td>Writeable data</td>
</tr>
<tr>
<td>7FC34000</td>
<td>7FC34200</td>
<td>00000200</td>
<td>Writeable data</td>
</tr>
</tbody>
</table>

**CMA$TIS_SHR;1**

<table>
<thead>
<tr>
<th>Base VA</th>
<th>End VA</th>
<th>Length</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>80548000</td>
<td>805D1C00</td>
<td>00089C00</td>
<td>Resident Code</td>
</tr>
<tr>
<td>805D2000</td>
<td>805D2400</td>
<td>00000400</td>
<td>Resident Code</td>
</tr>
<tr>
<td>7FE34000</td>
<td>7FE4B800</td>
<td>00017800</td>
<td>Linkage</td>
</tr>
<tr>
<td>7FE54000</td>
<td>7FE59A00</td>
<td>00005A00</td>
<td>Writeable data</td>
</tr>
<tr>
<td>7FE64000</td>
<td>7FE64800</td>
<td>00000800</td>
<td>Read-only data</td>
</tr>
<tr>
<td>7FE84000</td>
<td>7FE84200</td>
<td>00000200</td>
<td>Writeable data</td>
</tr>
<tr>
<td>7FE94000</td>
<td>7FE94200</td>
<td>00000200</td>
<td>Demand-zero</td>
</tr>
<tr>
<td>7FEA4000</td>
<td>7FEA7000</td>
<td>00003000</td>
<td>Demand-zero</td>
</tr>
<tr>
<td>7FEB4000</td>
<td>7FEB5800</td>
<td>00001800</td>
<td>Writeable data</td>
</tr>
</tbody>
</table>

**DECC$SHR;1**

<table>
<thead>
<tr>
<th>Base VA</th>
<th>End VA</th>
<th>Length</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>80492000</td>
<td>80547600</td>
<td>000B5600</td>
<td>Resident Code</td>
</tr>
</tbody>
</table>

**DPML$SHR;1**
3. INSTALL> LIST/FULL LOGINOUT

The command in this example displays a multiline description of the known image LOGINOUT.

SYS$DISK:<SYS0.SYSCOMMON.SYSEXE>.EXE

LOGINOUT;3 Open Hdr Shar Priv
Entry access count = 44
Current / Maximum shared = 3 / 5
Global section count = 2
Privileges = CMKRNL SYSNAM TMPMBX EXQUOTA SYSPRV

1 Number of times known file entry has been accessed by this node since it was installed.

2 First number indicates the current count of concurrent accesses of the known file. The second number indicates the highest count of concurrent accesses of the file since it was installed. This number appears only if the image is installed with the /OPEN qualifier.

3 Number of global sections created for the known file; appears only if the image is installed with the /SHARED qualifier.

4 Translation of the privilege mask; appears only if the image is installed with privileges.

4. INSTALL> LIST/GLOBAL

The command in this example displays all global sections for shared images. Global sections created by INSTALL (prefix INS$) for a specific image are listed following the name of that image.
System Global Sections

DAI000:<SYS.COMMON.SYSLIB>SLSSUSSSR.EXE

- INS$86D9BF0D_003 (14000001) PRM SYS Pagcnt/Refcnt=1/1
- INS$86D9BF0D_002 (14000001) PRM SYS Pagcnt/Refcnt=3/3
- INS$86D9BF0D_001 (14000001) PRM SYS Pagcnt/Refcnt=1/1

RMS$87A63800 (00000000) WRT DZRO TMP SYS Pagcnt/Refcnt=74/74

671 Global Sections Used, 102138/22862 Global Pages Used/Unused

1. Display of global sections in memory.
2. Name of the image for which the following global sections were created by INSTALL.
3. Name of global section. The prefix identifies the creator of the section; for example, INS means the global section was created by INSTALL. The number includes the address of the section.
4. Version number (in hexadecimal) of global section; for shareable images only, the high-order byte (01 in CRFSHR_003) contains major identification, and low-order bytes (0003E8 in CRFSHR_003) contain minor identification determined by the programmer at link time. For executable images, the number is a known unique value determined by the system.
5. Attributes of the global section:
   - DZRO Global section is demand-zero.
   - GRP Along with a group number indicates a group-wide section, which would be created by a program other than INSTALL.
   - PRM Global section is permanent.
   - SYS Global section is system-wide.
   - TMP Indicates a temporary global section, which would be created by a program other than INSTALL.
   - WRT Global section is writable.
6. Number of pages (VAX) or pagelets (Alpha) in the section and number of page table entries currently mapped to this global section. For a more detailed discussion of mapping global sections, refer to the OpenVMS Programming Concepts Manual.
7. Number of global sections created, number of global pages used, and number of global pages unused in local memory. Note that, because of arithmetic rounding, the number of global sections created will sometimes be greater than the SYSGEN parameter GBLSECTIONS. When the size of the system header is being computed, the values of the GBLSECTIONS and SYSMWCNT parameters are combined with the size of the fixed part of the process header. The result is rounded up to the next page boundary. This rounding process sometimes adds space to the global section table, depending on the values of the two SYSGEN parameters and the amount of system paging that preceded the running of INSTALL to create all of the global sections.
5. INSTALL> LIST/GLOBAL/FULL

The command in this example displays a complete listing of global sections for shared images. The /FULL qualifier adds owner and protection codes to the display.

<table>
<thead>
<tr>
<th>System Global Sections</th>
<th>PRM</th>
<th>SYS</th>
<th>Pagecnt/Refcnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_MAILSHR_003 (741A6919)</td>
<td></td>
<td></td>
<td>10/0</td>
</tr>
<tr>
<td>NM_MAILSHR_002 (741A6919)</td>
<td></td>
<td></td>
<td>1/0</td>
</tr>
<tr>
<td>NM_MAILSHR_001 (741A6919)</td>
<td></td>
<td></td>
<td>11/0</td>
</tr>
</tbody>
</table>

Owner: [1,4] ①
Protection: S:RWED, O:RWED, G:RWED, W:RE ②

① UIC of the owner of the global section
② Type of access allowed for the image
PURGE

Deletes all known file entries for images installed without the /NOPURGE qualifier.

Requires the CMKRNL privilege. Also requires the SYSGBL privilege to create system global sections and the PRMGBL privilege to create permanent global sections.

Format

PURGE

Parameters

None.

Description

The PURGE command deletes all known file entries for images installed without the /NOPURGE qualifier.

If a process is accessing global sections when the PURGE command is entered, the global sections are deleted only after the operation initiated by the process completes. However, once the command is entered, no additional processes can access the global sections because they are marked for deletion.

Example

INSTALL> PURGE

The command in this example deletes all images except those installed with the /NOPURGE qualifier. The image files remain unaffected. Writable global sections are written back to disk upon their removal as known images.
REMOVE

Deletes a known image. The REMOVE command is identical to the DELETE command.

Requires the CMKRNL privilege. Also requires the SYSGBL privilege to create system global sections and the PRMGBL privilege to create permanent global sections.

Format

REMOVE  file-spec

Parameter

file-spec
Names the file specification of a known image.

Description

The REMOVE command deletes an entry from the known file list. The image’s entry on the known file list and any global sections created for the image are deleted. The image file remains unaffected. Writable global sections are written back to disk upon their removal as known images.

If a process is accessing global sections when the REMOVE command is entered, the global sections are deleted only after the operation initiated by the process completes. However, once the command is entered, no additional processes can access the global sections because they are marked for deletion.

Example

INSTALL> REMOVE GRPCOMM

The command in this example deletes the entry for the known image GRPCOMM from the known image file list.
REPLACE

Replaces a known image entry with another version of the image, or with modified attributes. The REPLACE command is a synonym for the DELETE command.

Requires the CMKRNL privilege. Also requires the SYSGBL privilege to create system global sections and the PRMGBL privilege to create permanent global sections.

Format

```
REPLACE file-spec
```

Parameter

`file-spec`

Names the file specification of an image installed as a known image.

Description

The REPLACE command updates a known file to the latest, or to a specified version found in the specified directory, or in another directory if the `file-spec` parameter uses a search list.

You can use the REPLACE command to modify the attributes of currently installed images. Either specify new qualifiers, or change the value of qualifiers used when installing the image with the CREATE (or ADD) command. If you specify no qualifiers, the new image retains the same attributes as the old one. If the REPLACE command modifies neither the installed image file nor its attributes, the REPLACE command allows continued sharing of global sections.

If a process is accessing global sections when the REPLACE command is entered, the global sections are deleted only after the operation initiated by the process completes. However, once the command is entered, no additional processes can access the global sections because they are marked for deletion.

Qualifiers

`/ACCOUNTING`

`/NOACCOUNTING (default)`

Enables image-level accounting for selected images even if image accounting is disabled on the local node (by using the DCL command SET ACCOUNTING/DISABLE=IMAGE). When image accounting is enabled on the local node, it logs all images, and the /NOACCOUNTING qualifier has no effect.

`/ARB_SUPPORT=keyword`

On Alpha systems, overrides the system parameter ARB_SUPPORT for this installed image.

The following table shows the keywords you can use with the /ARB_SUPPORT qualifier:
Keyword | Behavior  
--- | ---  
None | The obsolete kernel data cells are not maintained by the system. Fields are initialized to zero (or set to invalid pointers) at process creation.  
Clear | The obsolete kernel data cells are cleared (or set to invalid pointers) when the code would have set up values for backward compatibility.  
Read-only | The obsolete cells are updated with corresponding security information stored in the current Persona Security Block (PSB) when a $PERSONA_ASSUME is issued.  
Full (default) | Data is moved from the obsolete cells to the currently active PSB on any security-based operation.  

For more information about obsolete kernel cells, refer to the ARB_SUPPORT system parameter in an appendix to this manual or in online help.

/AuthPrivileges=[(priv-name[, ...])]
/NoAuthPrivileges
Installs the file as a known image installed with the authorized privileges specified.

Usage Notes
- If a privileged image is not located on the system volume, the image is implicitly installed /OPEN.
- The set of privileges for a privileged image can be empty. You must, however, list each privilege every time you define or redefine privileges.
- The /AuthPrivileges qualifier applies only to executable images.
- You cannot specify this qualifier for an executable image linked with the /Traceback qualifier.
- You cannot assign privilege names with the /NoAuthPrivileges qualifier.

Interaction of /Privileged and /AuthPrivileges Qualifiers
When you create a new entry, the privileges you assign are also assigned for Authorized Privileges if you do not assign specific authorized privileges with the /AuthPrivileges qualifier.

When you replace an image, any privileges assigned with the /Privileged qualifier are not repeated as Authorized Privileges. Also, if you use the REPLACE command with the /NoAuthPrivileges qualifier, the Authorized Privileges become the same as the Default Privileges (set using the /Privileged qualifier).

You can specify one or more of the privilege names described in detail in an appendix to the HP OpenVMS Guide to System Security. (ALL is the default.)

/Execute_only
/Noexecute_only (default)
The /Execute_only qualifier is meaningful only to main programs. It allows the image to activate shareable images to which the user has execute access but no read access. All shareable images referenced by the program must be installed, and OpenVMS RMS uses trusted logical names, those created for use in executive or kernel mode.
You cannot specify this qualifier for an executable image linked with the /TRACEBACK qualifier.

/HEADER_RESIDENT
/NOHEADER_RESIDENT
Installs the file as a known image with a permanently resident header (native mode images only). An image installed header resident is implicitly installed open.

/LOG
/NOLOG (default)
Lists the newly created known file entry along with any associated global sections created by the installation.

/OPEN
/NOOPEN
Installs the file as a permanently open known image.

/PRIVILEGED=[(priv-name[,...])]
/NOPRIVILEGED
Installs the file as a known image installed with the working privileges specified.

Usage Notes

- If a privileged image is not located on the system volume, the image is implicitly installed /OPEN.
- The set of privileges for a privileged image can be empty. You must, however, list each privilege every time you define or redefine privileges.
- The /PRIVILEGED qualifier applies only to executable images.
- You cannot specify this qualifier for an executable image linked with the /TRACEBACK qualifier.
- You cannot assign privilege names with the /NOPRIVILEGED qualifier.

You can specify one or more of the privilege names described in detail in an appendix to the *HP OpenVMS Guide to System Security*. (ALL is the default.)

(PROTECTED
/NOPROTected (default)
Installs the file as a known image that is protected from user-mode and supervisor-mode write access. You can write into the image only from executive or kernel mode. The /PROTECTED qualifier together with the /SHARE qualifier are used to implement user-written services, which become privileged shareable images.

/PURGE (default)
/NOPURGE
Specifies that the image can be removed by a purge operation; if you specify /NOPURGE, you can remove the image only by a delete or remove operation.

/RESIDENT=[((NO)CODE, (NO)DATA)]
On Alpha systems, causes image code sections or read-only data sections to be placed in the granularity hint regions and compresses other image sections, which remain located in process space. If you do not specify the /RESIDENT qualifier, neither code nor data is installed resident. If you specify the /RESIDENT
INSTALL
REPLACE

qualifier without keyword arguments, code is installed resident, and data is not installed resident.

The image must be linked using the /SECTION_BINDING=(CODE,DATA) qualifier. An image installed with resident code or data is implicitly installed /HEADER_RESIDENT and /SHARED.

/SHARED=[NO]ADDRESS_DATA]
/SHARED
Installs the file as a shared known image and creates global sections for the image sections that can be shared. An image installed shared is implicitly installed open.

When you use the ADDRESS_DATA keyword with the /SHARED qualifier, P1 space addresses are assigned for shareable images. With the assigned addresses, the Install utility can determine the content of an address data section when the image is installed rather than when it is activated, reducing CPU and I/O time. A global section is created to allow shared access to address data image sections.

/SIGNAL
/NOSIGNAL
Installs the file as an image capable of accepting signals (or exceptions) from other processes. This allows privileged images to be signaled.

/WRITABLE
/NOWRITABLE
Installs the file as a writable known image as long as you also specify the /SHARED qualifier. The /WRITABLE qualifier only applies to images with image sections that are shareable and writable. The /WRITABLE qualifier is automatically negated if the /NOSHARED qualifier is specified.

Example

INSTALL> REPLACE GRPCOMM /ACCOUNTING/NOOPEN

The command in this example replaces the known image GRPCOMM with the latest version of the image, while enabling image accounting and removing the OPEN attribute from this version.

The full name of the file specification is assumed to be SYS$SYSTEM:GRPCOMM.EXE.
13.1 LANCP Description

The LAN Control Program (LANCP) utility allows you to configure and control the LAN software on OpenVMS systems. You can use LANCP to:

- Obtain LAN device counters, revision, and configuration information
- Change the operational parameters of LAN devices on the system
- Maintain the LAN permanent and volatile device and node databases
- Control the LANACP LAN Server process (including Maintenance Operations Protocol (MOP) downline load server related functions)
- Initiate MOP console carrier and MOP trigger boot operations

13.2 LANCP Usage Summary

You can use the LANCP utility to:

- Set LAN parameters to customize your LAN environment.
- Display LAN settings and counters.
- Provide MOP downline load support for devices such as terminal servers, x-terminals, and LAN-based printers, and for booting satellites in an OpenVMS Cluster environment. This provides an alternative to the traditional method of using DECnet software.

Format

LANCP [command]

Parameter

command

Specifies a LANCP command. This parameter is optional. If no command is specified, the utility displays its prompt and waits for command input.

Description

To invoke LANCP, enter the following command at the DCL command prompt:

$ RUN SYS$SYSTEM:LANCP

The LANCP utility responds by displaying the LANCP> prompt, at which you can enter any LANCP command described in this chapter.

To define LANCP as a foreign command, either at the DCL prompt or in a startup or login command file, enter:

$ LANCP :== $SYS$SYSTEM:LANCP

Then you can enter the LANCP command at the DCL prompt to invoke the utility and enter LANCP commands.
When you enter the LANCP command:

- Without specifying any command qualifiers, the LANCP utility displays the LANCP> prompt, at which you can enter commands.
- With command qualifiers, the LANCP utility terminates after it executes the command and returns you to the DCL command prompt.

**Note**
Some LANCP commands require special privileges.

To exit from the LANCP utility, enter the EXIT command at the LANCP> prompt or press Ctrl/Z.

For information about the LANCP utility, enter the HELP command at the LANCP> prompt.

### 13.3 LANCP Commands

This section describes and provides examples of the LANCP commands. The following table summarizes the LANCP commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ (Execute Procedure)</td>
<td>Executes a command procedure.</td>
</tr>
<tr>
<td>CLEAR DEVICE</td>
<td>Deletes a device from the LAN volatile device database.</td>
</tr>
<tr>
<td>CLEAR DLL</td>
<td>Clears MOP downline load counters for all nodes and devices.</td>
</tr>
<tr>
<td>CLEAR MOPDLL</td>
<td>Same as the CLEAR DLL command.</td>
</tr>
<tr>
<td>CLEAR NODE</td>
<td>Deletes a node from the LAN volatile node database.</td>
</tr>
<tr>
<td>CONNECT NODE</td>
<td>Connects to a LAN device, such as a terminal server, that implements a management interface using the MOP console carrier protocol.</td>
</tr>
<tr>
<td>CONVERT DEVICE_DATABASE</td>
<td>Converts the device database to the format required by the current version of LANCP.</td>
</tr>
<tr>
<td>CONVERT NODE_DATABASE</td>
<td>Converts the node database to the format required by the current version of LANCP.</td>
</tr>
<tr>
<td>DEFINE DEVICE</td>
<td>Enters a device into the LAN permanent device database or modifies an existing entry.</td>
</tr>
<tr>
<td>DEFINE NODE</td>
<td>Enters a node into the LAN permanent node database or modifies an existing entry.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Stops execution of LANCP and returns control to the DCL command level.</td>
</tr>
<tr>
<td>HELP</td>
<td>Provides online help information about the LANCP utility.</td>
</tr>
<tr>
<td>LIST DEVICE</td>
<td>Displays information in the LAN permanent device database.</td>
</tr>
<tr>
<td>LIST NODE</td>
<td>Displays information in the LAN permanent node database.</td>
</tr>
<tr>
<td>Command</td>
<td>Function</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PURGE DEVICE</td>
<td>Deletes a device from the LAN permanent device database.</td>
</tr>
<tr>
<td>PURGE NODE</td>
<td>Deletes a node from the LAN permanent node database.</td>
</tr>
<tr>
<td>SET ACP</td>
<td>Modifies the operation of the LANACP LAN Server process.</td>
</tr>
<tr>
<td>SET DEVICE</td>
<td>Enters a device into the LAN volatile device database or modifies an existing entry and sets device parameters.</td>
</tr>
<tr>
<td>SET NODE</td>
<td>Enters a node into the LAN volatile node database or modifies an existing entry.</td>
</tr>
<tr>
<td>SHOW CONFIGURATION</td>
<td>Displays a list of LAN devices on the system.</td>
</tr>
<tr>
<td>SHOW DEVICE</td>
<td>Displays information in the LAN volatile device database and displays device data.</td>
</tr>
<tr>
<td>SHOW DLL</td>
<td>Displays the current state of MOP downline load services.</td>
</tr>
<tr>
<td>SHOW LOG</td>
<td>Displays recent downline load activity.</td>
</tr>
<tr>
<td>SHOW MOPDLL</td>
<td>Same as the SHOW DLL command.</td>
</tr>
<tr>
<td>SHOW NODE</td>
<td>Displays information in the LAN volatile node database.</td>
</tr>
<tr>
<td>SPAWN</td>
<td>Creates a subprocess of the current process.</td>
</tr>
<tr>
<td>TRIGGER NODE</td>
<td>Issues a request to reboot to a remote node.</td>
</tr>
</tbody>
</table>
LANCP
@ (Execute Procedure)

@ (Execute Procedure)

Executes a command procedure or requests the command interpreter to read subsequent command input from a specific file or device.

Format

@ file-spec

Parameter

file-spec
Specifies either the input device or the file for the preceding command, or the command procedure to be executed.

Qualifiers
None.

Example

$ CREATE COUNT.COM
SHOW DEVICE/COUNTERS
SPAWN WAIT 00:01:00
@COUNT
Ctrl/Z
$ RUN SYS$SYSTEM:LANCP
LANCP> @COUNT

Device Counters EXA0:

<table>
<thead>
<tr>
<th>Value</th>
<th>Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4294967295</td>
<td>Seconds since last zeroed</td>
</tr>
<tr>
<td>38731696</td>
<td>Data blocks received</td>
</tr>
<tr>
<td>28378137</td>
<td>Multicast blocks received</td>
</tr>
<tr>
<td>2621447</td>
<td>Receive failure</td>
</tr>
<tr>
<td>4294967295</td>
<td>Bytes received</td>
</tr>
<tr>
<td>3203299230</td>
<td>Multicast bytes received</td>
</tr>
<tr>
<td>1</td>
<td>Data overrun</td>
</tr>
<tr>
<td>13771761</td>
<td>Data blocks sent</td>
</tr>
<tr>
<td>672064</td>
<td>Multicast packets transmitted</td>
</tr>
<tr>
<td>662415</td>
<td>Blocks sent, multiple collisions</td>
</tr>
<tr>
<td>502863</td>
<td>Blocks sent, single collision</td>
</tr>
<tr>
<td>1056303</td>
<td>Blocks sent, initially deferred</td>
</tr>
<tr>
<td>1462759444</td>
<td>Bytes sent</td>
</tr>
<tr>
<td>76562996</td>
<td>Multicast bytes transmitted</td>
</tr>
<tr>
<td>40042529</td>
<td>Send failure</td>
</tr>
<tr>
<td>0</td>
<td>Collision detect check failure</td>
</tr>
<tr>
<td>0</td>
<td>Unrecognized frame destination</td>
</tr>
<tr>
<td>0</td>
<td>System buffer unavailable</td>
</tr>
<tr>
<td>0</td>
<td>User buffer unavailable</td>
</tr>
</tbody>
</table>

This example creates and runs a command procedure, COUNT.COM, that displays device counters once every minute.
CLEAR DEVICE

Deletes a device from the LAN volatile device database. Requires SYSPRV privilege.

Format

CLEAR DEVICE  device-name

Parameter

device-name
Supplies the LAN controller device name. The device name has the form \texttt{ddcu} where \texttt{dd} is the device code, \texttt{c} is the controller designation, and \texttt{u} is the unit number. LAN devices are specified as the name of the template device which is unit 0. For example, the first PCI Ethernet device is specified as \texttt{EWA0}, the second as \texttt{EWB0}.

For example, you can specify a DEMNA controller as either \texttt{EXA}, \texttt{EXA0}, or \texttt{EXA0:}.

Qualifier

/ALL
Deletes all LAN devices in the LAN volatile device database. If you specify a device name, all matching LAN devices are selected, for example: \texttt{E} to select all Ethernet devices, \texttt{F} for FDDI, \texttt{I} for Token Ring, \texttt{EW} to select all PCI Ethernet PCI devices.

Example

\texttt{LANCP> CLEAR DEVICE EXA0}
This command deletes device \texttt{EXA0} from the LAN volatile device database.
CLEAR DLL

This command clears MOP downline load counters from the LAN volatile device and node databases for all nodes and devices. Requires SYSPRV privilege.

Format

CLEAR DLL

Parameters

None.

Qualifiers

None.

Example

LANCP> CLEAR DLL

This command clears MOP downline load counters from the LAN volatile device and node databases for all nodes and devices.
CLEAR NODE

Deletes a node from the LAN volatile node database. Requires SYSPRV privilege.

Format

CLEAR NODE node-name

Parameter

node-name
Supplies the name of a node in the LAN volatile node database.

Qualifier

/ALL
Deletes all LAN nodes in the LAN volatile node database. If you specify a node name, all matching nodes are selected; for example, A/ALL deletes all nodes whose name begins with A.

Example

LANCP> CLEAR NODE VAXSYS
This command deletes the node VAXSYS from the LAN volatile node database.
CONNECT NODE

Opens a MOP console carrier connection to the specified node. This allows a local terminal to act as the console for a remote system.

Format

CONNECT NODE node-specification

Parameter

node-specification
Supplies either the node name or the node address of the target node. If you supply the node name, the node address is obtained by looking up the node name in the LAN volatile node database. If you supply the node address, the corresponding node need not be defined in the LAN volatile node database. The canonical form of the address consists of 6 hexadecimal byte characters separated by hyphens. Use a colon as the separator character to indicate the bit-reversed form of the address.

Qualifiers

/DEVICE=device-name
Specifies the LAN controller device name to be used for the connection. For example, you can specify a DEMNA controller as EXA, EXA0, or EXA0:.

/DISCONNECT=disconnect-character
Specifies a character that you can use to terminate the connection to the remote node. To terminate a connection, press Ctrl/disconnect-character. You can select any ASCII character from @ through Z, except C, M, Q, S, Y; the default disconnect character is D.

/PASSWORD=16hexdigits
Supplies the password to be used when the connection is initiated, in hexadecimal (for example, /PASSWORD=0123456789ABCDEF). The default password is zero. You can omit leading zeros.

/V3 or /V4
Indicates that MOP Version 3 or Version 4 formatted messages, respectively, are to be used to make the connection. By default, LANCP determines the format by sending MOP Request ID messages to the remote node first in MOP Version 4 format, then in Version 3 format, repeating this process until a response is received or timeout occurs.

You can specify the format:

- To allow connection to nodes that do not support Request ID messages
- As a means of getting around implementation problems with one of the formats
Examples

1. **LANCP> CONNECT NODE GALAXY/DEVICE=EWA0**
   
   This command attempts a console-carrier connection to node GALAXY using the Ethernet device EWA0.

2. **LANCP> CONNECT NODE 08-00-2B-11-22-33/DEVICE=EWA0/PASSWORD=0123456789AB**
   
   This command attempts a console-carrier connection to the given node address using the Ethernet device EWA0, with the specified password.
LANCP
CONVERT DEVICE_DATABASE

CONVERT DEVICE_DATABASE

Converts the device database to the format required by LANCP. If the database is not updated, LANCP can read the database but not update entries in it. Requires SYSPRV privilege.

Format

CONVERT DEVICE_DATABASE device_database

Parameters

None.

Qualifiers

None.
CONVERT NODE_DATABASE

Converts the node database to the format required by LANCP. If the database is not updated, LANCP can read the database but not update entries in it. Requires SYSPRV privilege.

Format

    CONVERT NODE_DATABASE node_database

Parameters

    None.

Qualifiers

    None.
DEFINE DEVICE

Enters a device into the LAN permanent device database or modifies an existing entry. Requires SYSPRV privilege.

Format

DEFINE DEVICE  device-name

Parameter

device-name

Supplies the name of a device to be added to the LAN permanent device database or an entry to be modified. The device name has the form $ddcu$ where $dd$ is the device code, $c$ is the controller designation, and $u$ is the unit number. LAN devices are specified as the name of the template device, which is unit 0; for example, the first PCI Ethernet device is specified as EWA0, the second as EWB0.

Qualifiers

/ALL
Defines data for all LAN devices in the LAN permanent device database. If you specify a device name, all matching LAN devices are selected; for example: specify E to select all Ethernet devices, F for FDDI, I for Token Ring, or EW to select all Ethernet PCI devices.

/ATMADDRESS=LES
On Alpha systems, defines the LAN emulation server (LES) address for asynchronous transfer mode (ATM). Usually the address is not user specified; this qualifier is used only if you want a specific address. By default the address is determined by software from the configuration server for the LES.

The /ATMADDRESS=LES qualifier’s syntax is as follows:

DEFINE DEVICE/ATMADDRESS = (NO|LES=the ATM server)

/ATMADDRESS=ARP
On Alpha systems, defines the LAN address resolution protocol (ARP) server address for Classical IP over ATM. This qualifier is required before a logical IP subnet (LIS) is enabled if the local host is not the ARP server.

The /ATMADDRESS=ARP qualifier’s syntax is as follows:

DEFINE DEVICE/ATMADDRESS = (ARP=atm_arp_server)

/CLIP
On Alpha systems, defines the Classical Internet Protocol (CLIP) over ATM (RFC1577). The CLIP qualifier implements a data-link level device as a client and/or a server in a logical IP subnet (LIS). This allows the IP protocol to transmit Ethernet frames over the ATM network. The /CLIP = ENABLE command causes the system to join the LIS. The /CLIP = DISABLE command causes the client to leave the logical IP subnet.

Note that a LIS requires a server, and there must be only one server for each subnet. Communication between subnets can only be performed by a router. There can only be one client for each ATM adapter.
The /CLIP qualifier’s syntax with standard Internet dotted notation is as follows:

```
DEFINE DEVICE/CLIP = (ip_subnet=a.b.c.d,
 ip_address=a.b.c.d,
 parent=devnam,
 name="ip subnet name",
 enable, disable
 type = client|server)
```

The meanings for the syntax for /CLIP are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>Specifies the IP address of the CLIP client.</td>
</tr>
<tr>
<td>ip_subnet</td>
<td>Specifies the subnet mask of the CLIP client.</td>
</tr>
<tr>
<td>parent</td>
<td>Specifies the parent device name.</td>
</tr>
<tr>
<td>name</td>
<td>Specifies a name for the LIS to aid in operations and</td>
</tr>
<tr>
<td></td>
<td>diagnostics.</td>
</tr>
<tr>
<td>type</td>
<td>Starts up a classical IP client only. This is the default.</td>
</tr>
<tr>
<td></td>
<td>Starts up a classical IP server. Only one server for each</td>
</tr>
<tr>
<td></td>
<td>LIS is allowed, and the server needs to be started first.</td>
</tr>
<tr>
<td></td>
<td>Starts up a classical IP server and client.</td>
</tr>
</tbody>
</table>

Keywords and their meaning for /CLIP are as follows:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Joins the logical IP subnet.</td>
</tr>
<tr>
<td>Disable</td>
<td>Causes a client to leave the logical IP subnet.</td>
</tr>
</tbody>
</table>

/DISABLE
Disables the active participant in a LAN Failover set. This qualifier invalidates the effect of the /ENABLE qualifier.

/DLL=(enable-option, exclusive-option, size-option, knownclientsonly-option)
Provides the MOP downline load service settings for the device.

Note that defaults apply to creation of an entry in the device database. If an existing entry is being modified, fields not specified remain unchanged.

You can specify the following keywords with this qualifier:

- **enable-option**
  
  ENABLE
  DISABLE (default)

  Specify ENABLE or DISABLE to indicate that MOP downline load service should be enabled or disabled for the device.

- **exclusive-option**
  
  EXCLUSIVE
  NOEXCLUSIVE (default)
Specify EXCLUSIVE to indicate that no other provider of MOP downline load service is allowed on the specified LAN device at the same time as LANACP. Specify NOEXCLUSIVE to indicate that the LAN MOP downline load service can coexist with other implementations (in particular, the DECnet Phase IV implementation that operates the MOP protocol in shared mode).

- size-option
  
  SIZE=value

  Use SIZE=value to specify the size in bytes of the file data portion of each downline load message. The permitted range is 246 to 1482 bytes. The default value is 246 bytes, which should allow any client to load properly. Note that some clients may not support the larger size.

  The recommended size for better load performance and less server overhead is the largest size that results in successful loads of all clients. The 1482 value is derived from the maximum packet size for CSMA/CD (Ethernet) of 1518 bytes less the 802e header and CRC (26 bytes) and MOP protocol overhead (10 bytes).

  You can override the size on a per-node basis. See the DEFINE NODE and SET NODE commands for details.

- knownclientsonly-option
  
  KNOWNCLIENTSONLY
  NOKNOWNCLIENTSONLY (default)

  Specify KNOWNCLIENTSONLY to indicate that MOP downline load requests should be serviced only for clients defined in the LAN permanent node database. When NOKNOWNCLIENTSONLY is selected, LANACP searches the LAN$DLL directory for any images requested by clients that are not defined in the LAN permanent node database.

/ELAN
On Alpha systems, the /ELAN qualifier has two values: enable and disable. With /ELAN=ENABLE along with the keyword STARTUP, the LAN emulation is loaded when LANACP starts. With /ELAN=DISABLE, the same parameters used with ENABLE can be invoked.

The /ELAN qualifier's syntax is as follows:

DEFINE DEVICE /ELAN = (parent=parent device,
  name="ELAN NAME to join",
  size=1516,
  type=CSMACD,
  Enable,
  Disable,
  description = "description string," )

The meaning of the syntax for /ELAN is as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>The ATM adapter device name. An example of the parent device for DAPCA is: HWn0, where n is the controller number. An example of the parent device for DGLTA is: HCn0, where n is the controller number.</td>
</tr>
<tr>
<td>Option</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>name</td>
<td>Optionally specified if you want to join a specific ELAN. The default is null.</td>
</tr>
<tr>
<td>size</td>
<td>Maximum frame size of the LAN you want to join. Valid sizes are 1516, 4544, or 9234 bytes. The default is 1516.</td>
</tr>
<tr>
<td>type</td>
<td>Support currently only for CSMACD, which is the default.</td>
</tr>
<tr>
<td>description</td>
<td>A method of describing the ELAN for display purposes only.</td>
</tr>
</tbody>
</table>

Keywords and their meanings for /ELAN are as follows:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Begins a join on a specified emulated LAN. Also loads the driver, if it is not already loaded.</td>
</tr>
<tr>
<td>Disable</td>
<td>Causes a client to leave the emulated LAN.</td>
</tr>
</tbody>
</table>

/ENABLE
Enables a LAN device (previously identified as a member of a LAN Failover set) as the active participant in the LAN Failover set.

/FAILOVER_SET=(device-name[,...])
/[NO]FAILOVER_SET=(device-name[,...])
Specifies the participants of a LAN Failover set.

/PRIORITY=value
Sets the Failover priority of a LAN device. Priority is given to the LAN Failover participant with the highest priority when choosing the active participant of a LAN Failover set.

/PVC=(vci[,...])
/[NO]PVC=(vci[,...])
On Alpha systems, defines the permanent virtual circuit (PVC) to be used by a Classical IP over ATM client. This is an optional qualifier.

A list of PVCs is defined for use by CLIP clients. This command should be used before enabling the CLIP client. The PVC has to be set up manually in the ATM switch.

The vci is the VCI (Virtual Circuit ID) of the PVC to be used.

/UPDATE
Adds LAN devices that are not currently in the LAN permanent device database to that database. The initial entry for the device uses default values for all parameters. To update the permanent database with current information from the volatile database, use the DEFINE DEVICE command with the /VOLATILE_DATABASE qualifier. You can combine the /UPDATE and /VOLATILE_DATABASE qualifiers in a single DEFINE DEVICE command.

/VOLATILE_DATABASE
Updates the device entries in the LAN permanent device database with any data currently set in the volatile database. This allows you to update the permanent database after changing data in the volatile database, rather than repeating the commands for each updated entry to apply the changes to the permanent database.
DEFINE DEVICE

Examples

1. **LANCP> DEFINE DEVICE EXA0/MOPDLL=(ENABLE,EXCLUSIVE)**

   This command defines LAN device EXA0 to enable LANACP MOP downline load service in exclusive mode. The setting of the KNOWNCLIENTSONLY and SIZE characteristics are not changed. If the device entry does not currently exist in the LAN permanent device database, these settings are set to the defaults.

2. **LANCP> DEFINE DEVICE/ALL/MOPDLL=NOEXCLUSIVE**

   This command sets all LAN devices defined in the LAN permanent device database to nonexclusive mode for LANACP MOP downline load service.

3. **LANCP> DEFINE DEVICE/ALL/UPDATE/VOLATILE_DATABASE**

   This command enters all Ethernet devices into the LAN permanent device database and updates the entry to include the current parameter values.
DEFINE NODE

Enters a node into the LAN permanent node database or modifies an existing entry. Requires SYSPRV privilege.

Format

DEFINE NODE  node-name

Parameter

node-name
Supplies the name of a node to be added to the LAN permanent node database or an entry to be modified. Typically, the node name is the same as that given in the system parameter SCSNODE, but it does not need to be. The node name is limited to 63 characters in length.

Qualifiers

/ADDRESS= node-address
/NOADDRESS (default)
Associates a LAN address with the node name. Specify the address as 6 bytes in hexadecimal notation, separated by hyphens. The address does not have to be unique (as might be the case when the address is not known, so a nonexistent address is specified).

If multiple node addresses are to be associated with a node name, each combination may be given as a node name with an extension, for example, VAXSYS.EXA for the EXA device on node VAXSYS, or VAXSYS_1 for the first LAN device on node VAXSYS.

If you do not specify the /ADDRESS qualifier, the setting remains unchanged. The /NOADDRESS qualifier clears the field.

/ALL
Defines data for all nodes in the LAN permanent node database. If you specify a node name, all matching nodes are selected; for example, A/ALL selects all nodes beginning with A.

/BOOT_TYPE= boot-option
/NOBOOT_TYPE
Indicates the type of processing required for downline load requests. You can specify one of the following keywords with this qualifier:

- VAX_SATELLITE—an OpenVMS Cluster VAX satellite boot
- ALPHA_SATELLITE—an OpenVMS Cluster Alpha satellite boot
- OTHER—the specified image; a noncluster satellite load that does not require additional data

The distinction is necessary, because OpenVMS Cluster satellite loads require additional cluster-related data be appended to the load image given by the /FILE qualifier. The default value is OTHER.

If you do not specify the /BOOT_TYPE qualifier, the setting remains unchanged. The /NOBOOT_TYPE qualifier clears the field.
DEFINE NODE

/DECNET_ADDRESS=value
/NODECNET_ADDRESS
Associates a DEcnet address with the node name. Specify the address in DEcnet notation, xx.xxxxx.

If you do not specify the /DECNET_ADDRESS=value qualifier, then the setting remains unchanged. The /NODECNET_ADDRESS qualifier clears the field.

/FILE=file-spec
/NOFILE
Supplies the file name of a boot file to be used when the downline load request does not include a file name (for example, with OpenVMS Cluster satellite booting). The file specification is limited to 127 characters.

If no file name is specified, OpenVMS Cluster satellite loads default to APB.EXE where the boot type is set to ALPHA and NISCS_LOAD.EXE where the boot type is set to VAX.

If you do not specify the /FILE qualifier, the setting remains unchanged. The /NOFILE qualifier clears the field.

/IP_ADDRESS=value
/NOIP_ADDRESS
Associates an IP address with the node name. Specify the address in the standard dotted notation, xxx.xxx.xxx.xxx.

If you do not specify the /IP_ADDRESS=value qualifier, the setting remains unchanged. The /NOIP_ADDRESS qualifier clears the field.

/ROOT=directory-specification
/NOROOT
Supplies the directory specification to be associated with the file name. For cluster satellite service, the /ROOT qualifier specifies the satellite root directory. For noncluster service, this qualifier specifies the location of the file. If the file specification or the file name given in the boot request includes the directory name, this qualifier is ignored. The directory specification is limited to 127 characters.

If you do not specify the /ROOT qualifier, the setting remains unchanged. The /NOROOT qualifier clears the field.

/SIZE=value
/NOSIZE
Specifies the size in bytes of the file data portion of each downline load message. The default is the load data size specified for the device. The permitted range is 246 to 1482 bytes. Use a larger size for better load performance and less server overhead.

If you do not specify the /SIZE qualifier, the setting remains unchanged. The /NOSIZE qualifier clears the setting.

/V3
/NOV3
Indicates that only MOP Version 3 formatted messages are to be used for downline load purposes, regardless of the requested format. This allows systems that have a problem with MOP Version 4 booting to load. This qualifier causes the requesting node to fail over from MOP Version 4 to MOP Version 3 when no response has been made to a MOP Version 4 load request.
If you do not specify the /V3 qualifier, the setting remains unchanged. The /NOV3 qualifier clears the setting.

/VOLATILE_DATABASE
Updates the node entries in the LAN permanent node database with any data currently set in the volatile database. This allows you to update the permanent database after changing data in the volatile database, rather than repeating the commands for each updated entry to apply the changes to the permanent database.

Examples

1. `LANCP> DEFINE NODE GALAXY/ADDRESS=08-00-2B-11-22-33 - /FILE=NISCS_LOAD.EXE - /ROOT=$64$DIA14:<SYS10.> - /BOOT_TYPE=VAX_SATELLITE`

   This command sets up node GALAXY in the LAN permanent node database for booting as a VAX satellite into an OpenVMS Cluster.

   The NISCS_LOAD.EXE file is actually located on $64$DIA14:<SYS10.SYSCOMMON.SYSLIB>. The <SYSCOMMON.SYSLIB> is supplied by the LANACP LAN Server process and is not included in the root definition.

2. `LANCP> DEFINE NODE ZAPNOT/ADDRESS=08-00-2B-11-22-33 - /FILE=APB.EXE - /ROOT=$64$DIA14:<SYS10.> - /BOOT_TYPE=ALPHA_SATELLITE`

   This command sets up node ZAPNOT for booting as an Alpha satellite into an OpenVMS Cluster.

   The APB.EXE file is actually located on $64$DIA14:<SYS10.SYSCOMMON.SYSEXEC>. Note that the <SYSCOMMON.SYSEXEC> is supplied by the LANACP LAN Server process and is not included in the root definition.

3. `LANCP> DEFINE NODE CALPAL/ADDRESS=08-00-2B-11-22-33 - /FILE=APB_061.EXE`

   This command sets up node CALPAL for booting an InfoServer image. It defines the file that should be loaded when a load request without a file name is received from node CALPAL.

   Because the file does not include a directory specification, the logical name LAN$DLL defines where to locate the file. You could give directory specification using the file name or by using the /ROOT qualifier.

   Note that specifying the file name explicitly in the boot command overrides the file name specified in the node database entry.
EXIT

Stops execution of LANCP and returns control to the DCL command level. You can also enter Ctrl/Z at any time to exit.

Format

EXIT

Parameters

None.

Qualifiers

None.

Example

LANCP> EXIT
$

This command stops execution of LANCP and returns control to the DCL command level.
HELP

Provides online help information about the LANCP utility.

Format

HELP [topic]

Parameter

**topic**

Specifies a subject for which you want information—a LANCP command or LANCP command and command keyword. If you enter the HELP command with a command name only, such as HELP SET, LANCP displays a list of all of the command keywords used with the SET command.

Qualifiers

None.

Example

LANCP> HELP DEFINE DEVICE
DEFINE DEVICE

DEVICE device-name/qualifiers
DEVICE/ALL/qualifiers

Sets device specific parameters for the specified LAN devices.
Requires SYSPRV privilege.

Additional information available:

Parameters Qualifiers
/ALL /ATMADDRESS /DLL /ELAN /MOPDLL /VOLATILE_DATABASE /UPDATE

Examples

DEFINE DEVICE Subtopic?

This command provides online help for the LANCP command DEFINE DEVICE.
LIST DEVICE

Displays information in the LAN permanent device database.

Format

LIST DEVICE  device-name

Parameter

device-name
Supplies the LAN controller device name. The device name has the form ddcu where dd is the device code, c is the controller designation, and u is the unit number. LAN devices are specified as the name of the template device which is unit 0. For example, the first DE435 Ethernet device is specified as EWA0, the second as EWB0.

For example, you can specify a DEMNA controller as EXA, EXA0, or EXA0:. This refers to the LAN template device, for which is maintained most of the device parameters and counters. Also, the device name can refer to a device unit representing an actual user or protocol. For example, the cluster protocol can be started on a device as EWA1. You can specify a device unit to view unit-specific parameter information.

If you do not specify a device name, all devices are displayed.

If you specify a device name, all matching LAN devices are displayed, for example: E to select all Ethernet devices, F for FDDI, I for Token Ring, EW to select all Ethernet PCI Tulip devices.

Note

If you do not specify a qualifier, the utility displays the matching devices without additional information.

Qualifiers

/ALL
Lists all devices in the LAN permanent device database.

/CHARACTERISTICS
On Alpha systems, lists status and related information about the device. It is the same as /PARAMETERS qualifier.

/DLL
Displays MOP downline load characteristics.

/MAP
Lists the current configuration of the functional address mapping table.

/MOPDLL
Same as /DLL qualifier.

/OUTPUT=filename
Creates the specified file and directs output to it.
/PARAMETERS
On Alpha systems, lists status and related information about the device.

/SR_ENTRY
On Alpha systems, lists the contents of the current source routing cache table.

Examples

1. LANCP> LIST DEVICE/MOPDLL

   Device Listing, permanent database:
   --- MOP Downline Load Service Characteristics ---
   Device  State  Access Mode  Clients          Data Size
           ------  -----------  -------  ---------
   EXA0    Enabled  Exclusive  KnownClientsOnly  1400 bytes
   FXA0    Disabled  NoExclusive  NoKnownClientsOnly  246 bytes

   This command displays MOP downline load information in the LAN permanent device database for all known devices.

2. LANCP> LIST DEVICE/MOPDLL EXA0

   Device Listing, permanent database:
   --- MOP Downline Load Service Characteristics ---
   Device  State  Access Mode  Clients          Data Size
           ------  -----------  -------  ---------
   EXA0    Enabled  Exclusive  KnownClientsOnly  1400 bytes

   This command displays MOP downline load information in the LAN permanent device database for device EXA0.
LIST NODE

Displays information in the LAN permanent node database, especially MOP downline load information.

Format

LIST NODE  node-name

Parameter

node-name

Specifies the node name. The name can include up to 63 characters associated with the node address. If no node name is given, all nodes are displayed.

Qualifiers

/ALL
Displays data for all nodes in the LAN permanent node database. If you specify a node name, all matching nodes are selected; for example, A/ALL selects all nodes beginning with A.

/OUTPUT=file-name
Creates the specified file and directs output to that file. If the file extension is .com, the output is in the form of a list of DEFINE NODE or SET NODE commands. The resulting command file can be used to create the LAN node databases.

Example

LANCP> LIST NODE
Node Listing:

GALAXY (08-00-2B-2C-51-28):
  MOP DLL: Load file:  APB.EXE
  Load root:  $64$DIA24:<SYS11.>
  Boot type:  Alpha satellite

ZAPNOT (08-00-2B-18-7E-33):
  MOP DLL: Load file:  NISCS_LOAD.EXE
  Boot type:  VAX satellite

CALPAL (08-00-2B-08-9F-4C):
  MOP DLL: Load file:  READ_ADDR.SYS
  Last file:  LAN$DLL:APB_X5WN.SYS
  Boot type:  Other
  2 loads requested, 1 volunteered
  1 succeeded, 0 failed
  Last request was for a system image, in MOP V4 format
  Last load initiated 10-JUN-1998 09:11:17 on EXA0 for 00:00:06.65
  527665 bytes, 4161 packets, 0 transmit failures

Unnamed (00-00-00-00-00-00):
## LAN Control Program (LANCP) Utility

### LIST NODE

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requests received</td>
<td>2</td>
</tr>
<tr>
<td>Requests volunteered</td>
<td>1</td>
</tr>
<tr>
<td>Successful loads</td>
<td>1</td>
</tr>
<tr>
<td>Failed loads</td>
<td>0</td>
</tr>
<tr>
<td>Packets sent</td>
<td>2080</td>
</tr>
<tr>
<td>Packets received</td>
<td>2081</td>
</tr>
<tr>
<td>Bytes sent</td>
<td>523481</td>
</tr>
<tr>
<td>Bytes received</td>
<td>4184</td>
</tr>
<tr>
<td>Last load</td>
<td>CALPAL at 10-JUN-1998 09:11:17.29</td>
</tr>
</tbody>
</table>

This example shows output from a LIST NODE command issued on a local node on which there are three nodes defined (GALAXY, ZAPNOT, and CALPAL). CALPAL has issued two load requests:

- The first request is the multicast request from CALPAL that the local node volunteered to accept.
- The second request is the load request sent directly to the local node by CALPAL for the actual load data. The elapsed time from the second load request to completion of the load was 6.65 seconds.
**PURGE DEVICE**

Deletes a device from the LAN permanent device database. Requires SYSPRV privilege.

**Format**

`PURGE DEVICE  device-name`

**Parameter**

*device-name*

Supplies the LAN controller device name. The device name has the form *ddcu* where *dd* is the device code, *c* is the controller designation, and *u* is the unit number. LAN devices are specified as the name of the template device which is unit 0. For example, the first DE435 Ethernet device is specified as EWA0, the second as EWB0.

For example, you can specify a DEMNA controller as EXA, EXA0, or EXA0:. To select all LAN devices, omit the device name and include the /ALL qualifier.

**Qualifier**

/ALL

Deletes all LAN devices in the LAN permanent device database. If you specify a device name, all matching LAN devices are selected, for example: E to select all Ethernet devices, F for FDDI, I for Token Ring, EW to select all Ethernet PCI Tulip devices.

**Example**

```
LANCP> PURGE DEVICE/ALL
```

This command deletes all devices from the LAN permanent device database.
PURGE NODE

Deletes a node from the LAN permanent node database. Requires SYSPRV privilege.

Format

PURGE NODE node-name

Parameter

node-name

Supplies the name of a node in the LAN permanent node database.

Qualifier

/ALL

Deletes all LAN nodes in the LAN permanent node database. If you specify a node name, all matching nodes are selected; for example, A/ALL deletes all nodes whose name begins with A.

Example

LANCP> PURGE NODE/ALL

This command deletes all nodes from the LAN permanent node database.
SET ACP

Modifies the operation of the LANACP LAN Server process. Requires SYSPRV privilege.

Format

SET ACP

Parameters

None.

Qualifiers

/ECHO
/NOECHO (default)
Enables partial tracing of received and transmitted downline load messages (the first 32 bytes of the data portion of each message). Note that the last one or two MOP messages are displayed in full: the memory load message with cluster parameters, and the parameter load with transfer address message, where present in the load.

The data is written to a log file SYS$MANAGER:LAN$node-name.LOG.

To obtain the entire contents of each message, use the /FULL qualifier as follows:

SET ACP/ECHO/FULL

/FULL
/NOFULL (default)
When /ECHO is enabled, displays the entire contents of received and transmitted downline load messages.

/OPCOM (default)
/NOOPCOM
Enables OPCOM messages from LANACP LAN Server process.

Messages are generated by the LANACP LAN Server process when a device status changes, load requests are received, and loads complete. These messages are displayed on the operator’s console and included in the log file written by LANACP, SYS$MANAGER:LAN$ACP.LOG.

/STOP
Stops the LANACP process. It can be restarted by reexecuting the SYS$STARTUP:LAN$STARTUP command file.

Example

LANCP> SET ACP/ECHO/FULL

This command enables tracing of received and transmitted downline load messages. The /FULL qualifier displays the entire contents of received and transmitted downline load messages.
SET DEVICE (Alpha only)

On Alpha systems, sets or modifies LAN device parameters. Requires PHY_IO privilege.

Format

```
SET DEVICE device-name
```

Parameter

device-name

Specifies a device to be entered in the LAN volatile device database, or whose parameters are to be modified. The device name has the form `ddcu` where `dd` is the device code, `c` is the controller designation, and `u` is the unit number. LAN devices are specified as the name of the template device which is unit 0. For example, the first DE435 Ethernet device is specified as EWA0, the second as EWBO.

Qualifiers

/AGING_TIMER=value

Sets the amount of time in seconds to age Token Ring source routing cache entries before marking them stale. This timer expires when no traffic is sent to or received from the remote node in this amount of time. The default value is 60 seconds.

Increase this value when idle connections bounce between the stale and known states. Setting this value too low may cause unnecessary explorer traffic to traverse the LAN.

/ALL

Sets data for all LAN devices. If you specify a device name, all matching LAN devices are selected, for example: E to select all Ethernet devices, F for FDDI, I for Token Ring, EW to select all Ethernet PCI Tulip devices.

/ATMADDRESS=LES

Sets the LAN emulation server (LES) address for asynchronous transfer mode (ATM). Usually the address is not user specified, and this qualifier is used only if you want a specific address. By default the address is determined by software from the configuration server for the LES.

The /ATMADDRESS=LES qualifier’s syntax is as follows:

```
SET DEVICE/ATMADDRESS = ([NO]LES=the ATM server)
```

/ATMADDRESS=ARP

Sets the address resolution protocol (ARP) server address for Classical IP over ATM. This qualifier is required before a LIS is enabled if the local host is not the ARP server.

The /ATMADDRESS=ARP qualifier’s syntax is as follows:

```
SET DEVICE/ATMADDRESS = (ARP=atm_arp_server)
```
/AUTONEGOTIATE (default)
/NOAUTONEGOTIATE
Enables or disables the use of auto-negotiation to determine the link settings. You may need to disable link auto-negotiation when connected to a switch or device that does not support auto negotiation.

/CACHE_ENTRIES=value
Sets the number of entries to reserve for caching Token Ring source routing address entries. The default value is 200 entries.

If your system directly communicates to a large number of systems, you may want to increase this number.

/CLIP
Sets the Classical Internet Protocol (CLIP) over ATM (RFC1577). The CLIP qualifier implements a data-link level device as a client and/or a server in a logical IP subnet (LIS). This allows the IP protocol to transmit Ethernet frames over the ATM network. The /CLIP = ENABLE command causes the system to join the LIS. The /CLIP = DISABLE command causes the client to leave the logical IP subnet.

Note that a LIS requires a server, and there must be only one server for each subnet. Communication between subnets can only be performed by a router. There can only be one client for each ATM adapter.

The /CLIP qualifier’s syntax with standard Internet dotted notation is as follows:

```
SET DEVICE/CLIP = (ip_subnet=a.b.c.d,
 ip_address=a.b.c.d,
 parent=devnam,
 name="ip subnet name",
 enable, disable
 type = client|server)
```

The meanings for the syntax for /CLIP are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>Specifies the IP address of the CLIP client.</td>
</tr>
<tr>
<td>ip_subnet</td>
<td>Specifies the subnet mask of the CLIP client.</td>
</tr>
<tr>
<td>parent=devnam</td>
<td>Specifies the parent device name.</td>
</tr>
<tr>
<td>name</td>
<td>Specifies a name for the LIS to aid in operations and diagnostics.</td>
</tr>
<tr>
<td>type=client</td>
<td>Starts up a classical IP client only. This is the default.</td>
</tr>
<tr>
<td>type=server</td>
<td>Starts up a classical IP server. Only one server for each LIS is allowed, and the server needs to be started first.</td>
</tr>
<tr>
<td>type=(server,client)</td>
<td>Starts up a classical IP server and client.</td>
</tr>
</tbody>
</table>

Keywords and their meaning for /CLIP are as follows:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Joins the logical IP subnet.</td>
</tr>
<tr>
<td>Disable</td>
<td>Causes a client to leave the logical IP subnet.</td>
</tr>
</tbody>
</table>
/CONTENDER
/NOCONTENDER (default)
Specifies that the Token Ring device is to participate in the Monitor Contention process when it joins the ring. The /NOCONTENDER qualifier, directs the device not to challenge the current ring server.

/DEVICE_SPECIFIC=(FUNCTION=“xxxx”, VALUE=n)
Allows some device-specific parameters to be adjusted. These are useful for debug purposes or for experiments while doing performance measurements. Like other LANCP commands which affect devices, this command requires SYSPRV privilege.

Table 13–1 shows the commands and their meanings.

<table>
<thead>
<tr>
<th>Command Function</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION=&quot;CCOU&quot;</td>
<td>Clears all device and driver counters. If the value is supplied, it is ignored.</td>
</tr>
<tr>
<td>FUNCTION=&quot;DXMT&quot;, VALUE=n</td>
<td>Changes the transmit delay value which is the number of microseconds after completion of a transmit request that an interrupt is generated. The current setting is displayed in the internal counters. This function is applicable to Gigabit Ethernet NICs.</td>
</tr>
<tr>
<td>FUNCTION=&quot;DRCV&quot;, VALUE=n</td>
<td>Changes the receive delay value which is the number of microseconds after completion of a receive that an interrupt is generated. The current setting is displayed in the internal counters. This function is applicable to Gigabit Ethernet NICs.</td>
</tr>
<tr>
<td>FUNCTION=&quot;CXMT&quot;, VALUE=n</td>
<td>Changes the transmit coalesce value which is the number of transmit buffer descriptors that are processed before an interrupt is generated. An interrupt may be generated earlier if transmit delay threshold is reached or when an interrupt on behalf of receive or a link state change is generated. The current setting is displayed in the internal counters. This function is applicable to Gigabit Ethernet NICs.</td>
</tr>
<tr>
<td>FUNCTION=&quot;CRCV&quot;, VALUE=n</td>
<td>Changes the receive coalesce value which is the number of receive buffer descriptors that are filled in before an interrupt is generated. An interrupt may be generated earlier if receive delay threshold is reached or when an interrupt on behalf of transmit or a link state change is generated. The current setting is displayed in the internal counters. This function is applicable to Gigabit NICs.</td>
</tr>
</tbody>
</table>

/DISABLE
Disables the active participant in a LAN Failover set.

/DISCOVERY_TIMER=value
Sets the number of seconds to wait for a reply from a remote node when performing the source Token Ring routing route discovery process. The default value is 2 seconds.
If you have nodes that respond slowly on your extended LAN, you may need to increase this number to reduce the amount of explorer traffic that traverses your LAN.

/DLL=(enable-option, exclusive-option, size-option, knownclientsonly-option)
Provides the MOP downline load service settings for the device.

Note that defaults apply to creation of an entry in the device database. If an existing entry is being modified, fields not specified remain unchanged.

You can specify the following keywords with this qualifier:

- **enable-option**
  
  **ENABLE**
  **DISABLE** (default)
  Specify ENABLE or DISABLE to indicate that MOP downline load service should be enabled or disabled for the device.

- **exclusive-option**
  
  **EXCLUSIVE**
  **NOEXCLUSIVE** (default)
  Specify EXCLUSIVE to indicate that no other provider of MOP downline load service is allowed on the specified LAN device at the same time as LANACP. Specify NOEXCLUSIVE to indicate that the LAN MOP downline load service can coexist with other implementations (in particular, the DECnet Phase IV implementation that operates the MOP protocol in shared mode).

- **size-option**
  
  **SIZE=value**
  Use SIZE=value to specify the size in bytes of the file data portion of each downline load message. The permitted range is 246 to 1482 bytes. The default value is 246 bytes, which should allow any client to load properly. Note that some clients may not support the larger size.

The recommended size for better load performance and less server overhead is the largest size that results in successful loads of all clients. The 1482 value is derived from the maximum packet size for CSMA/CD (Ethernet) of 1518 bytes less the 802e header and CRC (26 bytes) and MOP protocol overhead (10 bytes).

You can override the size on a per-node basis. See the DEFINE NODE and SET NODE commands for details.

- **knownclientsonly-option**
  
  **KNOWNCLIENTSONLY**
  **NOKNOWNCLIENTSONLY** (default)
  Specify KNOWNCLIENTSONLY to indicate that MOP downline load requests should be serviced only for clients defined in the LAN permanent node database. When NOKNOWNCLIENTSONLY is selected, LANACP searches the LAN$DLL directory for any images requested by clients that are not defined in the LAN permanent node database.
/EARLY (default)
/NOEARLY
Enables Early Token Release on the device. The /NOEARLY qualifier, disables Early Token Release.

/ELAN
The /ELAN qualifier has two values: enable and disable. With /ELAN=ENABLE along with the keyword STARTUP, the LAN emulation is loaded when LANACP starts. With /ELAN=DISABLE, the same parameters used with ENABLE can be invoked.

The /ELAN qualifier's syntax is as follows:

```
DEFINE DEVICE/ELAN =(parent=parent device,
 name="ELAN NAME to join",
 size=1516
 type=CSMACD
 Enable,
 Disable,
 description = "description string,")
```

The meaning of the syntax for /ELAN is as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>The ATM adapter device name. An example of the parent device for DAPCA is: HW\textit{n}0, where \textit{n} is the controller number. An example of the parent device for DGLTA is: HC\textit{n}0, where \textit{n} is the controller number.</td>
</tr>
<tr>
<td>name</td>
<td>Optionally specified if you want to join a specific ELAN. The default is null.</td>
</tr>
<tr>
<td>size</td>
<td>Maximum frame size of the LAN you want to join. Valid sizes are 1516, 4544, or 9234 bytes. The default is 1516.</td>
</tr>
<tr>
<td>type</td>
<td>Support currently only for CSMACD, which is the default.</td>
</tr>
<tr>
<td>description</td>
<td>A method of describing the ELAN for display purposes only.</td>
</tr>
</tbody>
</table>

Keywords and their meanings for /ELAN are as follows:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Begins a join on a specified emulated LAN. It also loads the driver, if not already loaded.</td>
</tr>
<tr>
<td>Disable</td>
<td>Causes a client to leave the emulated LAN.</td>
</tr>
</tbody>
</table>

/ENABLE
Enables a LAN device (previously identified as a member of a LAN Failover set) as the active participant in the LAN Failover set.

/FAILOVER_SET=(device-name[,...])
/[NO]FAILOVER_SET=(device-name[,...])
Specifies the participants of a LAN Failover set.

/JUMBO
/NOJUMBO (default)
Enables the use of jumbo frames on a LAN device. Only the Gigabit Ethernet NICs support jumbo frames.
LANCP
SET DEVICE (Alpha only)

/FULL_DUPLEX
/NOFULL_DUPLEX (default)
Enables full-duplex operation of a LAN device. Before full-duplex operation
results from the use of this qualifier, additional device or network hardware
setup may be required. Some devices may be enabled for full-duplex operation by
default. Some devices may not allow the setting to be changed.

The /NOFULL_DUPLEX qualifier disables full-duplex operation.

/MAP=(MULTICAST_ADDRESS=address, FUNCTIONAL_ADDRESS=address)
/NOMAP=(MULTICAST_ADDRESS=address)
Maps a standard multicast address to a functional address. Token ring devices
do not support IEEE 802 standard globally defined group addresses. They do
support functional addresses. A functional address is a locally administered
group address that has 31 possible values. Each functional address sets one bit
in the third through sixth byte of the address and bytes 1 and 2 are 03-00 (C0:00
in bit reversed format).

The /NOMAP=(MULTICAST_ADDRESS=address) qualifier, clears the mapping
established for the specified address.

Specify the functional address as follows:

- The MULTICAST_ADDRESS argument requires a standard 6-byte multicast
  address.
- The FUNCTIONAL_ADDRESS argument requires only the last 4 bytes of the
  functional address (the preceding 03-00 bytes are automatically prefixed).
- The address variable, given as hexadecimal byte characters separated by
  hyphens, specifies the canonical form of the address. Use a colon as the
  separator character to indicate the bit-reversed form of the address.

For example, to map the multicast address CB-00-01-02-03-04 to the functional
address 03-00-00-80-00-00 on the Token Ring device IRA0, enter the following
command:

SET DEVICE IRA0/MAP=(MULTI=C0-00-01-00-02-00,FUNCT=00:01:00:00)

For the default address mapping, see Table 13–2 or issue the command SHOW
DEVICE/MAP device-name.

<table>
<thead>
<tr>
<th>Multicast Address</th>
<th>Functional Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-00-2B-00-00-04</td>
<td>03-00-00-00-02-00</td>
<td>ISO ALL ES</td>
</tr>
<tr>
<td>09-00-2B-00-00-05</td>
<td>03-00-00-00-01-00</td>
<td>ISO ALL IS</td>
</tr>
<tr>
<td>CP-00-00-00-00-00</td>
<td>03-00-00-08-00-00</td>
<td>Loopback Assistant</td>
</tr>
<tr>
<td>AB-00-00-00-01-00</td>
<td>03-00-00-00-00-00</td>
<td>DNA MOP Dump/Load</td>
</tr>
<tr>
<td>AB-00-00-00-02-00</td>
<td>03-00-00-00-00-00</td>
<td>DNA MOP Remote Console</td>
</tr>
<tr>
<td>AB-00-00-00-03-00</td>
<td>03-00-00-00-00-00</td>
<td>DNA L1 Routers</td>
</tr>
<tr>
<td>09-00-2B-02-00-00</td>
<td>03-00-00-00-00-00</td>
<td>DNA L2 Routers</td>
</tr>
<tr>
<td>09-00-2B-02-01-0A</td>
<td>03-00-00-00-00-00</td>
<td>DNA Phase IV Primary Router</td>
</tr>
</tbody>
</table>

(continued on next page)
### Table 13–2 (Cont.) Default Functional Address Mapping for Token Ring Devices

<table>
<thead>
<tr>
<th>Multicast Address</th>
<th>Functional Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-00-00-04-00-00</td>
<td>03-00-10-00-00-00</td>
<td>DNA Endnodes</td>
</tr>
<tr>
<td>09-00-2B-02-01-0B</td>
<td>03-00-10-00-00-00</td>
<td>DNA Phase IV Prime Unknown Destination</td>
</tr>
<tr>
<td>09-00-2B-00-00-07</td>
<td>03-00-20-00-00-00</td>
<td>PCSA NETBIOS Emulation</td>
</tr>
<tr>
<td>09-00-2B-00-00-0F</td>
<td>03-00-40-00-00-00</td>
<td>LAT Service Advertisement</td>
</tr>
<tr>
<td>09-00-2B-02-01-04</td>
<td>03-00-80-00-00-00</td>
<td>LAT Service Solicit</td>
</tr>
<tr>
<td>09-00-2B-02-01-07</td>
<td>03-00-00-02-00-00</td>
<td>LAT Xwindown Service Solicit</td>
</tr>
<tr>
<td>09-00-2B-04-00-00</td>
<td>03-00-00-04-00-00</td>
<td>LAST</td>
</tr>
<tr>
<td>09-00-2B-02-01-00</td>
<td>03-00-00-00-08-00</td>
<td>DNA Name Service Advertisement</td>
</tr>
<tr>
<td>09-00-2B-02-01-01</td>
<td>03-00-00-00-10-00</td>
<td>DNA Name Service Solicit</td>
</tr>
<tr>
<td>09-00-2B-02-01-02</td>
<td>03-00-00-00-20-00</td>
<td>DNA Time Service</td>
</tr>
<tr>
<td>03-00-00-00-00-01</td>
<td>03-00-00-00-00-01</td>
<td>NETBUI Emulation</td>
</tr>
<tr>
<td>03-00-02-00-00-00</td>
<td>03-00-20-00-00-00</td>
<td>RIPL</td>
</tr>
</tbody>
</table>

**/MAX_BUFFERS=value**

Sets the maximum number of receive buffers to be allocated and used by the LAN driver for the LAN device.

**/MEDIA=value**

- For Token Ring devices:
  
  Selects the type of cable media used to connect the adapter to the Token Ring Media Access Unit (MAU) for devices that do not automatically detect this. Acceptable values for this are either unshielded twisted pair (UTP) or shielded twisted pair (STP). The default value is STP.

- For Ethernet devices:
  
  Selects the cable connection. Normally, the selection is made during device initialization using a limited autosensing algorithm that selects twisted pair, but fails over to AUI (Attachment Unit Interface) if twisted pair does not appear to be functional. Thereafter, a cabling change would require a reboot of the system to take effect. This command allows you to change the selection without rebooting.

  Acceptable values are AUI (10Base2, 10Base5), TWISTEDPAIR (10BaseT), and AUTOSENSE (reperform the limited autosense algorithm). The default value is AUTOSENSE.

  Some devices, such as the DE435, require a jumper change on the Ethernet card to switch between 10Base2 and 10Base5 (thinwire and thickwire). Other devices, such as the DE434, DE436, and DE500, have only twisted pair connections.

**/MIN_BUFFERS=value**

Sets the minimum number of receive buffers to be allocated and used by the LAN driver for the LAN device.

**/PERMANENT**

Reads the permanent database and creates device entries in the volatile database.
LANCP
SET DEVICE (Alpha only)

/PERMANENT_DATABASE
Updates the device entries in the LAN volatile device database with any data currently set in the permanent database. This allows you to update the volatile database after changing data in the permanent database, rather than repeating the commands for each updated entry to apply the changes to the volatile database.

/PRIORITY=value
Sets the Failover priority of a LAN device. Priority is given to the LAN Failover participant with the highest priority when choosing the active participant of a LAN Failover set.

/PVC=(vci[,...])
/[NO]PVC=(vci[,...])
Sets the permanent virtual circuit (PVC) to be used by a Classical IP over ATM client. This is an optional qualifier.

A list of PVCs is defined for use by CLIP clients. This command should be used before enabling the CLIP client. The PVC has to be set up manually in the ATM switch.

The vci is the VCI (Virtual Circuit ID) of the PVC to be used.

/RING_PURGER
Enables the ring purger process of the FDDI device.

/SOURCE_ROUTING (default)
/NOSOURCE_ROUTING
Enables source routing on the Token Ring device. If you only have one ring in your LAN or you use transparent bridging, use the /NOSOURCE_ROUTING qualifier to turn off source routing.

/SPEED=value
Sets the speed of the LAN.

For Token Ring, valid values are either 4 or 16, indicating 4 megabits per second or 16 megabits per second. The default value for Token Ring is 16, unless the LAN adapter supports a nonvolatile mechanism for setting this parameter (as does the DEC Token Ring Controller 700).

For Ethernet, valid values are either 10 or 100, which selects the 10 megabits per second Ethernet port or the 100 megabits per second Fast Ethernet port. The default for Ethernet is to sense automatically which type of port is connected and select the appropriate speed.

/SR_ENTRY=(LAN_ADDRESS=address, RI=routing-information)
/NOSR_ENTRY=(LAN_ADDRESS=address)
Statically defines a specific source-routed route for a specific node. The default value is no routes specified. This caching remains valid while used or until the aging timer expires.

Use this qualifier only as a last resort when isolating communication failures on extended LAN topologies.

The /NOSR_ENTRY=(LAN_ADDRESS=address) qualifier, clears the previously defined static source routed route.
The address is a standard 6-byte LAN address (given as hexadecimal byte characters separated by hyphens), which specifies the canonical form of the address. Using a colon as the separator character indicates the bit-reversed form of the address.

The routing-information is the source routing field, specified as a series of two-byte hexadecimal characters (each byte separated by a hyphen). The field consists of a two-byte routing control field followed by up to 14 two-byte segment identifiers, each containing the ring number and the bridge number used in the hop.

/TOKEN_ROTATION
Sets the requested token rotation time for the FDDI ring.

/TOKEN_TIMEOUT
Sets the restricted token timeout time for the FDDI ring.

/TRANSMIT_TIMEOUT
Sets the valid transmission time for the FDDI device.

/UPDATE
Adds LAN devices that are not currently in the LAN volatile device database to that database. The initial entry for the device uses default values for all parameters. To update the volatile database with current information from the permanent database, use the SET DEVICE command with the /PERMANENT_DATABASE qualifier. You can combine the /UPDATE and /PERMANENT_DATABASE qualifiers in a single SET DEVICE command.

Examples

1. LANCP> SET DEVICE/CONTENDER/MEDIA=UTP/NOEARLY/SOURCE ICA0

Enables monitor contention, UTP cable media, source routing and disables early token release for Token Ring device ICA0.

2. LANCP> SET DEVICE/MEDIA=TWI EWB0

Sets the media type to twisted pair for the second Tulip Ethernet device, EWB0.

3. LANCP> SET DEVICE EXA0/MOPDLL=ENABLE

Enables MOP downline load service for device EXA0, leaving the remaining MOPDLL parameters unchanged.

4. LANCP> SET DEVICE EXA0/MOPDLL=(ENABLE,EXCLUSIVE,SIZE=1482)

Enables MOP downline load service for device EXA0, in exclusive mode with the data transfer size of 1482 bytes, leaving the remaining MOPDLL parameters unchanged.

5. LANCP> SET DEVICE EXA0/MOPDLL=(ENABLE,NOEXCLUSIVE)
LANCP> SET DEVICE FXA0/MOPDLL=(ENABLE,EXCL,KNOWN)

These commands enable LANACP MOP downline load service for:

- LAN device EXA0 in nonexclusive mode
- LAN device FXB0 in exclusive mode for only known clients
SET NODE

Enters a node into the LAN volatile node database or modifies an existing entry. Requires SYSPRV privilege.

Format

SET NODE node-name

Parameter

node-name
Supplies the name of a node to be added to the LAN volatile node database or an entry to be modified. Typically, the node name is the same as that given in the system parameter SCSNODE, but it does not need to be. The node name is limited to 63 characters in length.

Qualifiers

/ADDRESS=node-address
/NOADDRESS (default)
Associates a LAN address with the node name. Specify the address as 6 bytes in hexadecimal notation, separated by hyphens. The address does not have to be unique (as might be the case when the address is not known, so a nonexistent address is specified).

If multiple node addresses are to be associated with a node name, each combination may be given as a node name with an extension, for example, VAXSYS.EXA for the EXA device on node VAXSYS, or VAXSYS_1 for the first LAN device on node VAXSYS.

If you do not specify the /ADDRESS qualifier, the setting remains unchanged. The /NOADDRESS qualifier clears the field.

/ALL
Defines data for all nodes in the LAN volatile node database. If you specify a node name, all matching nodes are selected; for example, A/ALL selects all nodes beginning with A.

/BOOT_TYPE=boot-option
/NOBOOT_TYPE
Indicates the type of processing required for downline load requests. You can specify one of the following keywords with this qualifier:

- VAX_SATELLITE—a VAX satellite cluster boot
- ALPHA_SATELLITE—an Alpha satellite cluster boot
- OTHER—the specified image; noncluster satellite loads that do not require additional data

The distinction is necessary, because OpenVMS Cluster satellite loads require additional cluster-related data be appended to the load image given by the /FILE qualifier. The default value is OTHER.

If you do not specify the /BOOT_TYPE qualifier, the setting remains unchanged. The /NOBOOT_TYPE qualifier clears the field.
/DECNET_ADDRESS=value
/NODECNET_ADDRESS
Associates a DECnet address with the node name. Specify the address in DECnet notation, xx.xxxx.

If you do not specify the /DECNET_ADDRESS=value qualifier, then the setting remains unchanged. The /NODECNET_ADDRESS qualifier clears the field.

/FILE=file-spec
/NOFILE
Supplies the file name of a boot file to be used when the downline load request does not include a file name (for example, OpenVMS Cluster satellite booting). The file specification is limited to 127 characters.

If no file name is specified, OpenVMS Cluster satellite loads default to APB.EXE where the boot type is set to ALPHA and NISCS_LOAD.EXE where the boot type is set to VAX.

If you do not specify the /FILE qualifier, the setting remains unchanged. The /NOFILE qualifier clears the field.

/IP_ADDRESS=value
/NOIP_ADDRESS
Associates an IP address with the node name. Specify the address in the standard dotted notation, xxx.xxx.xxx.xxx.

If you do not specify the /IP_ADDRESS=value qualifier, the setting remains unchanged. The /NOIP_ADDRESS qualifier clears the field.

/PERMANENT_DATABASE
Updates the node entries in the LAN volatile node database with any data currently set in the permanent database. This allows you to update the volatile database after changing data in the permanent database, rather than repeating the commands for each updated entry to apply the changes to the volatile database.

/ROOT=directory-specification
/NOROOT
Supplies the directory specification to be associated with the file name. For cluster satellite service, the /ROOT qualifier specifies the satellite root directory. For noncluster service, this qualifier specifies the location of the file. If the file specification or the file name given in the boot request includes the directory name, this qualifier is ignored. The directory specification is limited to 127 characters.

If you do not specify the /ROOT qualifier, the setting remains unchanged. The /NOROOT qualifier clears the field.

/SIZE=value
/NOSIZE
Specifies the size in bytes of the file data portion of each downline load message. The default is the load data size specified for the device. The permitted range is 246 to 1482 bytes. Use a larger size for better load performance and less server overhead.

If you do not specify the /SIZE qualifier, the setting remains unchanged. The /NOSIZE qualifier clears the setting.
/V3
/NOV3
Indicates that only MOP Version 3 formatted messages are to be used for
downline load purposes, regardless of the requested format. This allows systems
to load that have a problem with MOP Version 4 booting. This qualifier causes
the requesting node to fail over from MOP Version 4 to MOP Version 3 when no
response has been made to a MOP Version 4 load request.

If you do not specify the /V3 qualifier, the setting remains unchanged. The /NOV3
qualifier clears the setting.

Examples

1. LANCP> SET NODE VAXSYS/ADDRESS=08-00-2B-11-22-33 -
   /FILE=APB.EXE -
   /ROOT=$64$DIA14:<SYS10.> -
   /BOOT_TYPE=ALPHA_SATELLITE

   This command sets up node VAXSYS for booting as an Alpha satellite into the
   cluster.

   The APB.EXE file is actually located on $64$DIA14:
   <SYS10.SYSCOMMON.SYSEXE>. Note that the <SYSCOMMON.SYSEXE>
   is supplied by the LANACP LAN Server process and is not included in the
   root definition.

2. LANCP> SET NODE VAXSYS/ADDRESS=08-00-2B-11-22-33 -
   /FILE=NISCS_LOAD.EXE -
   /ROOT=$64$DIA14:<SYS10.> -
   /BOOT_TYPE=VAX_SATELLITE

   This command sets up node VAXSYS for booting as a VAX satellite into the
   OpenVMS Cluster.

   The NISCS_LOAD.EXE file is actually located on $64$DIA14:
   <SYS10.SYSCOMMON.SYSLIB>. The <SYSCOMMON.SYSLIB> is supplied
   by the LANACP LAN Server process and is not included in the root definition.

3. LANCP> SET NODE VAXSYS/ADDRESS=08-00-2B-11-22-33/NOROOT

   This command changes the LAN address associated with node VAXSYS and
   clears the current root specification.

4. SET NODE CALPAL/ADDRESS=08-00-2B-11-22-33/FILE=APB_061.EXE

   This command sets up node CALPAL for booting an InfoServer image. It
   defines the file that should be loaded when a load request without file name
   is received from node CALPAL.

   Because the file does not include a directory specification, the logical
   name LAN$DLL defines where to locate the file. You could give directory
   specification using the file name or by using the /ROOT qualifier.

   Note that specifying the file name explicitly in the boot command overrides
   the file name specified in the node database entry.
SHOW CONFIGURATION

Displays a list of LAN devices and characteristics on the system.

Format

SHOW CONFIGURATION

Parameters

None.

Qualifiers

/OUTPUT=file-name
Creates the specified file and directs output to it.

/USERS
On Alpha systems, shows which protocols are using which template device.

Example

LANCP> SHOW CONFIGURATION
LAN Configuration:

<table>
<thead>
<tr>
<th>Device</th>
<th>Medium</th>
<th>Default LAN Address</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWA0</td>
<td>CSMA/CD</td>
<td>08-00-2B-E4-00-BF</td>
<td>02000023</td>
</tr>
<tr>
<td>EWB0</td>
<td>CSMA/CD</td>
<td>08-00-2B-92-A4-0D</td>
<td>02000023</td>
</tr>
<tr>
<td>IRA0</td>
<td>Token Ring</td>
<td>00-00-93-58-5D-32</td>
<td>20000223</td>
</tr>
</tbody>
</table>

This example shows the output from a SHOW CONFIGURATION command that was entered on a node that has three LAN devices, two DE435s, and a DETRA.

The version is the device-specific representation of the actual (hardware or firmware) version. In this example, for two devices on the PCI bus, the actual version is in the low byte (2.3 for the DE435 adapters). A device that does not have a readable version is shown as version zero.

Consult your device-specific documentation to correlate the version returned with a particular hardware or firmware implementation of the device.
SHOW DEVICE

Displays information in the volatile device database. If the LANACP process is not running, displays a list of current LAN devices.

Format

SHOW DEVICE  device-name

Parameter

device-name
Supplies the LAN controller device name. The device name has the form *ddcu* where *dd* is the device code, *c* is the controller designation, and *u* is the unit number. LAN devices are specified as the name of the template device which is unit 0. For example, the first DE435 Ethernet device is specified as EWA0, the second as EWB0.

For example, you can specify a DEMNA controller as EXA, EXA0, or EXA0:. This refers to the LAN template device, for which is maintained most of the device parameters and counters. Also, the device name can refer to a device unit representing an actual user or protocol. For example, the cluster protocol can be started on a device as EWA1. You can specify specific device units to view unit-specific parameter information.

If you do not specify a device name, all devices are displayed.

If you specify a device name, all matching LAN devices are displayed, for example: E to select all Ethernet devices, F for FDDI, I for Token Ring, EW to select all Ethernet PCI Tulip devices.

Note

If you do not specify a qualifier, the utility displays the matching devices without additional information.

Qualifiers

/ALL
Shows all devices that match device name.

/CHARACTERISTICS
On Alpha systems, same as the /PARAMETERS qualifier.

/COUNTERS
Displays device counters.

/DLL
Displays LAN volatile device database information related to MOP downline load for the device.

/INTERNAL_COUNTERS
Displays internal counters. By default, it does not display zero counters. To see all counters, including zero, use the additional qualifier /ZERO. To see the debug counters, use the additional qualifier /DEBUG.
/MAP
Displays the current configuration of the functional address mapping table.

/MOPDLL
Same as the /DLL qualifier.

/OUTPUT=file-name
Creates the specified file and directs output to it.

/PARAMETERS
Displays status and related information about the device.

/REVISION
Displays the current firmware revision of the device, if available or applicable. Not all LAN devices return revision information. LAN devices that do not have a revision display a revision of zero.

/SR_ENTRY
Displays the contents of the current Token Ring source routing cache table.

/TRACE=device-name
Displays LAN driver trace data.

Examples

1. LANCP> SHOW DEVICE/COUNTERS EXA0

   Device Counters EXA0:
      Value  Counter
     ------  -------
     259225  Seconds since last zeroed
     5890496 Data blocks received
     4801439 Multicast blocks received
     131074  Receive failure
     761438985 Bytes received
     543019961 Multicast bytes received
     3   Data overrun
     1533610 Data blocks sent
     115568  Multicast packets transmitted
     122578 Blocks sent, multiple collisions
     86000   Blocks sent, single collision
     189039 Blocks sent, initially deferred
     198120720 Bytes sent
     13232578 Multicast bytes transmitted
     7274529 Send failure
      0  Collision detect check failure
      0 Unrecognized frame destination
      0 System buffer unavailable
      0 User buffer unavailable

   This command displays counters for Ethernet device EXA0.
2. **LANCP> SHOW DEVICE/MAP ICA0**

Multicast to Functional Address Mapping ICA0:

<table>
<thead>
<tr>
<th>Multicast address</th>
<th>Functional Address</th>
<th>Bit-Reversed</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-00-2B-00-00-04</td>
<td>03-00-00-00-02-00</td>
<td>00:00:00:00:40:00</td>
</tr>
<tr>
<td>09-00-2B-00-00-05</td>
<td>03-00-00-00-01-00</td>
<td>00:00:00:00:80:00</td>
</tr>
<tr>
<td>CF-00-00-00-00-00</td>
<td>03-00-00-08-00-00</td>
<td>00:00:00:10:00:00</td>
</tr>
<tr>
<td>AB-00-00-01-00-00</td>
<td>03-00-02-00-00-00</td>
<td>00:00:40:00:00:00</td>
</tr>
<tr>
<td>AB-00-00-02-00-00</td>
<td>03-00-04-00-00-00</td>
<td>00:00:20:00:00:00</td>
</tr>
<tr>
<td>AB-00-00-03-00-00</td>
<td>03-00-08-00-00-00</td>
<td>00:00:10:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-00-00</td>
<td>03-00-08-00-00-00</td>
<td>00:00:10:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-01-0A</td>
<td>03-00-08-00-00-00</td>
<td>00:00:10:00:00:00</td>
</tr>
<tr>
<td>AB-00-00-04-00-00</td>
<td>03-00-10-00-00-00</td>
<td>00:00:08:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-01-0B</td>
<td>03-00-10-00-00-00</td>
<td>00:00:08:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-00-00-07</td>
<td>03-00-20-00-00-00</td>
<td>00:00:04:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-00-00-0F</td>
<td>03-00-40-00-00-00</td>
<td>00:00:02:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-01-04</td>
<td>03-00-80-00-00-00</td>
<td>00:00:01:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-01-07</td>
<td>03-00-00-02-00-00</td>
<td>00:00:40:00:00:00</td>
</tr>
<tr>
<td>09-00-2B-04-00-00</td>
<td>03-00-00-04-00-00</td>
<td>00:00:00:20:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-01-00</td>
<td>03-00-00-00-08-00</td>
<td>00:00:00:10:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-01-01</td>
<td>03-00-00-00-10-00</td>
<td>00:00:00:08:00:00</td>
</tr>
<tr>
<td>09-00-2B-02-01-02</td>
<td>03-00-00-00-20-00</td>
<td>00:00:00:04:00:00</td>
</tr>
<tr>
<td>03-00-00-00-00-01</td>
<td>03-00-00-00-00-01</td>
<td>00:00:00:00:00:80</td>
</tr>
<tr>
<td>03-00-02-00-00-00</td>
<td>03-00-02-00-00-00</td>
<td>00:00:40:00:00:00</td>
</tr>
</tbody>
</table>

This command displays mapping information for Token Ring device ICA0.

3. **LANCP> SHOW DEVICE/MOPDLL**

Device Listing, volatile database:

--- MOP Downline Load Service Characteristics ---

<table>
<thead>
<tr>
<th>Device</th>
<th>State</th>
<th>Access Mode</th>
<th>Clients</th>
<th>Data Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXA0</td>
<td>Enabled</td>
<td>Exclusive</td>
<td>KnownClientsOnly</td>
<td>1400 bytes</td>
</tr>
<tr>
<td>FXA0</td>
<td>Disabled</td>
<td>NoExclusive</td>
<td>NoKnownClientsOnly</td>
<td>246 bytes</td>
</tr>
</tbody>
</table>

This command displays MOP downline load information in the LAN volatile device database for all known devices.

4. **LANCP> SHOW DEVICE/MOPDLL EXA0**

Device Listing, volatile database:

--- MOP Downline Load Service Characteristics ---

<table>
<thead>
<tr>
<th>Device</th>
<th>State</th>
<th>Access Mode</th>
<th>Clients</th>
<th>Data Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXA0</td>
<td>Enabled</td>
<td>Exclusive</td>
<td>KnownClientsOnly</td>
<td>1400 bytes</td>
</tr>
</tbody>
</table>

This command displays MOP downline load information in the LAN volatile device database for device EXA0.
5. LANCP> SHOW DEVICE/PARAMETERS IRA0

Device Parameters IRA0:

<table>
<thead>
<tr>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Controller mode</td>
</tr>
<tr>
<td>External</td>
<td>Internal loopback mode</td>
</tr>
<tr>
<td>00-00-93-58-5D-32</td>
<td>Hardware LAN address</td>
</tr>
<tr>
<td>Token</td>
<td>Communication medium</td>
</tr>
<tr>
<td>Ring</td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td>Functional address mode</td>
</tr>
<tr>
<td>No</td>
<td>Full duplex enable</td>
</tr>
<tr>
<td>No</td>
<td>Full duplex operational</td>
</tr>
<tr>
<td>16</td>
<td>Line speed (megabits/second)</td>
</tr>
<tr>
<td>16 Mbps</td>
<td>Ring speed</td>
</tr>
<tr>
<td>STP</td>
<td>Line media</td>
</tr>
<tr>
<td>Enabled</td>
<td>Early token release</td>
</tr>
<tr>
<td>Disabled</td>
<td>Monitor contender</td>
</tr>
<tr>
<td>200</td>
<td>SR cache entries</td>
</tr>
<tr>
<td>2</td>
<td>SR discovery timer</td>
</tr>
<tr>
<td>60</td>
<td>SR Aging Timer</td>
</tr>
<tr>
<td>Enabled</td>
<td>Source routing</td>
</tr>
<tr>
<td>3</td>
<td>Authorized access priority</td>
</tr>
<tr>
<td>AA-00-04-00-92-FF</td>
<td>Upstream neighbor</td>
</tr>
<tr>
<td>0</td>
<td>Ring number</td>
</tr>
</tbody>
</table>

This command displays status and parameters information for Token ring device IRA0.

6. LANCP> SHOW DEVICE/REVISION FXA0

Device revision FXA0: 05140823

This command displays revision information for FDDI device FXA0.

7. LANCP> SHOW DEVICE/SR_ENTRY ICA0

Source Routing Cache Table ICA0:

<table>
<thead>
<tr>
<th>LAN address</th>
<th>State</th>
<th>XmtTmo</th>
<th>RcvTmo</th>
<th>StaleTmo</th>
<th>DiscvTmo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA-00-04-00-92-FF</td>
<td>LOCAL</td>
<td>00000028</td>
<td>00000028</td>
<td>000000245</td>
<td>00000000</td>
</tr>
</tbody>
</table>

This command displays source routing entry information for Token Ring device ICA0.
SHOW DLL

Displays the current state of MOP downline load services for the system, including devices for which MOP loading is enabled and counters information.

Format

SHOW DLL

Parameters

None.

Qualifier

/OUTPUT=file-name

Creates the specified file and directs output to it.

Example

LANCP>SHOW DLL

LAN DLL Status:
EXA enabled in exclusive mode for known nodes only,
data size 1482 bytes
FXA disabled

#Loads  Packets  Bytes      Last load time      Last loaded
-------  ------  -------  ------------------  ----------
EXA      5       1675    4400620  22-SEP-2002 10:27.51 GALAXY
FXA       0       0       0

On this node, there are two LAN devices, EXA (DEMNA) and FXA (DEMFA). MOP downline load service is enabled on EXA in exclusive mode.

Requests are answered only for nodes that are defined in the LANACP node database. The image data size in the load messages is 1482 bytes. There have been five downline loads, the last one occurring on node GALAXY at 10:27. Finally, there are no recorded downline loads for FXA, which is currently disabled for downline load service.
SHOW LOG

Displays recent downline load activity (the last 2048 bytes of log data written to the log file SYS$MANAGER:LAN$ACP.LOG).

Format

SHOW LOG

Parameters

None.

Qualifier

/OUTPUT=file-name

Creates the specified file and directs output to it.

Example

LANCP> SHOW LOG
SYS$MANAGER:LAN$ACP.LOG latest contents:
17-MAR-2001 07:29:51.71 Volunteered to load request on EXA0 from HELENA
   Requested file: LAVC$SYSDEVICE:<SYS1A.>[SYSCOMMON.SYSLIB]NISCS_LOAD.EXE
17-MAR-2001 07:29:53.00 Load succeeded for HELENA on EXA0
   MOP V3 format, System image,
   LAVC$SYSDEVICE:<SYS1A.>[SYSCOMMON.SYSLIB]NISCS_LOAD.EXE
   Packets: 84 sent, 84 received
   Bytes: 121492 sent, 168 received, 120988 loaded
   Elapsed time: 00:00:01.09, 110998 bytes/second
17-MAR-2001 07:29:53.60 Could not respond to load request on EXA0 from AJAX, file not found
   Requested file: LAN$DLL:READ_ADDR.SYS
17-MAR-2001 07:29:54.46 Could not respond to load request on EXA0 from AJAX, file not found
   Requested file: LAN$DLL:READ_ADDR.SYS
17-MAR-2001 07:29:57.36 Volunteered to load request on EXA0 from HELENA
   Requested file: LAVC$SYSDEVICE:<SYS1A.>[SYSCOMMON.SYSLIB]NISCS_LOAD.EXE
17-MAR-2001 07:29:58.49 Volunteered to load request on EXA0 from AJAX
17-MAR-2001 07:29:59.49 Load succeeded for HELENA on EXA0
   MOP V3 format, System image,
   LAVC$SYSDEVICE:<SYS1A.>[SYSCOMMON.SYSLIB]NISCS_LOAD.EXE
   Packets: 84 sent, 84 received
   Bytes: 121492 sent, 168 received, 120988 loaded
   Elapsed time: 00:00:01.73, 69935 bytes/second
17-MAR-2001 07:30:03.66 Volunteered to load request on EXA0 from AJAX
   Requested file: LAN$DLL:ONE.SYS
17-MAR-2001 07:30:04.05 Load succeeded for AJAX on EXA0
   MOP V3 format, System image, LAN$DLL:ONE.SYS
   Packets: 9 sent, 9 received
   Bytes: 11354 sent, 18 received, 11300 loaded
   Elapsed time: 00:00:00.04, 282500 bytes/second
17-MAR-2001 07:30:05.18 Load succeeded for AJAX on EXA0
   MOP V3 format, System image, LAN$DLL:ONE.SYS
   Packets: 9 sent, 9 received
   Bytes: 11354 sent, 18 received, 11300 loaded
   Elapsed time: 00:00:00.04, 282500 bytes/second
LANCP
SHOW LOG

This command displays the last 2048 bytes of log data written to the log file SYS$MANAGER:LAN$ACP.LOG.
SHOW NODE

Displays information in the LAN volatile node database.

Format

SHOW NODE node-name

Parameter

node-name
Specifies the name of a node in the LAN volatile node database. The name can include up to 63 characters associated with the node address. If you do not specify a node name, all nodes are displayed.

Qualifiers

/ALL
Displays information for all nodes in the LAN volatile node database. If you specify a node name, all matching nodes are selected; for example, A/ALL selects all nodes beginning with A.

/OUTPUT=file-name
Creates the specified file and directs output to that file. If the file extension is .com, the output is in the form of a list of DEFINE NODE or SET NODE commands. The resulting command file can be used to create the LAN node databases.

/TOTAL
Display counter totals only, for the nodes selected.

Examples

1. LANCP> SHOW NODE
   
   Node Listing:
   
   GALAXY (08-00-2B-2C-51-28):
   MOP DLL: Load file: APB.EXE
   Load root: $64$DIA24:<SYS11.>
   Boot type: Alpha satellite
   
   ZAPNOT (08-00-2B-18-7E-33):
   MOP DLL: Load file: NISCS$LOAD.EXE
   Boot type: VAX satellite
   
   CALPAL (08-00-2B-08-9F-4C):
   MOP DLL: Load file: READ_ADDR.SYS
   Last file: LAN$DLL:APB_X5WN.SYS
   Boot type: Other
   2 loads requested, 1 volunteered
   1 succeeded, 0 failed
   Last request was for a system image, in MOP V4 format
   Last load initiated 12-JUN-2002 09:11:17 on EXA0 for 00:00:06.65
   527665 bytes, 4161 packets, 0 transmit failures
   
   Unnamed (00-00-00-00-00-00):
LANCP
SHOW NODE

Totals:
Requests received 2
Requests volunteered 1
Successful loads 1
Failed loads 0
Packets sent 2080
Packets received 2081
Bytes sent 523481
Bytes received 4184
Last load CALPAL at 12-JUN-2002 09:11:17.29

This example shows output from a command issued on a local node on which there are three nodes defined (GALAXY, ZAPNOT, and CALPAL). CALPAL has issued two load requests:
- The first request is the multicast request from CALPAL that the local node volunteered to accept.
- The second request is the load request sent directly to the local node by CALPAL for the actual load data. The elapsed time from the second load request to completion of the load was 6.65 seconds.

2. LANCP> SHOW NODE VAXSYS
Displays node characteristics and counters information from the LAN volatile node database for node VAXSYS.

3. LANCP> SHOW NODE/ALL VAX
Displays node characteristics and counters information from the LAN volatile node database for all nodes whose name begins with VAX.

4. LANCP> SHOW NODE/ALL
Displays node characteristics and counters information from the LAN volatile node database for all nodes.

5. LANCP> SHOW NODE/ALL/OUTPUT=TMP.INI
Writes a list of all nodes to the file TMP.INI.
SPAWN

Creates a subprocess of the current process. The SPAWN command copies the context of the subprocess from the current process.

Format

SPAWN [command-string]

Parameter

command-string
A string of commands to be executed in the context of the created subprocess. After the command string is executed, control returns to LANCP.

Qualifiers

None.

Example

LANCP> SPAWN
$ HC LANCP
LANCP> DEFINE NODE BOOM/ROOT=LAVC$SYSDEVICE:<SYS22.>
LANCP> SPAWN SEARCH LAVC$SYSDEVICE:[][.SYSEX][MOD*.DAT] BOOM

***************************
LAVC$SYSDEVICE:[][SYS1A.SYSEX][MODPARAMS.DAT];1
SCSNODE="BOOM   
LANCP> DEFINE NODE BOOM/ROOT=LAVC$SYSDEVICE:<SYS1A.>

In this example, you enter the node information for a node, but are unsure of the root, so you spawn to search MODPARAMS.DAT for the node name and then correct the root.
TRIGGER NODE

Issues a request to reboot to a remote node.

Rather than specify the format to send MOP Version 3 or 4, the LANCP utility sends one message in each format to the target node.

Format

```
TRIGGER NODE node-specification
```

Parameter

`node-specification`

Supplies either the node name or the node address of the target node. If you supply the node name, the node address is obtained by looking up the node name in the LAN volatile node database. If you supply the node address, the corresponding node need not be defined in the LAN volatile node database. The canonical form of the address consists of 6 hexadecimal byte characters separated by hyphens. Use a colon as the separator character to indicate the bit-reversed form of the address.

Qualifiers

```
/DEVICE= device-name
```

Specifies the LAN controller device name to be used for sending the trigger boot messages. For example, you can specify a DEMNA controller as EXA, EXA0 or EXA0:

```
/PASSWORD=16hexdigits
```

Supplies the password to be used when the connection is initiated, in hexadecimal (for example, /PASSWORD=0123456789ABCDEF). The default password is zero. You can omit leading zeros.

Examples

1. **LANCP> TRIGGER NODE GALAXY/DEVICE=EWA0**

   This command sends MOP trigger boot messages to node GALAXY using Ethernet device EWA0.

2. **LANCP> TRIGGER NODE 08-00-2B-11-22-33/DEVICE=EWA0/PASSWORD=0123456789AB**

   This command sends MOP trigger boot messages to the given node address using the Ethernet device EWA0, with indicated password.
LAT Control Program (LATCP) Utility
14.1 LATCP Description

The LAT Control Program (LATCP) utility is used to configure and control the LAT software on OpenVMS systems. You can use LATCP to:

- Specify operational characteristics for your node and its services
- Turn the state of the LAT port driver (LTDRIVER) on and off
- Display the status of LAT services and service nodes in the network
- Display the status of links created on your LAT node
- Display the status of your LAT node
- Show and zero LAT counters
- Create, delete, and manage LAT ports
- Recall previously entered LATCP commands so that you can execute them again without having to retype them
- Create subprocesses so that you can execute DCL commands without exiting from LATCP

14.2 LATCP Usage Summary

LATCP allows you to control the LAT software on a node and to obtain information from it. For example, you can use LATCP to create services on the local node, to associate a port on the local node with a service or device on a remote terminal server, and to display information about services offered on the local node or on other nodes in the network.

When you use LATCP commands to change LAT characteristics (such as creating a service and associating a port with a service), the changes take effect immediately. However, when the LAT port driver stops, these characteristics are lost. If you want these characteristics to be present the next time you start the LAT port driver, edit LAT$SYSTARTUP.COM by modifying or adding commands to set these characteristics. Then, invoke LAT$STARTUP.COM to start the LAT port driver. (Refer to the HP OpenVMS System Manager’s Manual for more information.)

Format

RUN SYS$SYSTEM:LATCP

Description

To invoke LATCP, enter RUN SYS$SYSTEM:LATCP at the DCL command prompt. At the LATCP> prompt, you can enter the LATCP commands described in the following section.

To exit from LATCP, enter the EXIT command at the LATCP> prompt or press Ctrl/Z.

You can also execute a single LATCP command by using a DCL string assignment statement, as shown in the following example:

$ LCP :== $LATCP
$ LCP SET NODE/STATE=ON

LATCP executes the SET NODE command and returns control to DCL.
## 14.3 LATCP Commands

The following table summarizes the LATCP commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTACH</td>
<td>Transfers control from your current process to the specified process.</td>
</tr>
<tr>
<td>CREATE LINK</td>
<td>Creates LAT data links.</td>
</tr>
<tr>
<td>CREATE PORT</td>
<td>Creates a logical port on the local node.</td>
</tr>
<tr>
<td>CREATE SERVICE</td>
<td>Creates a service on a service node.</td>
</tr>
<tr>
<td>DEFINE/KEY</td>
<td>Assigns a command string to a function key on your keypad.</td>
</tr>
<tr>
<td>DELETE LINK</td>
<td>Deletes a LAT data link from a node.</td>
</tr>
<tr>
<td>DELETE PORT</td>
<td>Deletes an application port or dedicated port.</td>
</tr>
<tr>
<td>DELETE QUEUE_ENTRY</td>
<td>Deletes an incoming queued request from the local node.</td>
</tr>
<tr>
<td>DELETE SERVICE</td>
<td>Deletes a service on a service node.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Returns the user to DCL command level.</td>
</tr>
<tr>
<td>HELP</td>
<td>Displays help text for LATCP commands.</td>
</tr>
<tr>
<td>RECALL</td>
<td>Recalls LATCP commands that you entered previously so that you can execute them again.</td>
</tr>
<tr>
<td>REFRESH</td>
<td>Refreshes your display screen, for example, after your display has been overwritten by output from some other source.</td>
</tr>
<tr>
<td>SCROLL</td>
<td>Allows you to retrieve information that has scrolled off the screen.</td>
</tr>
<tr>
<td>SET LINK</td>
<td>Modifies characteristics of LAT data links.</td>
</tr>
<tr>
<td>SET NODE</td>
<td>Specifies LAT characteristics for a node.</td>
</tr>
<tr>
<td>SET PORT</td>
<td>Maps a logical port on a node to either a remote device on a terminal server or a special application service on a remote LAT service node.</td>
</tr>
<tr>
<td>SET SERVICE</td>
<td>Changes service characteristics.</td>
</tr>
<tr>
<td>SHOW LINK</td>
<td>Displays the characteristics of links on your node.</td>
</tr>
<tr>
<td>SHOW NODE</td>
<td>Displays the characteristics of nodes.</td>
</tr>
<tr>
<td>SHOW PORT</td>
<td>Displays port characteristics.</td>
</tr>
<tr>
<td>SHOW QUEUE_ENTRY</td>
<td>Displays information about requests, or entries, queued on the local node.</td>
</tr>
<tr>
<td>SHOW SERVICE</td>
<td>Displays characteristics of LAT services known to your node.</td>
</tr>
<tr>
<td>SPAWN</td>
<td>Creates a subprocess.</td>
</tr>
<tr>
<td>ZERO COUNTERS</td>
<td>Resets the node counters, service counters, and link counters maintained by your node.</td>
</tr>
</tbody>
</table>
ATTACH

Transfers control from your current process to the specified process. The LATCP command ATTACH is similar to the DCL command ATTACH. For example, from the DCL command level you can enter the DCL command SPAWN to create a LATCP subprocess without ending your DCL session, execute several LATCP commands at the LATCP prompt, then use the ATTACH command to return to DCL.

Format

ATTACH [process-name]

Parameter

process-name

Specifies the name of a parent process or spawned subprocess to which control passes. The process must already exist, be part of your current job, and share the same input stream as your current process.

Process names can contain from 1 to 15 alphanumeric characters. If a connection to the specified process cannot be made, LATCP displays an error message.

If you specify the /PID qualifier, do not use the process name parameter. If you omit the /PID qualifier, you must use the process name parameter.

To display processes, use the DCL command SHOW SYSTEM.

Qualifier

/PID=pid

Specifies the process identifier (PID) of the process that will have terminal control. When you specify a PID, you can omit the leading zeros. If you specify a PID, do not use the process name parameter. If you omit the /PID qualifier, you must use the process-name parameter.

Description

The ATTACH command allows you to connect your input stream to another process. You can use ATTACH to change control from one process to another. For example, you can use ATTACH to change control from LATCP to the DCL command level (see the following example). While you are at the DCL command level, LATCP remains in a hibernation state until you use ATTACH to return to it.

You cannot use this command if you are logged in to a captive account. (A captive account is an account set up to restrict user access to the system. You cannot access the DCL command level from a captive account.) You cannot specify both a process name and the /PID qualifier.
Example

\$ SET PROCESS/NAME="TOP_Level"
\$ SPAWN RUN SYS$SYSTEM:LATCP
LATCP> SHOW NODE/ALL
.
.
.
LATCP> ATTACH "TOP_LEVEL"
\$

In this example, the user enters the DCL command SPAWN to create a LATCP subprocess and uses LATCP to display the status of all nodes known to the local node. After using LATCP, the user enters the ATTACH command to return to the DCL command level.
CREATE LINK

Creates the LAT data links, which are connections to LAN devices, such as Ethernet or FDDI (Fiber Distributed Data Interface) controllers, that you want your node to use. You must have OPER privilege to use this command.

Format

CREATE LINK link-name

Parameter

link-name
Specifies a name for a LAT data link. A link name can have up to 16 ASCII characters. The characters allowed are as follows:

- Alphanumeric characters: A–Z, a–z, 0–9
- A subset of the international character set: ASCII codes 192–253
- Punctuation characters: dollar sign ($), hyphen (−), period (.), and underscore (_)

You can create a maximum of eight links on your local node. Use the SHOW LINK command for a list of the link names that are defined for your node.

Qualifiers

/DECNET (default) /NODECNET

Directs LAT protocol to use the DECnet data link address (/DECNET) or the hardware address (/NODECNET) when starting the LAN controller. If you do not specify the /DECNET or /NODECNET qualifier, the default is that the LAT protocol will use the DECnet data link address.

Note that if you enter the CREATE LINK command with the /DECNET qualifier and receive an error message indicating a “bad parameter value,” it means the SCSSYSTEMID system parameter is set to an illegal value. To change the value of this parameter, use the following formula:

\[(1024 \times a) + n\]

In the formula, \(a\) is the DECnet area and \(n\) is the DECnet computer number. If the value is outside the range of 1025 to 65535, the LAT protocol cannot start.

When you use the /NODECNET qualifier, the LAN device driver code determines which address to use. For example:

- If SCSSYSTEMID is set to 0 but DECnet is already running on an Ethernet controller, the LAN device code allows LAT to use the same address as DECnet (AA-00-04-00-xx-xx).
- If SCSSYSTEMID is set to 0 and DECnet is not running, the 08-00-2B-xx-xx address is used (a different address format is used if your LAN controller is supplied by a vendor other than HP).
- If the setting for SCSSYSTEMID is the same as the DECnet node number and DECnet is not running, the LAN device code forces LAT to use the AA-00-04-00-xx-xx address.
If DECnet is configured on the system (or if the system is part of a cluster), SCSSYSTEMID may contain a nonzero value. This is a problem only when the system has 2 or more LAN controllers connected to the same logical LAN.

For example, if your system has an FDDI controller and an Ethernet controller, your site may be configured so that the FDDI ring attached to the FDDI controller and the Ethernet segment attached to the Ethernet controller are bridged by a 10/100 LAN bridge (FDDI-to-Ethernet). In this configuration, it is impossible to run LAT over both controllers.

In such a configuration, you must run LAT and DECnet over the same controller if SCSSYSTEMID is not 0. If you fail to do so, DECnet starts first, which in turn causes the LAT startup on the other controller to fail. This failure occurs because LAT startup tries to use the AA-00-04-00-xx-xx address (the DECnet LAN address) but is prevented from doing so by the data link layer. The LAT startup fails because DECnet is already using this address on a different controller. (In a single logical LAN, all data link addresses must be unique. In this setup, both controllers try to use the same address, which is then not unique.)

The following command (which creates the LAT link) also fails because the LAN driver tries to use the address based on SCSSYSTEMID:

```
LATCP> CREATE LINK LAT$LINK_2 /NODECNET
```

If SCSSYSTEMID is set to 0, configuring LAT and DECnet on different controllers is possible. However, in a cluster environment, SCSSYSTEMID cannot be set to 0.

/DEVICE=device-name
Specifies the LAN controller device name for a LAT data link (for example, XEB0:). Only one LAT data link can be associated with a LAN controller. If you enter the CREATE LINK command without the /DEVICE qualifier, LATCP attempts to find an available controller by using a list of possible LAT data link device names. HP recommends that you specify a default device name by defining the LAT$DEVICE logical name.

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the link was created. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

/STATE=option
Specifies whether the link will be available for use. STATE can have two options:

ON    Specifies that the created link will be available for use with the LAT protocol running.
OFF   Specifies that the created link will not be available for use.

If you do not specify the /STATE=option qualifier, the default is that the created link will be available for use (ON).
Description

The CREATE LINK command creates a link, or connection, for an OpenVMS node and a local area network (LAN) device (for example, an Ethernet or FDDI controller) and assigns a name to that link. An OpenVMS node can have eight LAN links. Each link must operate on a separate LAN controller and have its own LAN hardware.

If you do not explicitly create a link with this command before entering the SET NODE/STATE=ON command, LATCP automatically creates a link for you. LATCP names the link LAT$LINK and assigns it to the first available LAN controller or LAT$DEVICE, if defined. To establish additional links, use the CREATE LINK command.

Whenever you create a link, specify the LAN controller device name.

Use the SET LINK command to modify link characteristics.

Example

LATCP> CREATE LINK NETWORK_A /DEVICE=XEB0: /STATE=ON

This command creates an Ethernet link named NETWORK_A. It specifies the Ethernet controller device XEB0 for that link. The link will be available for use.
CREATE PORT

Creates a logical port on your local node that connects with a remote device on a terminal server. Alternatively, this command creates a logical port on your local node that connects with a specific service. The service can be offered by a terminal server or associated with one or more dedicated ports on a remote LAT service node.

You must have OPER privilege to use this command.

Format

CREATE PORT [port-name]

Parameter

port-name
Specifies the port name in the form LTA\textsubscript{n}, where \textit{n} is a unique number from 1 to 9999. If the port you specify already exists, LATCP returns the following error message:

%LAT-W-CMDERROR, error reported by command executor
-SYSTEM-F-DUPLNAM, duplicate name

If you do not specify the port name, you must specify the /LOGICAL qualifier.

Notes

When creating a port, note the following points:

- HP recommends that you assign a logical name when creating a port, instead of specifying a specific LTA device.
- You cannot use the CREATE PORT and SET PORT commands, along with the DCL command SET TERMINAL, to change the characteristics of a DECserver port unless there is an existing LAT connection to that DECserver.

Qualifiers

/Application
Specifies that a logical port on your node is an application port. It can be used to connect to a remote device (typically a printer) on a terminal server or to a dedicated port on another LAT service node.

If you do not specify a port type, the default port type is APPLICATION.

Note

By default, LATCP creates application LAT devices with the HANGUP terminal characteristic. However, if you want to apply the NOHANGUP characteristic to application LAT devices, you can do so by entering specific LATCP and DCL commands. For example:
$ LCP ::= $LATCP
$ LCP CREATE PORT LTA1234
$ LCP SET PORT LTA1234 /APPLICATION /NODE=terminal-server /PORT=server-port
$ SET TERMINAL LTA1234 /PERMANENT /NOHANGUP

Note that you can insert the SET TERMINAL command in the SYS$MANAGER:LAT$SYSTARTUP.COM file (enter the command for each LAT device that requires the NOHANGUP characteristic).

/DEDICATED
Specifies that a logical port on your local node is dedicated to an application service. When users on a terminal server (or on another node that supports outgoing connections) request a connection to this service name, they are connected to the dedicated port. Refer to the HP OpenVMS I/O User’s Reference Manual for a description of programming an application service.

After creating a dedicated port on a node, use the SET PORT /SERVICE command to map this port to a service.

/LIMITED
Specifies that a logical port on your local node is limited to a service in the same way a port created using the /DEDICATED qualifier is dedicated to an application service. The difference is that ports created using the /LIMITED qualifier are under the control of the system login image (LOGINOUT.EXE) instead of an application program (a user who connects to a limited service and is assigned to a limited port receives the Username: prompt).

Using the /LIMITED qualifier, you can create a limited number of ports and map them to a specific service offered by the host system. If users are logged in to all of the limited ports for the service, no more connections are allowed to that service (terminal server users receive a “service in use” message).

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the port was created. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

/LOGICAL=(NAME=logical-name[,TABLE=table][,MODE=mode])
Specifies a logical name to be associated with the actual name of the created port. You must specify a logical name if you do not specify a port name.

Note
If you have sufficient privileges to create a port, but lack the privilege to assign a logical name, the port will still be created.

You can specify one of the following options for the TABLE keyword:

GROUP
Places the logical name in the group logical name table. You must have GRPNAM or SYSPRV privilege to place the logical name in the group logical name table.

JOB
Places the logical name in the jobwide logical name table.
LATCP
CREATE PORT

PROCESS  Places the logical name in the process logical name table. This is the default.
SYSTEM  Places the logical name in the system logical name table. You must have SYSNAM or SYSPRV privilege to place a name in the system logical name table.

You can also specify the name of a specific table. For example, you could specify LNMS$PROCESS, which would be the equivalent of specifying PROCESS.

Options for the MODE keyword are:
EXECUTIVE  Creates an executive mode logical name. You must have SYSNAM privilege to create an executive mode logical name.
SUPERVISOR  Creates a supervisor mode logical name.
USER  Creates a user mode logical name.

The access mode associated with the logical name is determined by maximizing the access mode of the caller with the access mode specified by the MODE keyword; the mode with the lower privilege is used.

You cannot specify an access mode with a privilege higher than that of the table containing the logical name. However, if your process has SYSNAM privilege, then the specified access mode is associated with the logical name regardless of the access mode of the caller.

If you omit the MODE keyword, the access mode of the caller is associated with the logical name.

Description

The CREATE PORT command creates a logical LAT port for your local node. You can set up the port as an application port that is later mapped to a remote printer (or other device) on a server, or you can set up the port to be mapped to a dedicated port on a remote LAT service node. See Example 1.

Alternatively, you can set up the port as a dedicated port for a special service on a LAT service node. See Example 2.

You can also create the port as a limited port, using the /LIMITED qualifier.

After creating a port, use the SET PORT command to associate (map) the port with a queue or a service. (See the discussion that follows Example 1.) Ordinarily, you create and set ports in the LAT site-specific startup procedure, LAT$SYSTARTUP.COM. Refer to the HP OpenVMS System Manager's Manual for more details.

Note

When using the CREATE PORT command to create an application port (for example, CREATE PORT LTA5001: /APPLICATION), you might receive an error message similar to the following one:

%LAT-W-CMDERROR, error reported by command executor
-SYSTEM-F-DUPLNAM, duplicate name

This error occurs because the LAT application port that you are trying to create has already been created by some other application. That other application could be LATCP itself because LATCP's port, LATCP$MGMT_PORT, is used to communicate with LTDRIVER.
You can avoid creating duplicate ports in two ways:

- Use the SET NODE/DEVICE_SEED command to move the lower boundary of the device unit number range beyond the LTA devices that you are intending to use as application ports. (By default, LTA device units that originate from the $ASSIGN system service to LTA0: have unit numbers that fall within a range from 1 through 9999.) For example, if you know that all LTA devices from LTA7000: onward are not used as application ports, you could enter the following commands:

  LATCP> SET NODE/DEVICE_SEED=7000
  LATCP> CREATE PORT LTA5001:/APPLICATION
  LATCP> CREATE PORT LTA5010:/APPLICATION

  For more information, see the description of the /DEVICE_SEED qualifier in the SET NODE reference section.

- Execute the LATCP command SET NODE/STATE=ON (either interactively or in a program) before any LTA application or dedicated ports are created. Because every LATCP management port (LATCP$MGMT_PORT) created by the previous LATCP invocation is deleted, no conflict exists with LTA application ports or newly created dedicated ports.

  For more information, see the description of the /STATE qualifier in the SET NODE reference section.

Examples

1. LATCP> CREATE PORT LTA22: /APPLICATION

   This command creates an application port named LTA22: on a service node. You can associate the port with a specific printer on a terminal server (use the SET PORT /NODE /PORT command) or with a set of printers on a terminal server (use the SET PORT /NODE /SERVICE command). Or, you can associate the port with a dedicated port on a remote service node. In this case, use the SET PORT /NODE /SERVICE command, where the /SERVICE qualifier specifies an application service associated with a dedicated port on the remote node. See the examples for the SET PORT command.

2. LATCP> CREATE PORT LTA21: /DEDICATED

   This command creates the LTA21: port. It will be used as a dedicated port that offers a specific service rather than a general timesharing service.

3. LATCP> CREATE PORT /LOG /APPLICATION -
   _LATCP> /LOGICAL=(NAME=MAIL_PORT, TABLE=PROCESS, MODE=SUPERVISOR)

   This command creates an application port. It assigns the name of the new port to the specified logical name (MAIL_PORT). The logical is created as a supervisor mode logical name in the LNM$PROCESS_TABLE logical name table. LATCP displays a confirmation message.
4. $ LCP := $LATCP
   $ LCP CREATE SERVICE/LIMITED ONLY_ONE
   $ LCP CREATE PORT/LIMITED LTA1234:
   $ LCP SET PORT LTA1234: /SERVICE=ONLY_ONE

This series of commands creates a limited service that allows only one user
to log in to the system through that service. When a user connects to service
ONLY_ONE by responding to the terminal server prompt (Local>), the user is
assigned port LTA1234 and then prompted for the user name. Any user who
attempts to connect to the same service while LTA1234 has a user logged in
receives the “service in use” message.
CREATE SERVICE

Creates a service on a service node. You must have OPER privilege to use this command.

Format

CREATE SERVICE  [service-name]

Parameter

service-name
Specifies a LAT service name. By default, a service name is the name of the local node you defined with the SET NODE command.

The service name can be from 1 to 16 ASCII characters in length. The characters allowed are as follows:

- Alphanumeric characters: A–Z, a–z, 0–9
- A subset of the international character set: ASCII codes 192–253
- Punctuation characters: dollar sign ($), hyphen (–), period (.), and underscore (_)

Qualifiers

/APPLICATION
Specifies that the created service is an application service. An application service offers a specific application on the service node rather than a general interactive service. You can define a dedicated port for the service by using the CREATE PORT and SET PORT commands.

/IDENTIFICATION[="identification-string"]
Describes and identifies a service. Service nodes include the identification string in service announcements. A service node announces its services at regular intervals established with the SET NODE command. Entering the LATCP SHOW NODE command or the DECserver SHOW NODE command generates a display that includes this identification string. By default, the identification string is a translation of SYS$ANNOUNCE.

You cannot specify more than 64 ASCII characters in an identification string (a SYS$ANNOUNCE longer than that will be truncated to the first 64 characters). Enclose the string in quotation marks (""").

/LIMITED
Specifies that the service is a limited service, using devices assigned the limited characteristic and associated with (mapped to) this limited service. This qualifier is used in conjunction with the SET PORT /LIMITED command.

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the service was created. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.
/STATIC_RATING=rating
/NOSTATIC_RATING

Enables or disables dynamic service ratings. A dynamic service rating means that a LAT algorithm calculates the availability of a service dynamically, based on the overall level of activity of the node that offers the service and the amount of memory. When a terminal server or node requests a connection to a service that is offered on two or more service nodes, the requesting node selects the service node with the highest (most favorable) service rating. This selection process is called load balancing.

The dynamic service rating, which is the default, is usually adequate for efficient load balancing on the LAT network. However, when necessary, you can use the /STATIC_RATING qualifier to disable dynamic service ratings so that you can specify a static (fixed) rating. That static rating value does not change until the dynamic service rating is reenabled.

Use the static rating to direct users away from or toward your node temporarily. Static ratings range from 0 to 255. Specify a low value to make the local service node less likely to be used; specify a high value to make the local service node more likely to be used.

If you do not specify either the /STATIC_RATING or /NOSTATIC_RATING qualifier, the default is that the LAT software uses the dynamic service rating.

Limited and application services do not rely exclusively on the dynamically calculated service rating. Instead, they use a portion of the dynamic rating based on how many ports are available for the service. For example, if a limited service has 50 percent of its ports available, the dynamic service rating will be scaled, halved, and then added to 105. When ports are available, the rating will always be above the value 105.

When all ports for a limited or application service are in use, the rating will be based on the scaled dynamic rating and the number of free queue slots on the local node. The rating will always be less than 90.

This rating procedure for limited and application services follows the terminal server rating algorithm for services and available ports that the service offers, while at the same time taking into account the availability of the node (which is the factor used to calculate the dynamic rating).

If your system is licensed for a specific number of units (where only a fixed number of users can log in to the system regardless of how the login limit is set), then all dynamic ratings become 0 when all OpenVMS license units have been consumed. (This forces all node service ratings to the lowest possible value when logins are not possible because all OpenVMS license units have been consumed.)

Note as well that the LAT software transmits a service announcement message when a user logs in to or out of the system. This allows the system to more quickly provide information about service rating changes that result from a login or logout operation.
Description

The CREATE SERVICE command creates a service that a service node offers to terminal servers (and nodes that support outgoing connections) on the LAT network. The service can be a general timesharing service that offers all the resources of the service node, or it can be an application service that offers a specific application on the service node. The number of services that you can create with the CREATE SERVICE command depends on the availability and capability of specific resources.

The following table lists the maximum number of services your node can offer and still be recognized by the DECserver terminal server, depending on the model number:

<table>
<thead>
<tr>
<th>DECserver Terminal Server</th>
<th>Maximum Number of Services Offered by Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 100</td>
<td>8</td>
</tr>
<tr>
<td>Model 200</td>
<td>64</td>
</tr>
<tr>
<td>Model 300</td>
<td>64</td>
</tr>
<tr>
<td>Model 90TL</td>
<td>64</td>
</tr>
<tr>
<td>Model 700</td>
<td>64</td>
</tr>
<tr>
<td>Model 500</td>
<td>127</td>
</tr>
</tbody>
</table>

Note

If you create more than the maximum number of services supported by a specific DECserver model, that server will not recognize your node.

To create an application service, use the /APPLICATION qualifier. In addition, define a dedicated port by using the CREATE PORT and SET PORT commands. Most often, a system manager creates services in LAT$SYSTARTUP.COM, the site-specific LAT configuration procedure. (Refer to the HP OpenVMS System Manager’s Manual for further information about creating an application service. The HP OpenVMS I/O User’s Reference Manual shows how to program an application service.)

Several service nodes can share one service name. A shared service name is especially useful in a cluster environment because it allows the cluster to be known by a single cluster name. When a user logs in, the terminal server connects to the least busy node offering that service.

You can modify the service characteristics with the SET SERVICE command.

Examples

1. LATCP> CREATE SERVICE/STATIC_RATING=195 SALES

This command creates the service SALES on a service node. This command assigns a static rating of 195 so terminal servers (and nodes that support outgoing connections) can assess the availability of services on the node.
2. LATCP> CREATE SERVICE/APPLICATION GRAPHICS

This command creates the service GRAPHICS on the local node. Use the CREATE PORT/DEDICATED and SET PORT/SERVICE=GRAPHICS commands to create a port that is dedicated to this service.

3. $ LCP ::= $LATCP
   $ LCP CREATE SERVICE/LIMITED ONLY_ONE
   $ LCP CREATE PORT/LIMITED LTA1234:
   $ LCP SET PORT LTA1234: /SERVICE=ONLY_ONE

This series of commands creates a limited service that allows only one user to log in to the system through that service. When a user connects to service ONLY_ONE by responding to the terminal server prompt (Local>), the user is assigned port LTA1234 and then prompted for the user name. Any user who attempts to connect to the same service while LTA1234 has a user logged in receives the “service in use” message.
DEFINE/KEY

Assigns a command string to a function key. For example, you can assign the LATCP command SHOW NODE to a function key.

Format

DEFINE/KEY  key-name equivalence-string

Parameters

key-name
Specifies the name of the function key that you want to define. Valid key names are as follows:

<table>
<thead>
<tr>
<th>Key Name</th>
<th>LK201/LK401 Keyboards</th>
<th>VT100-Type</th>
<th>VT52-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF1</td>
<td>PF1</td>
<td>PF1</td>
<td>Blue</td>
</tr>
<tr>
<td>PF2</td>
<td>PF2</td>
<td>PF2</td>
<td>Red</td>
</tr>
<tr>
<td>PF3</td>
<td>PF3</td>
<td>PF3</td>
<td>Black</td>
</tr>
<tr>
<td>PF4</td>
<td>PF4</td>
<td>PF4</td>
<td></td>
</tr>
<tr>
<td>KP0-KP9</td>
<td>Keypad 0-9</td>
<td>Keypad 0-9</td>
<td>Keypad 0-9</td>
</tr>
<tr>
<td>PERIOD</td>
<td>Keypad period (.)</td>
<td>Keypad period (.)</td>
<td></td>
</tr>
<tr>
<td>COMMA</td>
<td>Keypad comma (,)</td>
<td>Keypad comma (,)</td>
<td></td>
</tr>
<tr>
<td>MINUS</td>
<td>Keypad minus (-)</td>
<td>Keypad minus (-)</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td>Enter</td>
<td>Enter</td>
<td>Enter</td>
</tr>
<tr>
<td>FIND</td>
<td>Find</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>INSERT_HERE</td>
<td>Insert Here</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>REMOVE</td>
<td>Remove</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SELECT</td>
<td>Select</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PREV_SCREEN</td>
<td>Prev Screen (LK201)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Prev (LK401)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEXT_SCREEN</td>
<td>Next Screen (LK201)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Next (LK401)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELP</td>
<td>Help</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DO</td>
<td>Do</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>F6-F20</td>
<td>F6-F20</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

equivalence-string
Specifies the command string that you want assigned to the function key. To preserve spaces and lowercase characters, enclose the string in quotation marks (" ").

Qualifiers

/ECHO
/NOECHO
Specifies whether LATCP displays the command string on your screen when you press the key. If you do not specify the /ECHO or /NOECHO qualifier, the default

LAT Control Program (LATCP) Utility 14–19
is that the command string will be displayed. You cannot use /NOECHO with the /NOTERMINATE qualifier.

/IF_STATE=state-name
Specifies the state that must be set (for example, the GOLD state) for the key definition to work. Lets you assign alternative meanings to keys when the specified state is set. See the discussion of the /SET_STATE qualifier. If you omit the /IF_STATE qualifier, LATCP uses the current state. The state name is an alphanumeric string. States are established with the /SET_STATE qualifier.

/LOCK_STATE
/NOLOCK_STATE
Specifies that the state set by the /SET_STATE qualifier remain in effect until explicitly changed. If you use the /NOLOCK_STATE qualifier, the state set by /SET_STATE remains in effect only for the next definable key that you press or for the next read-terminating character (such as Return or Ctrl/Z) that you type.

You can specify the /LOCK_STATE qualifier only with the /SET_STATE qualifier. If you do not specify the /LOCK_STATE or /NOLOCK_STATE qualifier, the default is that the state set by the /SET_STATE qualifier remains in effect until explicitly changed.

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the command was executed. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

/SET_STATE=state-name
Causes the specified state to be set when you press the defined key. The state name can be any alphanumeric string (for example, GOLD). Use the DEFINE/KEY/IF_STATE=state-name command to associate new meanings for keys when the specified state is set. See the example for the DEFINE/KEY command.

If you omit the /SET_STATE qualifier, the current state that was locked remains in effect.

/TERMINATE
/NOTERMINATE
Specifies whether the command string will be terminated (processed) when you press the function key. The default is /NOTERMINATE, which allows you to press other keys before the command string is processed. Pressing Return has the same effect as using /TERMINATE.

The /NOTERMINATE qualifier allows you to create key definitions that insert text into command lines, after prompts, or into other text that you are typing.

Description
The DEFINE/KEY command assigns a command string to a function key so that when you press that key, the command is executed.
Example

LATCP> DEFINE/KEY PF4 "SHOW NODE " /NOTERMINATE/SET_STATE=GOLD
LATCP> DEFINE/KEY PF4 "/ALL"/IF_STATE=GOLD/TERMINATE

The first DEFINE/KEY command in this example assigns the SHOW NODE command to function key PF4. To process the SHOW NODE command, you must press Return after pressing PF4. Note the space after the word NODE in the first DEFINE/KEY command. This space allows you to enter a node name after pressing PF4. When you press Return, the SHOW NODE command is processed. If the space is omitted, LATCP does not recognize the command (SHOW NODE). The state is set to GOLD; that state will be in effect for the next key that you press.

The second DEFINE/KEY command defines the use of the PF4 key when the keypad is in the GOLD state. When you press PF4 twice, the SHOW NODE/ALL command is processed.
DELETE LINK

Deletes a logical link from a node. You must have OPER privilege to use this command.

Format

DELETE LINK  link-name

Parameter

link-name
Specifies the name of the link that you want to delete.

Use the SHOW LINK command for a list of the links that are defined for your node.

Qualifiers

/LOG  /NOLOG (default)
Specifies whether LATCP displays a message confirming that the link was deleted. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

Description

The DELETE LINK command stops any active sessions on the link and then deletes the link from your node.

Example

LATCP> DELETE LINK NETWORK_A /LOG

This command deletes the link NETWORK_A. The link was created with the CREATE LINK command.
DELETE PORT

Deletes a logical port from a node. You must have OPER privilege to use this command.

Format

DELETE PORT  port-name

Parameter

port-name
Specifies the name of the application port or the dedicated port that you want to delete. An application port connects to a remote device on a terminal server, whereas a dedicated port connects to a special service.

Use the SHOW PORT command for a list of the application ports and the dedicated ports that are defined for your service node. You cannot use the DELETE PORT command to delete an interactive or forward LAT port.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the port was deleted. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

Description

The DELETE PORT command stops any active session on the port and then deletes the port from your service node.

Example

LATCP> DELETE PORT LTA27:

This command deletes the LTA27: application port. The port was created with the CREATE PORT command.
DELETE QUEUE_ENTRY

Deletes an incoming queued request, or entry, from the local node.

Format

DELETE QUEUE_ENTRY queue-entry-id

Parameter

queue-entry-id
Specifies the identification number (ID) of the queued entry that you want to delete.

Description

The DELETE QUEUE_ENTRY deletes an incoming queued request, or entry, from the local node. Use the SHOW QUEUE_ENTRY command to view the list of queued entries and their IDs.

Example

LATCP> DELETE QUEUE_ENTRY 0056

This command deletes the queued request with an ID of 0056.
DELETE SERVICE

Deletes a service that your service node currently offers. You must have OPER privilege to use this command.

Format

DELETE SERVICE  service-name

Parameter

service-name
Specifies the name of the service, as displayed by the SHOW SERVICE command.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the service was deleted. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

Description

The DELETE SERVICE command removes a service from a service node. The service is no longer available to terminal server users and is no longer multicast in the configuration messages sent by your service node. Existing connections to the service node are not affected.

Example

LATCP> DELETE SERVICE SALES
This command removes the service SALES from your service node. The service is no longer available to server users.
EXIT

Stops execution of LATCP and returns control to the DCL command level. You can also enter Ctrl/Z at any time to exit.

Format

EXIT

Parameters

None.

Example

LATCP> EXIT

This command exits the LATCP program and returns control to the DCL command level.
HELP

Provides online help information for using the LATCP commands.

Format

HELP [command-name...]

Parameter

command-name
The name of a LATCP command or LATCP command and command keyword. If you enter the HELP command with a command name only, such as HELP SET, LATCP displays a list of all of the command keywords used with the SET command.

Description

The HELP command is an online reference for LATCP commands. After you view an initial help display, press Return. The help display stops and the LATCP prompt is displayed. If you do not specify a command name, the HELP command displays general information about the commands for which help is available. Supplying a command name obtains syntax information for that command.

Example

LATCP> HELP SET PORT
This command produces a description of the SET PORT command and shows the command format.
RECALL

Displays previously entered LATCP commands on the screen so that you can execute them again.

Format

RECALL [command-specifier]

Parameter

command-specifier
Specifies the number or the first several characters of the LATCP command you want to recall. Command numbers can range from 1 to 20. The most recently entered command is number 1.

Use the /ALL qualifier to display all the commands in the RECALL buffer, along with their command number so that you can determine the number of the command that you want to recall.

If you do not include the command specifier or the /ALL qualifier when entering the RECALL command, LATCP displays the last command.

Qualifiers

/ALL
Specifies that LATCP display all the commands in the RECALL buffer. LATCP displays the number of each command.

Description

When you enter a LATCP command, LATCP stores it in a RECALL buffer for later use with the RECALL command. The RECALL command itself is never stored in the RECALL buffer.

When you use the RECALL command, LATCP displays the recalled command but does not process it. If you want the command processed as it appears, press Return. You can use the command line editing facility to make minor changes in the command line and then press Return to process the revised version of the command.

Examples

1. LATCP> RECALL 2
   This command recalls the second-to-last command you entered.

2. LATCP> RECALL SET
   This command recalls the last SET command you entered.
REFRESH

Refreshes the display screen so that any output from some other source (such as a broadcast message) is erased from the screen.

Format

REFRESH

Parameters

None.

Description

Use the REFRESH command to refresh your display screen after output from other sources has overwritten the display screen. For example, if a broadcast message from a terminal server user is displayed on your screen, use the REFRESH screen to erase the broadcast message from the display. By default, you can refresh your screen by pressing Ctrl/W at the LATCP prompt.

Example

LATCP> REFRESH

This command refreshes the display on your screen.
SCROLL

Retrieves information that has scrolled off the screen, either up or down.

Format

SCROLL

Parameters

None.

Qualifiers

/DOWN[=value]
Scrolls the LATCP screen display down the number of lines indicated by the specified value. For convenience, you can also use the Next (or Next Screen) key on your keyboard to scroll down 15 lines (instead of entering the SCROLL/DOWN=15 command).

If you do not specify a value, the default value is 1.

/UP[=value]
Scrolls the LATCP screen display up the number of lines indicated by the specified value. For convenience, you can also use the Prev (or Prev Screen) key on your keyboard to scroll up 15 lines (instead of entering the SCROLL/UP=15 command).

If you do not specify a value, the default value is 1.

Description

The SCROLL command allows you to retrieve information that has scrolled off the screen (either up or down). The command works only after a LATCP SHOW command has produced output that scrolled off the screen display area. Each subsequent SHOW command erases the previous output area such that the SCROLL command retrieves the screen display produced by the last executed SHOW command.

Example

LATCP> SCROLL /UP=5

This command scrolls up to view five lines of screen display that has previously scrolled off the viewing area.
SET LINK

Changes the characteristics of LAT data links. You must have OPER privilege to use this command.

Format

SET LINK link-name

Parameter

link-name

Specifies the name for a LAT data link. A link name can have up to 16 ASCII characters. The characters allowed are as follows:

- Alphanumeric characters: A–Z, a–z, 0–9
- A subset of the international character set: ASCII codes 192–253
- Punctuation characters: dollar sign ($), hyphen (-), period (.), and underscore (_)

The SHOW LINK command displays the names of the links defined for a node.

Qualifiers

/LOG
/NOLOG (default)

Specifies whether LATCP displays a message confirming that the link’s characteristics were modified. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

/STATE=option

Specifies availability of the link for use. The two options for STATE are:

ON Specifies that the link will be available for use with the LAT protocol running.

OFF Specifies that the link will not be available for use.

If you do not specify the /STATE=option qualifier, the default is that the link will be available (ON).

Description

The SET LINK command changes the characteristics for a LAT data link, which must have been created previously in one of the following ways:

- Interactively entering the CREATE LINK command
- Using the SET NODE/STATE=ON command to create a default link named LAT$LINK (if no other links are created when that command executes)
- Running a program that creates links
LATCP

SET LINK

Example

LATCP> SET LINK NETWORK_A /LOG /STATE=ON

This command directs LATCP to start the controller for link NETWORK_A and then to display a confirmation message.
SET NODE

Specifies the LAT characteristics of your local node. You must have OPER privilege to use this command.

Format

SET NODE [node-name]

Parameter

node-name
Specifies a node name for your local node. By default, the node name is the translation of SYS$NODE. A LAT node name should be the same as the DECnet node name. If the node is not running DECnet but will be in the future, HP recommends that you define SYS$NODE and use it for both DECnet and LAT node names.

A LAT node name can be from 1 to 16 ASCII characters. The characters allowed are as follows:
- Alphanumeric characters: A–Z, a–z, 0–9
- A subset of the international character set: ASCII codes 192–253
- Punctuation characters: dollar sign ($), hyphen (-), period (.), and underscore (_)

Qualifiers

/ANNOUNCEMENTS
/NOANNOUNCEMENTS
Controls whether your OpenVMS system multicasts information to the network.

If you specify /NOANNOUNCEMENTS, LAT service announcements are disabled on the local node. Remote nodes must rely on the LAT service responder feature in the LAT protocol Version 5.2 or higher to connect to the local node. Therefore, HP recommends that you use this qualifier only in a networking environment where newer model terminal servers and hosts are present (all LAT hosts, terminal servers, and PCs are running LAT protocol Version 5.2 or higher).

If you specify /NOANNOUNCEMENTS in an environment where LAT protocol Version 5.1 is present, those LAT protocol Version 5.1 systems (for example, DECserver 100, 200, and 500 systems) will be unable to connect to any of the systems that have LAT service announcements disabled.

/CIRCUIT_TIMER[=msecs]
Controls the interval in milliseconds (msecs) between messages sent from the local node to other service nodes or terminal servers while connections to those nodes are active. Use this qualifier only if your node allows outgoing connections (/CONNECTIONS=OUTGOING_ONLY or /CONNECTIONS=BOTH).

A low value for the interval decreases the response time for the port but increases the demand on service nodes. Set the circuit timer in the range of 10 to 1000 msecs.
The default value of 80 msecs gives a generally acceptable response time while creating a moderately low overhead on the service nodes. You cannot change this parameter when active or pending LAT connections exist.

/CONNECTIONS=\textit{option}

Specifies the type of connections permissible on the local node. The four options for CONN\textit{ECTIONS} are:

\begin{itemize}
  \item \textbf{INCOMING\_ONLY} Specifies that the local node permit incoming connections only.
  \item \textbf{OUTGOING\_ONLY} Specifies that the local node permit outgoing connections only. Specify this on systems that can tolerate the overhead associated with outgoing connections, such as standalone systems.
  \item \textbf{BOTH} Specifies that the local node permit both incoming and outgoing connections. Specify this on systems that can tolerate the overhead associated with outgoing connections, such as standalone systems.
  \item \textbf{NONE} Specifies that the local node disallow both incoming and outgoing connections.
\end{itemize}

If you do not specify the /CONNECTIONS=\textit{option} qualifier, the default is that the node will permit incoming connections only.

/\text{CPU\_RATING}=cpu-power

/\text{NOCPU\_RATING}

The /CPU\_RATING qualifier assigns your local node a rating that represents the power of your node's CPU (central processing unit) relative to other CPUs in the LAN. The value of cpu-power can range from 1 (for a CPU with the lowest power) to 100 (for a CPU with the highest power).

When a terminal server or node requests a connection to a service that is offered on the local node and one or more other service nodes, the requesting node selects the service node with the highest (most favorable) service rating, based on the overall level of activity of the node that offers the service and the amount of memory. This selection process is called \textit{load balancing}.

You can influence the rating for services on your node by specifying a value for the /CPU\_RATING qualifier. If you specify a high value for cpu-power, the LAT driver will calculate a relatively high service rating for services on your node (service ratings as high as 255 are possible). If you specify a low value, the LAT driver will calculate relatively low service ratings; connections will most likely be made to the same service that is offered on other nodes. In either case, the LAT driver can calculate a greater range of values for dynamic service ratings (the entire range from 0 to 255). Consequently, the ratings will more accurately reflect the availability of the service node.

If you do not specify either the /CPU\_RATING=cpu-power or /NOCPU\_RATING qualifier, the default is that no CPU rating will be used A value of 0 indicates no CPU rating.

/DEVICE\_SEED=\textit{value}

Sets the default starting number (within a range from 1 to 9999) for the unit numbers that will be assigned to new LTA devices. Note that when ports are created by assigning a channel to LTA0: with the $ASSIGN system service, the channel numbers fall in this same range.
The default device seed value is approximately half of the maximum unit number (which you set by using the /UNIT_NUMBER_MAXIMUM qualifier). Interactive LAT ports, and those created with the CREATE PORT/LOGICAL command, are assigned unit numbers beginning with the specified device seed value and continuing up to the maximum unit number. When the maximum unit number is reached, the port is assigned the next available unit number beginning at the bottom of the range (LTA1:).

Note that each time you specify the /UNIT_NUMBER_MAXIMUM qualifier, the device seed value is reset to approximately half of the newly specified maximum unit number.

/FORWARD_SESSION_LIMIT[=value]
Controls the number of sessions (a value within a range from 16 to 255) allowed on each outgoing connection. By default, 16 sessions are allowed on an outgoing connection, which means that 16 individual processes can direct the DCL command SET HOST/LAT to the same remote node.

You must increase the value for the /FORWARD_SESSION_LIMIT qualifier if a user on your system enters the command SET HOST/LAT and receives an error message indicating that the session limit for the LAT circuit has been reached (%LAT-F-VCSESLSIM). Note, however, that you can change this value only when no connections exist.

/GROUPS=option[,...]
Gives the listed groups access to services offered on your local node or prevents the listed groups from accessing services offered on your local node, depending on the options used.

A network manager organizes terminal server nodes into groups based on the number of terminal server nodes in the LAT network. Groups subdivide the LAT network, limiting the number of terminal server nodes that can connect with a given service node.

As many as 256 groups, numbered 0 to 255, can be in the LAT network. By default, all terminal server nodes and nodes supporting outgoing connections belong to group 0. If you enter one group code, you can omit the parentheses. Use the SHOW NODE command for a list of the groups enabled for your service node.

The /GROUPS qualifier has several options. For each option described, you can specify more than one group by:

- Listing them separated by commas
- Specifying a range

The available options are:

ENABLE=group-code[,...] Gives the listed groups access to your service node.

DISABLE=group-code[,...] Prevents the listed groups from accessing your service node. The listed groups had been enabled previously for access to your node.
ENABLE=group-code[,...], DISABLE=group-code[,...] This option lets you enable certain groups and disable other groups in one command line: gives access to the groups listed with the ENABLE option and removes access from the groups listed with the DISABLE option. Enclose both ENABLE and DISABLE in parentheses; for example, /GROUP=(ENABLE=(10,12), DISABLE=(1-30)).

Example 2 shows how to specify the /GROUPS qualifier with the SET NODE command.

/IDENTIFICATION[="identification-string"]
Describes and identifies a node. Service nodes include the identification string in service announcements. A service node announces its services at regular intervals established with the SET NODE command. Entering the LATCP command SHOW NODE or the DECserver command SHOW NODE generates a display that includes this identification string. By default, the identification string is the translation of SYS$ANNOUNCE.

You cannot specify more than 64 ASCII characters in an identification string (a SYS$ANNOUNCE longer than that will be truncated to the first 64 characters). Enclose the string in quotation marks (" ").

/KEEPALIVE_TIMER=[secs]
Controls the maximum interval, in seconds, between idle run messages sent by your local node to another service node to which it has a LAT connection. Your node sends these messages when no other traffic is being generated over the virtual circuit. If the service node acknowledges these messages, your node will continue to monitor the status of the circuit. If your node does not receive acknowledgment, it responds as if the circuit is down.

Use this qualifier only if your node allows outgoing connections (/CONNECTIONS=OUTGOING_ONLY or /CONNECTIONS=BOTH).

The default value is 20. HP recommends this value for normal LAN environments. For a heavily loaded LAN, consider using a higher value. Set the timer in the range of 10 to 255. For applications that require quick notification and possible failover of a service node failure, use a lower value. You cannot change this value if active or pending connections exist.

/LARGE_BUFFER /NOLARGE_BUFFER
Controls whether the LAT software uses large buffers while managing communications between OpenVMS systems (the default).

If you must use the /NOLARGE_BUFFER qualifier (for example, to limit packet sizes to be no larger than the Ethernet maximum), HP recommends that you specify this command after all logical LAT links have been created and before the LAT node has been turned on. For example, note the following commands in LAT$SYSTARTUP.COM:
LATCP

SET NODE

$!
$LCP CREATE LINK FDDI_1 /DEVICE=PCA0 /NODECNET
$LCP CREATE LINK FDDI_2 /DEVICE=PCB0 /NODECNET
$!
$LCP SET NODE /NOLARGE_BUFFER
$!
$LCP SET NODE /STATE=ON

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the node's characteristics were modified. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

/MULTICAST_TIMER[=secs]
Specifies the time, in seconds, between multicast messages sent by a service node. A multicast message announces the services offered by a service node. The minimum value is 10 seconds; the maximum is 180 seconds. The default value is 60.

/NODE_LIMIT=value
/NONODE_LIMIT
Specifies the maximum number of service nodes that your local node can store in its service and node database. Use this qualifier only if your node allows outgoing connections (/CONNECTIONS=OUTGOING_ONLY or /CONNECTIONS=BOTH). When the database reaches the node limit, no more nodes are added to the database when your local node receives service announcement messages. You can ensure that the node limit is not reached by using the /USER_GROUPS qualifier to restrict access from the local node to other service nodes on the network.

If you do not specify either the /NODE_LIMIT=value or /NONODE_LIMIT qualifier, the default is no limit. A value of 0 indicates no limit.

/QUEUE_LIMIT=value
Sets a limit on the number of entries (incoming LAT connections only, not outgoing printer connections) that are queued on the system. The queue limit value can range from 0 to 200, with a default of 24. A value of 0 indicates that no queuing is allowed.

/RETRANSMIT_LIMIT[=count]
Specifies the number of times your local node repeats transmission of a message to a service node after a transmission fails. If the transmission is still unsuccessful after these attempts, the virtual circuit between your local node and the service node terminates, along with all sessions associated with the virtual circuit.

Use this qualifier only if your node allows outgoing connections (/CONNECTIONS=OUTGOING_ONLY or /CONNECTIONS=BOTH).
Specify a value in the range of 4 to 120. The default is 8. The value you choose depends on the type of physical link used for your network, as well as the amount of traffic on the network. See your network manager for a suggested value. You cannot change this value if active or pending connections exist.

/SERVICE_RESPONDER /NOSERVICE_RESPONDER

Specifies whether your system responds to special LAT multicast messages that request service information. Some terminal servers do not have their own service and node database. When a user on such a terminal server requests a connection to a service, the server sends a LAT multicast message requesting names of nodes that offer the requested service. Service responder nodes reply with the requested information.

If you specify /SERVICE_RESPONDER, your system responds to the special LAT multicast messages. (If you specify /NOSERVICE_RESPONDER, your system does not respond to those messages.) HP recommends that you set up only one or two nodes in the LAN as service responder nodes. The nodes should have the largest databases in the LAN. Use this option only if your node allows outgoing connections (/CONNECTIONS=OUTGOING_ONLY or /CONNECTIONS=BOTH).

If you do not specify either the /SERVICE_RESPONDER or /NOSERVICE_RESPONDER qualifier, the default is that your system will not respond to the special LAT multicast messages.

/SESSION_LIMIT=option

Specifies the maximum number of simultaneous sessions across all local-access ports. This limit does not affect the use of dedicated and application ports. It affects interactive port creation only, limiting the amount of resources consumed by interactive users creating new sessions.

The options for the /SESSION_LIMIT qualifier are:

INCOMING=value

Sets the session limit for incoming connections only. The default is no limit (a value of 0).

OUTGOING=value

Sets the session limit for outgoing connections only. The default is no limit (a value of 0).

INCOMING=value,OUTGOING=value

Sets the limit for both outgoing and incoming connections. Enclose both options in parentheses; for example, /SESSION_LIMIT=(INCOMING=20, OUTGOING=25).

- A high limit allows users to have more sessions but increases memory utilization on your local node.
- A low limit decreases memory utilization on your local node but limits user access to services on the network.

If the limit is reached, interactive users cannot create new sessions. In this case, increase the session limit or disconnect any connections that are no longer being used.
Specify a value in the range of 0 to 255. Specifying 0 leaves no limit on the number of sessions that can be created. To prevent sessions from being created, use the /CONNECTIONS qualifier.

Not specify the /SESSION_LIMIT qualifier causes no limit on the number of incoming and outgoing sessions. This is the default.

/STATE=\textit{option}  
Specifies whether LAT connections are allowed. The three options for \textit{STATE} are:

\begin{itemize}
  \item \textbf{ON} \hspace{2cm} Starts the LAT port driver (and LAT protocol software) on your node.
  \hspace{2cm} HP strongly recommends that the LATCP command SET NODE/STATE=ON be executed before any LTA application or dedicated ports are created (use the format provided in SYS$MANAGER:LAT$SYSTARTUP.TEMPLATE) for two reasons:
  \begin{itemize}
    \item It ensures that LTDRIVER will delete any leftover LTA devices that have a reference count of 0 and are explicitly marked for deletion (using the $DASSGN system service or the LATCP command DELETE PORT, for example). Because every LATCP management port (LATCP$MGMT_PORT) that was created by the previous LATCP invocation is deleted, no conflicts result with the LAT application ports or newly created dedicated ports.
    \item The deletion of leftover LTA devices with a reference count of 0 minimizes the use of nonpaged pool memory.
  \end{itemize}
  \item \textbf{OFF} \hspace{2cm} Stops the LAT port driver (and LAT protocol software) on your node. Any existing LAT connections are aborted. Any characteristics that you changed or set with LATCP are lost. To start the LAT protocol on your node again, invoke LAT$STARTUP.COM. (Refer to the \textit{HP OpenVMS System Manager’s Manual} for more information.) The LAT characteristics defined in LAT$SYSTARTUP.COM will take effect.
  \item \textbf{SHUT} \hspace{2cm} Specifies that new LAT connections cannot be created on your local node, but existing connections may continue. The LAT protocol continues running only until the last active session disconnects, (after which LTDRIVER will stop). At that time, your node changes to the OFF state.
\end{itemize}

\textbf{Caution}

If you stop the LAT software by specifying either the SET NODE/STATE=OFF or SET NODE/STATE=SHUT command, the LAT print symbiont (LATSYM) will shut down all print queues that it is processing. The system will then generate an OPCOM message indicating that the print queues are stopped. You must manually restart those print queues.

If you do not specify the /STATE=\textit{option} qualifier, the default is that the LAT port driver and LAT protocol software on your node will be started (ON).
/UNIT_NUMBER_MAXIMUM=value
Specifies the maximum unit number for a LAT device. For example, if you specify 140, then LTA140: will be the device with the highest unit number. Specify a value that is high enough to accommodate all devices that may be in use simultaneously. When the number of devices in use exceeds the value you specify, the system gives certain LAT devices unit numbers that exceed your maximum.

Also note the following points:

- When LATCP reaches the maximum unit number, it will continue to implicitly create LTA devices beginning with the lowest available unit number.
- You cannot use the System Generation utility (SYSGEN) to set the maximum unit number for a LAT device.

The range of maximum unit numbers is 99 to 9999. The default is 9999. Note that each time you specify the /UNIT_NUMBER_MAXIMUM qualifier, the LTA device seed value is reset to approximately half of the newly specified maximum unit number.

/USER_GROUPS=option[,...]
Restricts access (from the local node) to service nodes in the network that belong to the specified groups. Your local node can access only those service nodes associated with the user groups specified. The /USER_GROUPS qualifier also serves to limit the number of nodes stored in your node's node database. (The local node only stores information about the nodes and services that belong to at least one of the specified user groups.) By default, all LAT service nodes belong to group 0.

This qualifier affects your local node when outgoing connections are enabled (/CONNECTIONS=OUTGOING_ONLY or /CONNECTIONS=BOTH).

Use the SHOW NODE command for a list of the user groups (service groups) enabled for your node.

The /USER_GROUPS qualifier has several options. For each option described here, you can use two ways to specify more than one group:

- List them separated by commas.
- Specify a range.

The available options are as follows:

ENABLE=group-code[,...]  Gives your node access to the listed user groups.
DISABLE=group-code[,...]  Prevents your node from accessing the listed groups. The listed groups were enabled previously.

ENABLE=group-code[,...],  This option lets you enable certain groups and
DISABLE=group-code[,...]  disable other groups in one command line:  
gives your node access to the groups listed with the ENABLE option and prevents your node from accessing the groups listed with the DISABLE option. Enclose both ENABLE and DISABLE in parentheses; for example, /GROUP=(ENABLE=(10,12), DISABLE=(1-30)).
Description

The SET NODE command, which is typically executed in the site-specific LAT configuration command procedure, LAT$SYSTARTUP.COM, allows you to specify such characteristics as:

- Node name
- Node identification
- Service and user groups
- Timing of service announcements
- The maximum number of LAT sessions allowed simultaneously on the node
- The maximum number of outgoing sessions and incoming interactive sessions

Because LATCP commands change characteristics dynamically (that is, the commands take effect immediately), you can use the SET NODE command any time the LAT port driver is active. These changes remain in effect until the LAT port driver stops. To make sure the changes take effect when you start the LAT port driver again, edit LAT$SYSTARTUP.COM to include these changes. Start the LAT port driver by invoking LAT$SYSTARTUP.COM.

The HP OpenVMS System Manager's Manual contains additional information about the LAT network in general and service nodes in particular.

---

Note

The SET NODE command must be executed first (after LTDRIVER is loaded and the LATACP is started) to ensure that other management commands execute properly thereafter.

---

Examples

1. LATCP> SET NODE DUKE /IDENT="NODE DUKE, SALES VMSCCLUSTER"

   This command specifies node name DUKE for your local node. The identification string "NODE DUKE, SALES VMSCCLUSTER" is multicast from node DUKE.

2. LATCP> SET NODE /MULTICAST_TIMER=50 /GROUPS={(ENABLE=(1,3,8,11),DISABLE=5)

   This command causes your local node to send multicast messages every 50 seconds to announce DUKE's services to terminal servers. The command also enables groups 1, 2, 3, 8, and 11 for access to the local node, and it disables group 5 from accessing the local node. Group 5 had been previously enabled.

3. LATCP> SET NODE /CONNECTIONS=BOTH /USER_GROUPS={(ENABLE=(24,121-127),DISABLE=0)

   This command sets up your local node to allow both incoming and outgoing connections. Users on your local node can access those service nodes belonging to user groups 24 and 121 through 127. Users cannot access service nodes in user group 0.
4. LATCP> SET NODE /CIRCUIT_TIMER=80 /KEEPALIVE_TIMER=20 -
   LATCP> /RETRANSMIT_LIMIT=20 /CONNECTIONS=BOTH /MULTICAST_TIMER=60 -
   LATCP> /GROUPS=(DISABLE=0,ENABLE=73) /SESSION_LIMIT=(OUTGOING=10,INCOMING=0)

This command sets many characteristics at once for node DUKE.
SET PORT

Associates a logical port on the local node with a remote port on a terminal server that supports a device. Alternatively, it associates a logical port on the local node with a specific service. The service can be offered by a terminal server or associated with one or more dedicated ports on a remote LAT service node.

You must have OPER privilege to use this command.

Format

SET PORT port-name

Parameter

port-name

Specifies the name of the port. A port name must be in the form LTA\textit{n};, where \textit{n} is a unique number from 1 to 9999.

Note

You cannot use the CREATE PORT and SET PORT commands, along with the DCL command SET TERMINAL, to change the characteristics of a DECserver port unless there is an existing LAT connection to that DECserver.

Qualifiers

/Application

Specifies that a port on the local node is an application port, logically associated with a port on a terminal server or a dedicated port on another LAT service node. The terminal server port supports a device (for example, a printer). If the port is used to support a printer, the print queue is established in a startup command procedure. Refer to the *HP OpenVMS System Manager’s Manual* for a description of configuring remote printers on a terminal server.

If you do not specify a port type, the default port type is APPLICATION.

/Dedicated

Specifies that a logical port on your local node is dedicated to an application service. The /DEDICATED qualifier requires the /SERVICE qualifier.

To set up an application service for a logical port on a LAT service node:

1. Create the service by specifying the CREATE SERVICE/APPLICATION command and then define the dedicated port by specifying the CREATE PORT/DEDICATED command. You can include these commands in LAT$SYSTARTUP.COM.

2. Associate the dedicated ports with the service by specifying the SET PORT/DEDICATED/SERVICE command.

3. Start the application program. Within the program, allocate dedicated ports with the same name as those defined in LAT$SYSTARTUP.COM.
/LIMITED
Specifies that a logical port on your local node is limited to a service in the same way a port created using the /DEDICATED qualifier is dedicated to an application service. The difference is that ports created using the /LIMITED qualifier are under the control of the system login image (LOGINOUT.EXE) instead of an application program (a user who connects to a limited service and is assigned to a limited port receives the Username: prompt).

Using the /LIMITED qualifier, you can create a limited number of ports and map them to a specific service offered by the host system. If users are logged in to all of the limited ports for the service, no more connections are allowed to that service (terminal server users receive a “service in use” message).

/LOG
/NOLOG (default)
Specifies whether LATCP displays a message confirming that the port’s characteristics were modified. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

/NODE=remote-node-name
Specifies the name of a terminal server (or a remote node that supports outgoing connections) to be logically associated with the specified application port on your node. The server supports a remote device. Note that you can set up an application port on your local node and associate the port with a dedicated port on a remote LAT service node. The remote port is dedicated to an application service.

/PASSWORD=remote-password
Specifies the password required to access a remote service that is logically associated with the specified application port.

/PORT=remote-port-name
Specifies the name of the remote port on a terminal server that supports a remote device, or specifies the name of a remote port dedicated to an application service on a remote LAT service node. In either case, the remote port is logically associated with the specified application port on your local node.

/QUEUED
/NOQUEUED
Specifies queued or nonqueued access to the server port. A queued or nonqueued request is accepted by a terminal server if a remote port is free. If the remote port is busy and queuing is enabled on the terminal server, then the server queues the remote request. If you do not want your remote requests to be queued on the server, specify /NOQUEUED.

Not specifying either the /QUEUED or /NOQUEUED qualifier results in queued access to the server port. This is the default.

/SERVICE=service-name
Specifies either of the following names:

- The name of the remote service offered at a terminal server port that will be associated with the specified application port (/APPLICATION) on the local node
- A service name for an application program being offered on a dedicated port (/DEDICATED) on a LAT service node
To specify the name of a remote service offered at a terminal server port, use the /NODE and /SERVICE qualifiers. To specify a particular port for a service, use the /NODE, /PORT, and /SERVICE qualifiers. Ask the terminal server manager for these names.

To name a service for a particular application program to be offered locally on a dedicated port, use the /DEDICATED and /SERVICE qualifiers. (The service must have been created with the CREATE SERVICE command.) Assign only one service to a dedicated port, but note that several ports can have the same service assigned.

Description

The SET PORT command associates an application port on your local node with a port or service on a terminal server.

To create a port, use one of the following methods:

- Interactively enter the CREATE PORT command.
- Run a program that creates ports.

When you associate an application port with a service on a terminal server, you allow access to any of the ports (printers) represented by that service (see Examples 1 and 2). Note that the application port must have been created with the CREATE PORT/APPLICATION command.

The SET PORT command can also associate a dedicated port on the local node with an application service offered locally. The service must already exist (see Example 3). Note that you must use the /DEDICATED and /SERVICE qualifiers.

The SET PORT command can also associate an application port on your local node with an application service associated with one or more dedicated ports on a remote LAT service node. This service is offered to users on terminal servers or on nodes that support outgoing connections (see Example 4). Note that the dedicated port must have been created with the CREATE PORT/DEDICATED command.

You can also set up the port as a limited port, using the /LIMITED qualifier.

Examples

See the examples for the SHOW PORT command for displays that reflect the changes made by the following SET PORT command examples.

1. LATCP> SET PORT LTA22: /APPLICATION /NODE=TS33EW /PORT=LN02

This command sets up port LTA22: as an application port to be associated with the port named LN02 on the terminal server named TS33EW. This command associates port LTA22: with a specific printer on the server. In the next example, the SET PORT command associates a port with a set of printers (designated by the service name PRINTER) on a terminal server.
2. LATCP> SET PORT LTA19: /APPLICATION /NODE=TLAT1 /SERVICE=PRINTER /QUEUED

This command shows how to associate a local logical port with a service (several printers) on a terminal server. The command associates the application port LTA19: with the service PRINTER on terminal server TLAT1. The service PRINTER can be associated with one or more ports on TLAT1. The /QUEUED qualifier specifies that the server offering the service PRINTER can queue the remote connection request if all ports offering the service are in use. Refer to the description of print operations in the *HP OpenVMS System Manager's Manual* for information about setting up print queues.

3. LATCP> SET PORT LTA21: /DEDICATED /SERVICE=GRAPHICS

This command specifies that the application port LTA21: on the local service node offers the service GRAPHICS to users on terminal servers or on nodes that support outgoing connections. GRAPHICS is a particular utility or application program.

4. LATCP> SET PORT MAIL_PORT /SERVICE=MAIL /NODE=RMNODE

This command associates the port whose logical name is MAIL_PORT with the dedicated service MAIL on remote node RMNODE. The port logically named MAIL_PORT was created with the CREATE PORT command (see Example 3 in the discussion of the CREATE PORT command). The logical name could also have been created with the DCL command ASSIGN or DEFINE. On node RMNODE, a port must be dedicated to the service MAIL by using the SET PORT port-name /DEDICATED/SERVICE=MAIL command.

5. $ LCP :== $LATCP
   $ LCP CREATE SERVICE/LIMITED ONLY_ONE
   $ (U>(LCP CREATE PORT/LIMITED LTA1234:)
   $ (U>(LCP SET PORT LTA1234: /SERVICE=ONLY_ONE)

This series of commands, which includes the SET PORT command, creates a limited service that allows only one user to log in to the system through that service. When a user connects to service ONLY_ONE by responding to the terminal server prompt (Local>), the user is assigned port LTA1234 and then prompted for the user name. Any user who attempts to connect to the same service while LTA1234 has a user logged in receives the “service in use” message.
SET SERVICE

Dynamically changes the characteristics of a locally offered service. You must have OPER privilege to use this command.

Format

SET SERVICE [service-name]

Parameter

service-name
Specifies the service whose characteristics are to be modified. If a service name is omitted, the default service name is the name of the local node you defined by using the SET NODE command.

Qualifiers

/APPLICATION
Sets up the service as an application service. An application service offers a specific application on the service node rather than all of the resources on the service node. Define a dedicated port for the service by using the CREATE PORT and SET PORT commands.

/CONNECTIONS
/NOCONNECTIONS
Specifies whether a service offered by an OpenVMS system accepts incoming connections. If you use the /NOCONNECTIONS qualifier to disable incoming connections, users cannot connect to that service and receive instead the error message “service is disabled.”

By default, a service accepts incoming connections (/CONNECTIONS).

/IDENTIFICATION[="identification-string"]
Describes and identifies a service. Service nodes include the identification string in service announcements. A service node announces its services at regular intervals established with the SET NODE command. Entering the LATCP command SHOW NODE or the DECserver command SHOW NODE generates a display that includes this identification string.

By default, the identification string is the translation of SYS$ANNOUNCE. A service node announces its services at regular intervals established with the SET NODE command.

You cannot specify more than 64 ASCII characters in an identification string (a SYS$ANNOUNCE longer than that will be truncated to the first 64 characters). Enclose the string in quotation marks (" ").

/LIMITED
Specifies that the service is a limited service, using devices assigned the limited characteristic and associated with (mapped to) this limited service. This qualifier is used in conjunction with the SET PORT /LIMITED command (see Example 2).
LATCP
SET SERVICE

/LOG
/NOLOG (default)
Specifies whether or not LATCP displays a message confirming that the command was executed. If you do not specify the /LOG or /NOLOG qualifier, the default is that no message will be displayed.

/QUEUED
/NOQUEUED
Specifies whether a locally offered limited (/LIMITED) or application (/DEDICATED) service is allowed to have queued connections when all ports are busy (the default). If you specify /NOQUEUED, incoming connections will be rejected if all ports are busy.

/STATIC_RATING=rating
/NOSTATIC_RATING
Enables or disables dynamic service ratings. A dynamic service rating means that a LAT algorithm calculates the availability of a service dynamically, based on the overall level of activity of the node that offers the service and the amount of memory. When a terminal server or node requests a connection to a service that is offered on two or more service nodes, the requesting node selects the service node with the highest (most favorable) service rating. This selection process is called load balancing.

The dynamic service rating, which is the default, is usually adequate for efficient load balancing on the LAT network. However, when necessary, you can use the /STATIC_RATING qualifier to disable dynamic service ratings so that you can specify a static (fixed) rating. That static rating value does not change until the dynamic service rating is reenabled.

Use the static rating to direct users away from or toward your node temporarily. Static ratings range from 0 to 255. Specify a low value to make the local service node less likely to be used; specify a high value to make the local service node more likely to be used.

If you do not specify either the /STATIC_RATING or /NOSTATIC_RATING qualifier, the default is that the LAT software uses the dynamic service rating.

Limited and application services do not rely exclusively on the dynamically calculated service rating. Instead, they use a portion of the dynamic rating based on how many ports are available for the service. For example, if a limited service has 50 percent of its ports available, the dynamic service rating will be scaled, halved, and then added to 105. When ports are available, the rating will always be above the value 105.

When all ports for a limited or application service are in use, the rating will be based on the scaled dynamic rating and the number of free queue slots on the local node. The rating will always be less than 90.

This rating procedure for limited and application services follows the terminal server rating algorithm for services and available ports that the service offers, while at the same time taking into account the availability of the node (which is the factor used to calculate the dynamic rating).

If your system is licensed for a specific number of units (where only a fixed number of users can log in to the system regardless of how the login limit is set), then all dynamic ratings become 0 when all OpenVMS license units have been consumed. (This forces all node service ratings to the lowest possible value when logins are not possible because all OpenVMS license units have been consumed.)
Note that the LAT software transmits a service announcement message when a user logs in to or out of the system. This allows the system to more quickly provide information about service rating changes that result from a login or logout operation.

Description

The SET SERVICE command dynamically changes the characteristics of a service that you created previously (by interactively entering the CREATE SERVICE command or by running a program that created services).

Examples

1. **LATCP> SET SERVICE SALES /IDENT="SALES FORCE TIMESHARING SERVICES"**
   
   This command specifies a new identification string, "SALES FORCE TIMESHARING SERVICES", for the service SALES. This string is announced with the service SALES in the multicast messages sent by a service node.

2. **$ LCP ;== $LATCP**
   
   **$ LCP SET SERVICE/LIMITED ONLY_ONE**
   
   **$ LCP CREATE PORT/LIMITED LTA1234:**
   
   **$ LCP SET PORT LTA1234: /SERVICE=ONLY_ONE**
   
   This series of commands changes an existing service to a limited service that allows only one user to log in to the system through that service. When a user connects to service ONLY_ONE by responding to the terminal server prompt (Local>), the user is assigned port LTA1234 and then prompted for the user name. Any user who attempts to connect to the same service while LTA1234 has a user logged in receives the “service in use” message.


**SHOW LINK**

Displays the status and LAT characteristics of links on the local node.

**Format**

SHOW LINK [link-name]

**Parameter**

**link-name**

Specifies the name for a LAT data link. A link name can have up to 16 ASCII characters.

If you do not specify a link name, LATCP displays information about all links currently defined for the node.

**Qualifiers**

**/BRIEF**

Displays the device name and state of the link. This is the default display.

**/COUNTERS**

Displays the device counters kept for the link. The numbers displayed represent the values recorded since the last time the counters were reset (when the node first started or when the ZERO COUNTERS command was used).

Do not use the /BRIEF or /FULL qualifier with this qualifier.

The following table lists and describes counters common to both CSMA/CD (carrier sense, multiple access with collision detect) and FDDI (Fiber Distributed Data Interface) links:

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages received</td>
<td>The total number of messages received over the link.</td>
</tr>
<tr>
<td>Multicast messages received</td>
<td>The total number of multicast messages received over the link.</td>
</tr>
<tr>
<td>Bytes received</td>
<td>The total number of bytes of information received over the link.</td>
</tr>
<tr>
<td>Multicast bytes received</td>
<td>The total number of multicast bytes received over the link.</td>
</tr>
<tr>
<td>System buffer unavailable</td>
<td>The total number of times no system buffer was available for an incoming frame.</td>
</tr>
<tr>
<td>Unrecognized destination</td>
<td>The total number of times a frame was discarded because there was no portal with the protocol enabled. This count includes frames received for the physical address only.</td>
</tr>
<tr>
<td>Messages sent</td>
<td>The total number of messages sent over the link.</td>
</tr>
<tr>
<td>Multicast messages sent</td>
<td>The total number of multicast messages sent over the link.</td>
</tr>
<tr>
<td>Counter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Bytes sent</td>
<td>The total number of bytes of information sent over the link.</td>
</tr>
<tr>
<td>Multicast bytes sent</td>
<td>The total number of bytes of multicast messages sent over the link.</td>
</tr>
<tr>
<td>User buffer unavailable</td>
<td>The total number of times no user buffer was available for an incoming frame that passed all filtering.</td>
</tr>
<tr>
<td>Data overrun</td>
<td>The total number of bytes lost on the link’s device because the local node’s input buffers were full. A nonzero value can indicate noisy lines, a bad device, a busy or poorly tuned system (not enough resources allocated), or a hardware problem with another device on the LAN connection.</td>
</tr>
</tbody>
</table>

The following table lists and describes receive errors common to both CSMA/CD and FDDI links. These errors, which are included in the display generated by the SHOW LINK/COUNTERS command, are represented by flags that indicate the error has occurred.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block check error</td>
<td>CRC error in packets received.</td>
</tr>
<tr>
<td>Framing error</td>
<td>Received frames ended incorrectly.</td>
</tr>
<tr>
<td>Frame too long</td>
<td>Frames received longer than length limits.</td>
</tr>
<tr>
<td>Frame status error</td>
<td>CRC error on ring noticed by local FDDI station (FDDI only).</td>
</tr>
<tr>
<td>Frame length error</td>
<td>Frame length too short (FDDI only).</td>
</tr>
</tbody>
</table>

The following table lists and describes transmit errors common to both CSMA/CD and FDDI links. These errors, which are included in the display generated by the SHOW LINK/COUNTERS command, are represented by flags that indicate the error has occurred.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive collisions</td>
<td>Frames failed to transmit because the collision limit of 16 was reached (CSMA/CD only).</td>
</tr>
<tr>
<td>Carrier check failures</td>
<td>Indicates transceiver problem or short circuit in cable.</td>
</tr>
<tr>
<td>Short circuit</td>
<td>Short circuit in cable.</td>
</tr>
<tr>
<td>Open circuit</td>
<td>Open circuit in cable.</td>
</tr>
<tr>
<td>Frame too long</td>
<td>Frames too long. Indicates a transmission problem in one of the portals using the link.</td>
</tr>
<tr>
<td>Remote failure to defer</td>
<td>A remote station failed to defer frames transmission. Could indicate a misconfigured network.</td>
</tr>
</tbody>
</table>
### LATCP

#### SHOW LINK

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit underrun</td>
<td>Transmission of a frame was too slow. Indicates a hardware controller error.</td>
</tr>
<tr>
<td>Transmit failure</td>
<td>Frames failed to transmit.</td>
</tr>
</tbody>
</table>

The following table lists and describes link counters specific to CSMA/CD only:

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit CDC failure</td>
<td>The total number of carrier detect check errors, that is, the number of times the local node failed to detect that another Ethernet station was already transmitting when the local node began transmitting.</td>
</tr>
<tr>
<td>Messages transmitted:</td>
<td><strong>Single collision</strong>—The total number of times a frame was successfully transmitted on the second attempt after a normal collision on the first attempt.</td>
</tr>
<tr>
<td></td>
<td><strong>Multiple collision</strong>—The total number of times a frame was successfully transmitted on the third or later attempt after normal collisions on previous attempts.</td>
</tr>
<tr>
<td></td>
<td><strong>Initially deferred</strong>—The total number of times a frame transmission was deferred on its first attempt. This counter is used to measure Ethernet contention with no collisions.</td>
</tr>
</tbody>
</table>

The following table lists and describes link counters specific to FDDI only:

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring initializations initiated</td>
<td>The total number of times a ring reinitialization was initiated by the link.</td>
</tr>
<tr>
<td>Ring initializations received</td>
<td>The total number of times a ring reinitialization was initiated by some other link.</td>
</tr>
<tr>
<td>Directed beacons received</td>
<td>The number of times the link detected the directed beacon process. Each invocation of the directed beacon process is counted only once.</td>
</tr>
<tr>
<td>Connections completed</td>
<td>The number of times the station successfully connected to the concentrator.</td>
</tr>
<tr>
<td>Duplicate tokens detected</td>
<td>The number of times a duplicate token was detected on the link.</td>
</tr>
<tr>
<td>Ring purge errors</td>
<td>The number of times the ring purger received a token while still in the ring purge state.</td>
</tr>
<tr>
<td>Counter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>LCT rejects</td>
<td>Link Confidence Test rejects. Indicates a problem with communication between station and concentrator.</td>
</tr>
<tr>
<td>Elasticity buffer errors</td>
<td>Elasticity buffer function errors. Indicates a station on the ring with a transmit clock out of tolerance.</td>
</tr>
<tr>
<td>MAC error count</td>
<td>The number of times the Media Access Control (MAC) changed the E indicator in a frame from R to S.</td>
</tr>
<tr>
<td>Traces initiated</td>
<td>The number of times the PC-trace process was initiated by the link.</td>
</tr>
<tr>
<td>Traces received</td>
<td>The number of times the link was requested to perform the PC-trace process.</td>
</tr>
<tr>
<td>Ring beacons initiated</td>
<td>The number of times the ring beacon process was initiated by the link.</td>
</tr>
<tr>
<td>Link errors</td>
<td>The number of times the Link Error Monitor (LEM) detected an error in a received message. Slow counts are normal.</td>
</tr>
<tr>
<td>Duplicate address test failures</td>
<td>The number of times the link address was a duplicate.</td>
</tr>
<tr>
<td>FCI strip errors</td>
<td>The number of times a Frame Content Independent Strip operation was terminated by receipt of a token.</td>
</tr>
<tr>
<td>LEM rejects</td>
<td>The number of times excessive LEM errors were encountered.</td>
</tr>
<tr>
<td>MAC frame count</td>
<td>The total number of frames (other than tokens) seen by the link.</td>
</tr>
<tr>
<td>MAC lost count</td>
<td>The total number of times a frame (other than a token) was improperly terminated.</td>
</tr>
</tbody>
</table>

/FULL
Displays the device name, state, and datalink address of the link and indicates whether the DECnet address is enabled.

**Description**

Displays information about the specified link or all links if you do not specify a link. Depending on the qualifier you use with the SHOW LINK command, you can display a link’s device name, state, LAT datalink address, DECnet address, or counters.
Examples

1. LATCP> SHOW LINK/FULL NETWORK_A

This command produces the following display of information about link NETWORK_A:

- Link Name: NETWORK_A
- Datalink Address: 08-00-2B-10-12-E3
- Device Name: ESA7:
- DECnet Address: Disabled
- Link State: On

The display in this example gives the device name of link NETWORK_A and the device's hardware address. The link is in the On state.

2. LATCP> SHOW LINK LINK_A/COUNTERS

This command produces the following display of counters for link LINK_A:

- Link Name: LINK_A
- Device Name: ETA6:

  - Seconds Since Zeroed: 65535
  - Messages Received: 18582254
  - Multicast Msgs Received: 15096805
  - Bytes Received: 1994694325
  - Multicast Bytes Received: 1528077909
  - System Buffer Unavailable: 8724
  - Recognized Destination: 0
  - Unrecognized Destination: 0
  - Receive Errors -
    - Block Check Error: No
    - Framing Error: No
    - Frame Too Long: No
    - Frame Status Error: No
    - Frame Length Error: Yes
  - Transmit Errors -
    - Excessive Collisions: No
    - Carrier Check Failure: No
    - Short Circuit: No
    - Open Circuit: No
    - Frame Too Long: No
    - Remote Failure To Defe: No
    - Transmit Underrun: No
    - Transmit Failure: No

  - CSMACD Specific Counters
    ------------------------
    - Transmit CDC Failure: 0

  - Messages Transmitted -
    - Single Collision: 43731
    - Multiple Collisions: 73252
    - Initially Deferred: 164508
**SHOW NODE**

Displays the status and LAT characteristics of a node.

**Format**

SHOW NODE [node-name]

**Parameter**

*node-name*

Specifies the name of the node for which information is displayed. If you do not specify a node name, LATCP displays information about the local node.

You can also specify any valid wildcard for this parameter. For example, the SHOW NODE A* command displays the status and characteristics of all nodes that begin with the letter A.

**Qualifiers**

/ALL

Displays information about all nodes known to your local node. When you use this qualifier, specify the /FULL or /BRIEF qualifier as well. If you do not specify either the /FULL or /BRIEF qualifier, the default display will contain the node status and identification string (the display generated by the /BRIEF qualifier).

/BRIEF

Displays the node status and identification string. This is the default display if you specify the /ALL qualifier.

/COUNTERS

Displays the counters kept for the node. Do not use the /BRIEF or /FULL qualifier with this qualifier. The following table lists and describes the counters displayed with SHOW NODE/COUNTERS:

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages received</td>
<td>The total number ofLAT messages received by the local node. If you specify a remote node with the SHOW NODE command, the number of LAT messages received from that remote node.</td>
</tr>
<tr>
<td>Messages transmitted</td>
<td>The total number of LAT messages transmitted by the local node. If you specify a remote node with the SHOW NODE command, the number of LAT messages transmitted to that remote node.</td>
</tr>
<tr>
<td>Slots received</td>
<td>The total number of LAT slots received by the local node. If you specify a remote node with the SHOW NODE command, the number of slots received from that remote node. A slot is a message segment that contains information corresponding to a single session.</td>
</tr>
</tbody>
</table>
### Counter Description

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slots transmitted</td>
<td>The total number of LAT slots transmitted by the local node. If you specify a remote node with the SHOW NODE command, the number of slots transmitted to that remote node.</td>
</tr>
<tr>
<td>Bytes received</td>
<td>The total number of bytes of LAT information received by the local node. If you specify a remote node with the SHOW NODE command, the number of bytes received from that remote node.</td>
</tr>
<tr>
<td>Bytes transmitted</td>
<td>The total number of bytes of LAT information transmitted by the local node. If you specify a remote node with the SHOW NODE command, the number of bytes transmitted to that remote node.</td>
</tr>
<tr>
<td>Multicast bytes received</td>
<td>The total number of LAT multicast bytes received by the local node.</td>
</tr>
<tr>
<td>Multicast bytes sent</td>
<td>The total number of LAT multicast bytes sent by the local node.</td>
</tr>
<tr>
<td>Multicast messages received</td>
<td>The total number of LAT multicast messages received by the local node.</td>
</tr>
<tr>
<td>Multicast messages sent</td>
<td>The total number of LAT multicast messages sent by the local node.</td>
</tr>
<tr>
<td>No transmit buffer</td>
<td>The total number of times no buffer was available on the local node for transmission.</td>
</tr>
<tr>
<td>Multicast messages lost</td>
<td>The total number of times LTDRIVER failed to process an inbound multicast message because of failed communication with the LATACP.</td>
</tr>
<tr>
<td>Multicast send failures</td>
<td>The total number of times LTDRIVER failed to send a multicast message because of failed communication with the LATACP.</td>
</tr>
<tr>
<td>Controller errors</td>
<td>The total number of times LTDRIVER failed to communicate with the data link controller driver.</td>
</tr>
<tr>
<td>Last controller error</td>
<td>The most recent controller error.</td>
</tr>
<tr>
<td>Multiple node addresses</td>
<td>The total number of times that a node announced itself with a physical address different from that in a previous announcement.</td>
</tr>
<tr>
<td>Duplicates received</td>
<td>The total number of duplicate messages received by the local node. If you specify a remote node with the SHOW NODE command, the number of duplicate messages received from that remote node. This counter can indicate a system slowdown.</td>
</tr>
</tbody>
</table>
### Counter Description

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages retransmitted</td>
<td>The total number of LAT messages that the local node retransmitted because they were not acknowledged by terminal servers (or nodes that support outgoing connections). If you specify a remote node with the SHOW NODE command, the number of messages retransmitted to that remote node.</td>
</tr>
<tr>
<td>Illegal messages received</td>
<td>The total number of invalidly formatted LAT messages received by the local node. If you specify a remote node with the SHOW NODE command, the number of invalidly formatted messages the local node received from that remote node. Illegal messages are grouped into several types of protocol errors, which are listed at the end of this table.</td>
</tr>
<tr>
<td>Illegal slots received</td>
<td>The total number of invalidly formatted LAT slots received by the local node. If you specify a remote node with the SHOW NODE command, the number of invalidly formatted slots the local node received from that remote node.</td>
</tr>
<tr>
<td>Solicitations accepted</td>
<td>The total number of times a remote node accepted solicitations from the local node. If you specify a remote node with the SHOW NODE command, the number of accepted solicitations by that remote node.</td>
</tr>
<tr>
<td>Solicitations rejected</td>
<td>The total number of times a remote node rejected solicitation from the local node. If you specify a remote node with the SHOW NODE command, the number of rejected solicitations by that remote node.</td>
</tr>
<tr>
<td>Solicitation failures</td>
<td>The total number of times solicitations by the local node received no response.</td>
</tr>
<tr>
<td>Transmit errors</td>
<td>The total number of times the data link failed to transmit a LAT message.</td>
</tr>
<tr>
<td>Last transmit error</td>
<td>The most recent transmit error.</td>
</tr>
<tr>
<td>Virtual circuit timeouts</td>
<td>The total number of times a LAT circuit to another node timed out, indicating that the remote node failed to send a valid message in the required time span. If you specify a remote node with the SHOW NODE command, the number of times the local node timed out from a connection to that remote node.</td>
</tr>
<tr>
<td>Discarded output bytes</td>
<td>The total number of data bytes that were discarded because of an overflow of an internal buffer before the data could be output to an LTA device.</td>
</tr>
</tbody>
</table>
LATCP
SHOW NODE

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User data lost</td>
<td>The total number of times LTDRIVER failed to allocate resources to buffer session data. User data is lost and the session is stopped.</td>
</tr>
<tr>
<td>Resource errors</td>
<td>The number of times LTDRIVER was unable to allocate system resources.</td>
</tr>
<tr>
<td>Incoming solicits accepted</td>
<td>The total number of times the local node accepted solicitations from other nodes.</td>
</tr>
<tr>
<td>Incoming solicits rejected</td>
<td>The total number of times the local node rejected solicitations from other nodes.</td>
</tr>
</tbody>
</table>

The protocol errors that are counted as illegal messages are as follows. These protocol error messages are displayed if their associated counter is greater than zero:

- Invalid message type received
- Invalid start message received
- Invalid sequence number received in start message
- Zero-node index received
- Node circuit index out of range
- Node circuit sequence invalid
- Node circuit index no longer valid
- Circuit was forced to halt
- Invalid server slot index
- Invalid node slot index
- Invalid credit field or too many credits used
- Repeat creation of slot by server
- Repeat disconnection of slot by master

/FULL
Displays the node’s status, identification string, LAT protocol version, and the values of the node’s characteristics. This is the default except when you specify the /ALL qualifier.

/STATUS
Displays statistical information for parameters such as the number of active circuits, sessions, and incoming queue entries. For each parameter, the display shows the current value, the highest value recorded, and the maximum value allowed.

Note that you can specify the /STATUS qualifier with the SHOW NODE command to display information about the local node only (for example, the command SHOW NODE /STATUS FOREIGN_NODE is not supported).
Description

This command displays information about a specified node or, if you do not specify a node name, about your local node. With the /ALL qualifier, the SHOW NODE command displays information about all nodes known to your local node. Depending on the qualifiers you use, you can display node counters, node status, the node identification string, the LAT protocol version running on the node, and the values set for the node's characteristics.

Examples

1. LATCP> SHOW NODE/FULL

This command produces the following display of information about the local node:

Node Name: LTC
Node State: On
Node Ident: LTC - Engineering Development

Incoming Connections: Enabled
Outgoing Connections: Enabled
Service Responder: Disabled

Circuit Timer (msec): 80
Retransmit Limit (msg): 20
Multicast Timer (sec): 20
Incoming Session Limit: None
Outgoing Session Limit: None
Node Limit (nodes): None
Keepalive Timer (sec): 20
CPU Rating: 8
Maximum Unit Number: 9999

User Groups: 43, 73
Service Groups: 7-9, 13, 23, 40, 41, 43, 45, 66, 72-73, 89, 120-127, 248-255

Service Name Status Rating Identification
LTVMS Available 31 D .

This display indicates that the local node LTC is in the On state, which means LAT connections can be created on the node. LTC is running Version 5.2. of the LAT protocol. The identification of the node is "LTC - Engineering Development". Because this is the local node, the display does not give the address of a LAN device. Use the SHOW LINK command to find addresses of devices on the local node. The display for the status of remote nodes, as shown in Example 2, gives the Ethernet address of that node.

Both incoming and outgoing connections can be made on node LTC, the number of sessions is unlimited. The display indicates the values of various timers and lists the groups that are enabled. Users on the local node can access service nodes belonging to user groups 43 and 73. Locally offered services can be accessed by nodes belonging to the service groups listed.

The display indicates that the CPU rating of the local node is 8. The display shows that the node offers a service named LTVMS. This service is available and its rating is 31 D (dynamic). (An S would indicate the rating is static.)

2. LATCP> SHOW NODE/FULL RWWUP

This command displays the following information about the remote node RWWUP:

LAT Control Program (LATCP) Utility 14–59
Node Name: RWWUP  LAT Protocol Version: 5.2
Node State: Reachable  Address: AA-00-04-00-11-10
Node Ident: .

Incoming Connections: Enabled
Circuit Timer (msec):  80
Multicast Timer (sec):  20
Service Groups:  7, 13, 42-43, 45, 66, 70-72, 75-82, 88-89
Service Name  Status  Rating  Identification
NAC  Available  28  .
SYSMGR  Available  28  .

This display indicates that remote node RWWUP is reachable and runs Version 5.2 of the LAT protocol. The display includes the Ethernet address of node RWWUP. Because incoming connections are enabled, you can connect to a service on node RWWUP, provided that your node belongs to one of the service groups listed in the display.

Node RWWUP offers two services: NAC and SYSMGR. Both are available.

3. LATCP> SHOW NODE/ALL/BRIEF

This command displays the following information about all nodes known to the local node:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Status</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABLAN</td>
<td>Reachable</td>
<td>Unauthorized access is prohibited.</td>
</tr>
<tr>
<td>ASKKEN</td>
<td>Reachable</td>
<td>.</td>
</tr>
<tr>
<td>CHUNK</td>
<td>Reachable</td>
<td>A member of the MAIN VMS cluster</td>
</tr>
<tr>
<td>UTOO</td>
<td>On</td>
<td>Can be healthy at the Center</td>
</tr>
<tr>
<td>VULCUN</td>
<td>Reachable</td>
<td>Beam me up</td>
</tr>
<tr>
<td>ZENX</td>
<td>Reachable</td>
<td>ZENX</td>
</tr>
</tbody>
</table>

This command indicates the status (whether a node is reachable) and identification of all nodes known to the local node. The display includes the status of the local node UTOO. The status can be either On, Off, or Shut. Here it is On.

4. $ LCP := $LATCP
   $ LCP SHOW NODE /STATUS

The SHOW NODE /STATUS produces the following display:

| Node Name: NODE1  LAT Protocol Version: 5.2 |
|--------|---------------------------------------------|
| Node State: On |
| Node Ident: Test system |

<table>
<thead>
<tr>
<th>Current</th>
<th>Highest</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Circuits:</td>
<td>1 2 1023</td>
<td></td>
</tr>
<tr>
<td>Connected Sessions:</td>
<td>1 6 260865</td>
<td></td>
</tr>
<tr>
<td>Incoming Queue Entries:</td>
<td>0 0 24</td>
<td></td>
</tr>
<tr>
<td>Outgoing Queue Entries:</td>
<td>0 1 32767</td>
<td></td>
</tr>
<tr>
<td>Unprocessed Announcements:</td>
<td>0 7 500</td>
<td></td>
</tr>
<tr>
<td>Unprocessed Solicits:</td>
<td>0 2 250</td>
<td></td>
</tr>
<tr>
<td>Local Services:</td>
<td>1 2 255</td>
<td></td>
</tr>
<tr>
<td>Available Services:</td>
<td>188 194 N/A</td>
<td></td>
</tr>
<tr>
<td>Reachable Nodes:</td>
<td>166 172 N/A</td>
<td></td>
</tr>
<tr>
<td>Discarded Nodes:</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
SHOW PORT

Displays the status and LAT characteristics of ports on the local node.

Format

SHOW PORT  [port-name]

Parameter

port-name
Specifies the name of the port for which information is displayed. If you do not specify a port name, the SHOW PORT command displays the characteristics for all LTA\n ports on a node.

Do not use the /APPLICATION, /DEDICATED, /FORWARD, /INTERACTIVE, or /LIMITED qualifiers with a specific port name.

Qualifiers

/APPLICATION
Generates a display of all application ports.

/BRIEF
Displays port type, port status, and the remote node name, port, and service associated with the port. This is the default if you do not specify a port name with the SHOW PORT command.

/COUNTERS
Displays the counters kept for the port. Do not use the /BRIEF or /FULL qualifiers with this qualifier.

/DEDICATED
Generates a display of all dedicated ports.

/FORWARD
Generates a display of all LAT ports used for either outgoing LAT connections or local LAT management functions.

/FULL
Displays the following information:

- Port type
- Port status
- Target port name, node name, and service name associated with the port
- Remote node name, port, and service associated with the port if a connection is currently active

/INTERACTIVE
Generates a display of all LAT ports used for incoming interactive connections.

/LIMITED
Generates a display of all limited LTA devices on the system (previously established with the CREATE PORT /LIMITED or SET PORT /LIMITED command).
LATCP
SHOW PORT

Description

If a port is an application port, the display lists the remote node name, remote port name, and remote service name that you specified in the SET PORT command.

If the port is a dedicated port, the display lists the service name that you specified in the SET PORT command.

If LATCP shows the port as Interactive in the display, a user on a terminal server or on a node that supports outgoing LAT connections is currently using the port.

For all ports with active sessions, the remote node sends its node name and port name to your local node. These names are listed in the display.

Examples

1. LATCP> SHOW PORT /FULL

This command produces the following type of display. The display reflects the characteristics set by the command examples given with the SET PORT command.

<table>
<thead>
<tr>
<th>Local Port Name:</th>
<th>Local Port Type:</th>
<th>Local Port State:</th>
<th>Connected Link:</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LTA16:</td>
<td>Forward</td>
<td>Inactive</td>
<td></td>
</tr>
<tr>
<td>Target Port Name:</td>
<td>Actual Port Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Node Name:</td>
<td>LATCP$MGMT_PORT</td>
<td>Actual Node Name:</td>
<td></td>
</tr>
<tr>
<td>Target Service Name:</td>
<td>Actual Service Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Port Name:</th>
<th>Local Port Type:</th>
<th>Local Port State:</th>
<th>Connected Link:</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LTA17:</td>
<td>Interactive</td>
<td>Active</td>
<td>LAT$LINK</td>
</tr>
<tr>
<td>Target Port Name:</td>
<td>Actual Port Name:</td>
<td>PORT 1</td>
<td></td>
</tr>
<tr>
<td>Target Node Name:</td>
<td>Actual Node Name:</td>
<td>MY_DS200_SERVER</td>
<td></td>
</tr>
<tr>
<td>Target Service Name:</td>
<td>Actual Service Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Port Name:</th>
<th>Local Port Type:</th>
<th>Local Port State:</th>
<th>Connected Link:</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LTA19:</td>
<td>Application (Queued)</td>
<td>Active</td>
<td>LAT$LINK</td>
</tr>
<tr>
<td>Target Port Name:</td>
<td>Actual Port Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Node Name:</td>
<td>Actual Node Name:</td>
<td>TLAT1</td>
<td></td>
</tr>
<tr>
<td>Target Service Name:</td>
<td>Actual Service Name:</td>
<td>PRINTER</td>
<td>PRINTER</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Port Name:</th>
<th>Local Port Type:</th>
<th>Local Port State:</th>
<th>Connected Link:</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LTA21:</td>
<td>Dedicated</td>
<td>Inactive</td>
<td></td>
</tr>
<tr>
<td>Target Port Name:</td>
<td>Actual Port Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Node Name:</td>
<td>Actual Node Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Service Name:</td>
<td>Actual Service Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Port Name:</th>
<th>Local Port Type:</th>
<th>Local Port State:</th>
<th>Connected Link:</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LTA22:</td>
<td>Application (Queued)</td>
<td>Active</td>
<td>LAT$LINK</td>
</tr>
<tr>
<td>Target Port Name:</td>
<td>Actual Port Name:</td>
<td>LN02</td>
<td></td>
</tr>
<tr>
<td>Target Node Name:</td>
<td>Actual Node Name:</td>
<td>TS33EW</td>
<td></td>
</tr>
<tr>
<td>Target Service Name:</td>
<td>Actual Service Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The display in this example shows information about all the ports on the local node. The display shows information for each of the four types of ports:

- **Forward**: a port used for outgoing LAT connections or for executing local management functions and LATCP commands. Port LTA16: is a forward port. The display shows that the port is currently inactive—no current LAT connection exists. The target node name of LATCP$MGMT_PORT indicates that LATCP is using this port to execute the LATCP commands entered by the user. If the display listed a node and service name, it would mean that the port is being used for an outgoing connection.

- **Interactive**: a port created as a result of an incoming LAT connection request from another node or terminal server. Port LTA17: is an interactive port connected with port PORT_1 on the terminal server MY_DS200_SERVER.

- **Application**: a port used for solicited connections to devices on terminal servers or to application services on remote LAT service nodes. Port LTA22: is an application port. The port maps to port LN02 (a printer) on a terminal server node TS33EW. The display indicates that server TS33EW queues connection requests from the local node. Port LTA19: is also an application port. The port maps to the service PRINTER on terminal server TLAT1.

- **Dedicated**: a port dedicated to a local application service. Port LTA21: is dedicated to the service GRAPHICS.

The target port name, target node name, and target service name are the names specified with the SET PORT command. They are passed to the remote node or terminal server when the connection request is made.

The actual port name, actual node name, and actual service name are the names returned by the remote node when it accepts the connection request. They may differ from the corresponding target names (specified with the SET PORT command) if the remote node translates the names. For example, terminal servers that accept connections to LAT service names usually return the name of the port to which the connection was actually directed.

2. **LATCP> SHOW PORT LTA1 /COUNTERS**

This command produces a display that lists counter information for the LTA1 device:

```
Port Name: _LTA1:
Seconds Since Zeroed: 66
Remote Accesses: 0 Framing Errors: 0
Local Accesses: 0 Parity Errors: 0
Bytes Transmitted: 0 Data Overruns: 0
Bytes Received: 0 Password Failures: 0
Solicitations Accepted: 1
Solicitations Rejected: 1
Incoming Solicits Accepted: 0
Incoming Solicits Rejected: 0
Last disconnect reason code: 18
(%LAT-F-LRJDELETED, queue entry deleted by server)
```
SHOW QUEUE_ENTRY

Displays information about requests, or entries, queued on the local node.

Format

SHOW QUEUE_ENTRY  [queue-entry-id]

Parameter

queue-entry-id
Specifies the identification number (ID) of the queued entry for which information is displayed. If you do not specify a value for this parameter, information about all queued entries is displayed.

Qualifiers

/BRIEF
Displays the following information about the queued entries:

- Position
- Entry ID
- Source node
- Service
- Port name

This is the default display.

/FULL
In addition to the information displayed by the /BRIEF qualifier, the /FULL qualifier provides the following information for each node:

- Node queue position
- Service queue position
- Node address
- Soliciting Link

Description

The SHOW QUEUE_ENTRY command displays information about requests, or entries, queued on the local node. You can display information about a specific entry by including the queue entry ID on the command line or you can display information about all entries (the default). Use the DELETE QUEUE_ENTRY command to delete specific entries from the queue.
Examples

1. LATCP> SHOW QUEUE_ENTRY

This command produces the following type of display:

<table>
<thead>
<tr>
<th>Position</th>
<th>Entry ID</th>
<th>Source Node</th>
<th>Service</th>
<th>Port Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79EC</td>
<td>NODE1</td>
<td>LAT_LIMITED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7AEC</td>
<td>NODE2</td>
<td>LAT_LIMITED</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7CEC</td>
<td>NODE3</td>
<td>LAT_LIMITED</td>
<td></td>
</tr>
</tbody>
</table>

2. LATCP> SHOW QUEUE_ENTRY/FULL

This command produces the following type of display:

Entry ID: 7AEC
Remote Node: NODE1
Node Queue Position: 1
Service Queue Position: 1
Target Port: LAT_LIMITED
Target Service: LAT_LIMITED
Soliciting Link: LAT$LINK

Entry ID: 7CEC
Remote Node: NODE2
Node Queue Position: 2
Service Queue Position: 2
Target Port: LAT_LIMITED
Target Service: LAT_LIMITED
Soliciting Link: LAT$LINK
LATCP
SHOW SERVICE

SHOW SERVICE

Displays the status and LAT characteristics of LAT services known to the local node.

Format

SHOW SERVICE  [service-name]

Parameters

service-name
Specifies the name of the service for which information will be displayed. If you do not specify a service name, LATCP displays information about all services known to the node.

You can also specify any valid wildcard for this parameter. For example, the SHOW SERVICE LAT_* command displays the status and characteristics of all services that begin with the LAT_ prefix.

Qualifiers

/BRIEF
Displays the status and identification string of the service.

/COUNTERS
Displays the counters kept for the service. Do not use the /BRIEF or /FULL qualifier with this qualifier. The following table lists and describes the counters:

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Counters</td>
<td></td>
</tr>
<tr>
<td>Connections attempted</td>
<td>The total number of times the local node attempted to connect to the service offered on a remote node.</td>
</tr>
<tr>
<td>Connections completed</td>
<td>The total number of times the local node successfully connected to the service offered on a remote node.</td>
</tr>
<tr>
<td>Local Counters</td>
<td></td>
</tr>
<tr>
<td>Connections accepted</td>
<td>The total number of times the local node accepted a connection request from a remote node to a locally offered service.</td>
</tr>
<tr>
<td>Connections rejected</td>
<td>The total number of times the local node rejected a connection request from a remote node to a locally offered service.</td>
</tr>
<tr>
<td>Password failures</td>
<td>The total number of connect requests to the service which were rejected due to password violation errors.</td>
</tr>
</tbody>
</table>
/FULL
Displays the status, identification string, and type of service, and the values set for service characteristics. This qualifier also displays the status of all service nodes offering the service.

/LOCAL
Displays information about services offered by the local node only. You can use this qualifier with the /BRIEF, /COUNTERS, or /FULL qualifier.

Description
This command displays information about services. If you do not specify a service name, the command displays information about all services known to your local node. If you do not specify a service name but specify the /LOCAL qualifier, the command displays information about all services offered by your local node.

Depending on whether you use the /BRIEF, /COUNTERS, or /FULL qualifier, you can display the status, identification string, and type of service, the status of all service nodes offering the service, the values set for service characteristics, and service counters.

Examples
1. LATCP> SHOW SERVICE NODE1 /FULL

This command produces the following display of information about service NODE1. This service is offered by the local node.

<table>
<thead>
<tr>
<th>Service Name: NODE1</th>
<th>Service Type: General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Status: Available</td>
<td>Connections: Enabled</td>
</tr>
<tr>
<td>Service Password: Enabled</td>
<td>Queueing: N/A</td>
</tr>
<tr>
<td>Service Ident: NODE1 - Test system</td>
<td></td>
</tr>
</tbody>
</table>

Node Name  Status  Rating  Identification
---  ---  ---  ---
LAV  On  31 D  .
LATP  Reachable  48  .
LITTN  Reachable  37  .
LTDRV  Reachable  82  .

The display in this example indicates that the locally offered service NODE1 is available and its service type is general, meaning that it is a general timesharing service (in contrast to a dedicated application service). The display also lists the status of all the nodes that offer the service. The local node is LAV. The status of the local node can be either On, Off, or Shut. Here node LAV's status is On. The status of the other nodes indicates whether they are reachable. The display lists the ratings of each service node, indicating their relative capacity to accept new connections. The D next to the locally offered service indicates that node LAV computes its rating dynamically. An S would indicate that the node's rating was set permanently by the node's system manager.
2. **LATCPC> SHOW SERVICE OFFICE/FULL**

This command produces the following display of information about the service OFFICE, which is offered by a remote node:

<table>
<thead>
<tr>
<th>Service Name:</th>
<th>OFFICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Status:</td>
<td>Available</td>
</tr>
<tr>
<td>Service Ident:</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Status</th>
<th>Rating</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>BURGIL</td>
<td>Reachable</td>
<td>121</td>
<td>.</td>
</tr>
<tr>
<td>DARWIN</td>
<td>Reachable</td>
<td>43</td>
<td>.</td>
</tr>
</tbody>
</table>

The display in this example indicates that the service is available. The display also indicates the status and other information about the nodes that offer the service, BURGIL and DARWIN.
SPAWN

Creates a subprocess, enabling you to execute DCL commands without terminating your LATCP session. The LATCP command SPAWN is similar to the DCL command SPAWN.

To return to your LATCP session, either log out of the subprocess by entering the DCL command LOGOUT, or use the DCL command ATTACH to attach your terminal to the process running LATCP.

Format

SPAWN  [DCL-command]

Parameter

DCL-command
Specifies a DCL command. If you specify a DCL command, LATCP executes the command in a subprocess. Control returns to LATCP when the DCL command terminates.

If you do not specify a DCL command, LATCP creates a subprocess and you can then enter DCL commands. You can continue your LATCP session by logging out of the spawned subprocess or by attaching to the parent process with the DCL command ATTACH.

Description

The SPAWN command acts exactly like the DCL command SPAWN. You can enter DCL commands (such as to create print queues, change the protection of a device, answer mail, and so forth) without ending your LATCP session.

You cannot use this command to gain access to DCL if you are running LATCP from a captive account.

Example

LATCP> SPAWN
$

This command creates a subprocess at DCL level. You can now enter DCL commands. Log out or enter the DCL command ATTACH to return to the LATCP prompt.
ZERO COUNTERS

Resets the link, node, and service counters maintained by the local node. You must have OPER privilege to use this command.

Format

ZERO COUNTERS

Parameters

None.

Qualifiers

/LINK=[link-name]  
Specifies the link (on your local node) for which you want counters reset. If you do not specify a link name, LATCP zeroes counters for the link LAT$LINK.

/NODE=[node-name]  
Specifies the node for which you want counters reset. If you do not specify a node name, LATCP zeroes the counters for your local node.

/PORT=port-name
Specifies the port (on your local node) for which you want counters reset.

/SERVICE=service-name
Specifies the service (on your local node) for which you want counters reset.

Description

This command resets counters. You can specify whether you want to reset link, node, or service counters. You must specify either /LINK, /NODE, or /SERVICE.

Example

LATCP> ZERO COUNTERS/SERVICE=LTVM
LATCP> SHOW SERVICE LTVM /COUNTERS
Service Name:  LTVM
Seconds Since Zeroed:  9
Connections Attempted:  0  Connections Accepted:  0
Connections Completed:  0  Connections Rejected:  0
Password Failures:  0

This command resets the counters kept for service LTVM. The display produced by the SHOW SERVICE command shows how the ZERO COUNTERS command reset the counters to zero.
15.1 LMCP Description

The Log Manager Control Program (LMCP) utility creates and manages the transaction logs used by DECdtm services.

Caution

Some LMCP commands can corrupt data.
Refer to the *HP OpenVMS System Manager’s Manual* to understand the reasons for using LMCP and how to use it safely.

15.2 LMCP Usage Summary

LMCP lets you create and manage the transaction logs used by DIGITAL’s distributed transaction manager, DECdtm services.

Format

RUN SYS$SYSTEM:LMCP

Parameters

None

Description

To invoke LMCP, enter RUN SYS$SYSTEM:LMCP at the DCL command prompt. At the LMCP> prompt, you can enter any of the LMCP commands described in the following section.

To exit from LMCP, enter the EXIT command at the LMCP> prompt, or press Ctrl/Z.

15.3 LMCP Commands

The following table summarizes the LMCP commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSE LOG</td>
<td>Closes the transaction log and stops the TP_SERVER process</td>
</tr>
<tr>
<td>CONVERT LOG</td>
<td>Creates a new transaction log and copies records from an existing transaction log to the new transaction log</td>
</tr>
<tr>
<td>CREATE LOG</td>
<td>Creates a new transaction log</td>
</tr>
<tr>
<td>DUMP</td>
<td>Displays the contents of a transaction log</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exits LMCP</td>
</tr>
<tr>
<td>HELP</td>
<td>Gives help on LMCP commands</td>
</tr>
<tr>
<td>REPAIR</td>
<td>Changes the state of transactions</td>
</tr>
<tr>
<td>SHOW LOG</td>
<td>Displays information about transaction logs</td>
</tr>
</tbody>
</table>
CLOSE LOG

Closes the transaction log and stops the TP_SERVER process.
Requires the SYSNAM privilege.

Format

CLOSE LOG

Description

Use the CLOSE LOG command to:
- Close the transaction log of the local node.
- Stop the TP_SERVER process on the local node.
The CLOSE LOG command fails if the node is currently executing transactions.
CONVERT LOG

Creates a new transaction log and copies records from an existing transaction log to the new one.

Use the CONVERT LOG command when you want to move a transaction log or change its size.

Caution

If a node already has a transaction log, using the CONVERT LOG command to create a new one can corrupt data. Refer to the *HP OpenVMS System Manager’s Manual* for information about how to use the CONVERT LOG command safely.

The CONVERT LOG command requires:

- The CMKRNL privilege
- Read access to the existing transaction log and the directory it is in
- Read and write access to the directory in which the new transaction log is to be created

Format

CONVERT LOG  old-filespec new-filespec

Parameters

**old-filespec**
The file specification of the transaction log whose records are to be copied.

The CONVERT LOG command uses the following defaults:

- If you omit the disk and directory, the CONVERT LOG command looks for the transaction log in the directories pointed to by the logical SYS$JOURNAL, which must be defined in executive mode in the system logical name table.
- If you omit the file type, the CONVERT LOG command uses .LM$JOURNAL.

**new-filespec**
The file specification of the new transaction log to be created.

For DECdtm services to use the transaction log, the file must have a name of the form SYSTEM$node.LM$JOURNAL, where *node* is the name of the node.

The CONVERT LOG command uses the following defaults:

- If you omit the disk and directory, the CONVERT LOG command creates the new transaction log in the first accessible directory pointed to by the logical SYS$JOURNAL, which must be defined in executive mode in the system logical name table.
- If you omit the file type, the CONVERT LOG command uses .LM$JOURNAL.
LMCP
CONVERT LOG

Qualifiers

/OWNER=uic
Specifies the owner of the new transaction log.

Specify the owner using the standard UIC format, as described in the OpenVMS User's Manual.

/SIZE=size
Specifies the size of the new transaction log in blocks.

The minimum size is 100 blocks. If you omit this qualifier, the new transaction log is created with the default size of 4000 blocks.

Example

LMCP> CONVERT LOG/SIZE=6000 DISK$LOG2:[LOGFILES]SYSTEM$RED.LM$OLD -
   LMCP> DISK$LOG2:[LOGFILES]SYSTEM$RED.LM$JOURNAL

This example creates a 6000-block transaction log called SYSTEM$RED.LM$JOURNAL in directory DISK$LOG2:[LOGFILES]. It then copies records from the existing transaction log, SYSTEM$RED.LM$OLD in directory DISK$LOG2:[LOGFILES], into the new transaction log.
CREATE LOG

Creates a new transaction log.

Caution

If a node already has a transaction log, using the CREATE LOG command to create a new one can corrupt data.

Requires read and write access to the directory in which the transaction log is to be created.

Format

CREATE LOG  filespec

Parameter

filespec  
The file specification of the transaction log to be created.

For DECdtm services to use the transaction log, the file must have a name of the form SYSTEM$node.LM$JOURNAL, where node is the name of the node.

The CREATE LOG command uses the following defaults:

- If you omit the disk and directory, the CREATE LOG command creates the transaction log in the first accessible directory pointed to by the logical SYS$JOURNAL, which must be defined in executive mode in the system logical name table.

- If you omit the file type, the CREATE LOG command uses .LM$JOURNAL.

If you specify a disk and directory not pointed to by SYS$JOURNAL, a warning message is displayed. However, the transaction log is still created, but will not be used until either (a) SYS$JOURNAL is modified to point to the disk and directory where the log was created, or (b) you move the new transaction log to a directory pointed to by SYS$JOURNAL.

Qualifiers

/NEW_VERSION  
Forces the CREATE LOG command to create a new version of an existing transaction log.

Caution

Creating a new version of an existing transaction log can lead to data corruption.

The data in the two transaction logs cannot be merged. Once it has started using the new transaction log, DECdtm services cannot access any transaction records in the old transaction log.

/OWNER=uic  
Specifies the owner of the transaction log.
LMCP
CREATE LOG

Specify the owner using the standard UIC format, as described in the *OpenVMS User's Manual.*

/SIZE=size
Specifies the size of the transaction log in blocks.

The minimum size is 100 blocks. If you omit this qualifier, the transaction log is created with the default size of 4000 blocks.

Example

LMCP> CREATE LOG/SIZE=5000 DISK$LOG1:[LOGFILES]SYSTEM$ORANGE.LM$JOURNAL

This example creates a 5000-block transaction log for node ORANGE in DISK$LOG1:[LOGFILES].
DUMP

Displays the contents of a transaction log.

Requires read access to the transaction log and the directory it is in.

Format

DUMP filespec

Parameter

filespec
The file specification of the transaction log whose contents you want to display.

The DUMP command uses the following defaults:

- If you omit the disk and directory, the DUMP command looks for the transaction log in the directories pointed to by the logical SYS$JOURNAL, which must be defined in executive mode in the system logical name table.
- If you omit the file type, the DUMP command uses .LM$JOURNAL.

Qualifiers

/ACTIVE
Selects records only for transactions that have not yet been forgotten.

/FORMAT (default)
/NOFORMAT
Determines whether the contents of the transaction log are displayed as formatted records. Specify both the /NOFORMAT and the /HEX qualifiers to display the contents of the transaction log in hexadecimal only.

If the /NOFORMAT qualifier is specified without the /HEX qualifier, only the transaction log header is displayed.

/HEX
/NOHEX (default)
Specifies that the contents of the transaction log are displayed as both ASCII characters and hexadecimal longwords. Specify both the /NOFORMAT and /HEX qualifiers to display the contents of the transaction log in hexadecimal only.

/LOGID=logid
Selects records only for transactions that have participants whose logid field matches the specified value.

The logid is in the Log ID field, to the right of the Type field. The value you specify must be exactly as it appears in the display, including hyphens.

Note that you can use this qualifier only with the /RM qualifier.

/OUTPUT=[filespec]
Requires read and write access to the directory in which the output file is to be created.
Specifies where the output from the DUMP command is sent. If you omit this qualifier, output is sent to the current SYS$OUTPUT device (usually your terminal). To send the output to a file, use the /OUTPUT qualifier. If you do not supply a file specification, the output is sent to the file LMCP_DUMP.LIS in your default directory.

/\RM=name
Selects records only for transactions that have participants whose names begin with the specified value.

The participant name is shown in the Name field, and is output in both ASCII and hexadecimal.

If the participant name includes undisplayable characters, you can select records for that participant by using the hexadecimal form of its name. When specifying the hexadecimal form of the name, you must convert it by reversing the pairs in the hexadecimal number. For example, the participant name is:

Name (11): "SYSTEM$RED" (4445 52244D45 54535953)

The value you specify for the /RM qualifier is:

/\RM=%53595354445D24524544

/\STATE=COMMITTED
/\STATE=PREPARED
Selects records only for transactions in either the Committed or Prepared states.

/\TID=transaction_id
Selects records only for the specified transaction.

The transaction_id is shown in the Transaction ID field. The value you specify must be exactly as it appears in the display, including hyphens.

Description

Use the DUMP command to display the contents of a transaction log. Example 15–1 is a sample of a transaction log, with the important fields identified.

Example 15–1 Sample Transaction Log

Log Manager Control Program V1.1

Dump of transaction log DISK$LOGFILE:SYSTEM$BLUE.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 647327A0-2674-11C9-8001-AA00040069F8
Penultimate Checkpoint: 000000000239 0039
Last Checkpoint: 00000000042E 002E

Dump of transaction log DISK$LOGFILE:SYSTEM$BLUE.LM$JOURNAL;1
Present Length: 134 (00000086) Last Length: 0 (00000000)
VBN Offset: 0 (00000000) Virtual Block: 2 (00000002)
Section: 3 (00000003)

(continued on next page)
Example 15–1 (Cont.) Sample Transaction Log

Record number 1 (00000001), 114 (0072) bytes
Transaction state (1): PREPARED
DECdtm Services Log Format V1.1
Type ( 2): CHILD
Log ID: F1469720-4A0C-11CC-8001-AA000400B7A5
Name (13): "SYSTEM$WESTRN" (4E5254534557244D4554535953)
Type ( 8): CHILD NODE
Log ID: F1469720-4A0C-11CC-8001-AA000400B7A5
Name (6): "WESTRN" (4E525453557)
Type ( 3): LOCAL RM
Log ID: 037100C0-0019-0003-0100-000000000000
Name (6): "ORANGE" (45474E41524F)

In this example, the significant fields are:

1. Transaction log header — information about the transaction log’s attributes.
2. Section header — the section header of multiple transaction records.
3. Record number — the record number, in both decimal and hexadecimal.
4. Record size — the record size in both decimal and hexadecimal.
5. Transaction state — the type of the record. This can be:
   - Prepared
     This type of record is logged when the transaction enters the Prepared state. Note that this type of record is not logged at the node on which the transaction was started.
   - Committed
     This type of record is logged when the transaction enters the Committed state.
   - Forgotten
     This type of record is logged:
     - When the transaction is aborted, if a record of type Prepared was logged for the transaction.
     - For a transaction that commits, when no participants require the local DECdtm transaction manager to remember that the outcome of the transaction is commit.
     Note that DECdtm uses the presumed abort logging protocol.
   - Checkpoint
     Unlike the other types of record, this is not associated with a particular transaction. It is used internally by the DECdtm transaction manager to compress space in the transaction log.
6. Transaction ID — the unique transaction identifier (TID) generated by the DECdtm transaction manager.
7. DECdtm Services Log Format — the version number of the transaction log format.
Type — information about the participant in the transaction. This can be:

- **Child** — an immediate child transaction manager. This transaction manager may query the local DECdtm transaction manager to determine the outcome of the transaction.
- **Child Node** — the name of the node that an immediate child transaction manager is on.
- **Parent** — the immediate parent transaction manager. The local DECdtm transaction manager may query this transaction manager to determine the outcome of the transaction.
- **Parent Node** — the name of the node that an immediate parent transaction manager is on.
- **Local RM** — a resource manager on the local node.

**Log ID** — the identifier of the participant’s log. For type Child, Child Node, Parent, or Parent Node, this is the identifier of the DECdtm transaction log. For a local resource manager, this is the identifier of its private log.

**Name** — the name of the participant in the transaction, in both ASCII and hexadecimal.

**Example**

LMCP> DUMP/RM="RMS$" DISK$LOGFILE:SYSTEM$BLUE.LM$JOURNAL

This example displays the contents of the transaction log for node BLUE, selecting only transactions in which RMS Journaling for OpenVMS is participating.
Dump of transaction log DISK$LOGFILE:SYSTEM$BLUE.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Transaction log UID: 6A034B20-6FCC-0095-D7E4-EAA500000000
Penultimate Checkpoint: 00000000382E 002E
Last Checkpoint: 000000003C2E 002E

Dump of transaction log DISK$LOGFILE:SYSTEM$BLUE.LM$JOURNAL;1
Present Length: 46 (000000002E) Last Length: 512 (00000200)
VBN Offset: 30 (00000001E) Virtual Block: 32 (000000020)
Section: 1 (0000000001)
Record number 2 (0000000002), 5 (0005) bytes
Transaction state (3): CHECKPOINT
Checkpoint record contains no active transactions.
Record number 1 (0000000001), 21 (0015) bytes
Transaction state (0): FORGOTTEN
Transaction ID: 271D9FC0-7082-0095-98E7-EAA50000000

Dump of transaction log DISK$LOGFILE:SYSTEM$BLUE.LM$JOURNAL;1
Present Length: 113 (0000000071) Last Length: 512 (00000200)
VBN Offset: 29 (000000001D) Virtual Block: 31 (000000001F)
Section: 2 (0000000002)
Record number 1 (0000000001), 93 (005D) bytes
Transaction state (2): COMMITTED
Transaction ID: 271D9FC0-7082-0095-98E7-EAA500000000 (3-MAR-2002 13:53:03.42)
DECdtm Services Log Format V1.1
Type (2): CHILD Log ID: EF006060-CF37-11C9-8001-AA000400DEFA
Name (10): "SYSTEM$ORANGE" (45 474E4152 4F244D45 5445535524534D52)
Type (6): LOCAL RM Log ID: 28C5D180-7082-0095-0000-000000000000
Name (22): "RMS$USER1.......'
   (0000 0017B6B0 00000000 00000031 52455355 24534D52)
Exits LMCP.

Format

EXIT
HELP

Provides help on LMCP commands.

Format

HELP [help-topic [help-subtopic]]

Parameter

help-topic
Specifies the command that you want help for.

help-subtopic
Specifies the parameter or qualifier that you want help for.
REPAIR

Changes the state of transactions.

Caution

The REPAIR command can corrupt data. Use it only if none of the resource managers participating in the transaction provides a means of changing transaction states.

The REPAIR command requires:

- The CMKRNLP privilege
- Read and write access to the transaction log and the directory it is in

Format

REPAIR filespec

Parameter

filespec
The file specification of the transaction log containing the transactions whose states you want to change.

The REPAIR command has the following requirements:

- The logical SYS$JOURNAL must be defined in executive mode in the system logical name table.
- The transaction log must be in a directory pointed to by the logical SYS$JOURNAL.
- The file type of the transaction log must be .LM$JOURNAL.

The REPAIR command uses the following defaults:

- If you omit the disk and directory, the REPAIR command looks for the transaction log in the directories pointed to by the logical SYS$JOURNAL.
- If you omit the file type, the REPAIR command uses .LM$JOURNAL.

Qualifiers

/LOGID=logid
Selects records only for transactions that have participants whose logid field matches the specified value.

The logid is in the Log ID field, to the right of the Type field in the output from the DUMP command. The value you specify must be exactly as it appears in the display, including hyphens.

Note that you can use this qualifier only with the /RM qualifier.

/RM=name
Selects records only for transactions that have participants whose names begin with the specified value.
The participant name is shown in the Name field in the output from DUMP, and is output in both ASCII and hexadecimal.

If the participant name includes undisplayable characters, you can select records for that participant by using the hexadecimal form of its name. When specifying the hexadecimal form of the name, you must convert it by reversing the pairs in the hexadecimal number. For example, the participant name is:

Name (11): "SYSTEM$RED" (4445 52244D45 54535953)

The value you specify for the /RM qualifier is:

/RM=%X5359535445244D4524524544

/STATE=COMMITTED
/STATE=PREPARED

Selects records only for transactions in either the Committed or Prepared states.

/TID=transaction_id

Selects records only for the specified transaction.

The transaction_id is shown in the Transaction ID field in the output from the DUMP command. The value you specify must be exactly as it appears in the display, including hyphens.

Description

Use the REPAIR command to change the state of transactions.

__________________________ Caution _______________________

The REPAIR command can corrupt data. Use it only if none of the resource managers participating in the transaction provides a means of changing transaction states.

__________________________

Use this command only if none of the resource managers participating in the transaction provides a means of changing the transaction state.

Change the transaction state only when you already know the outcome of the transaction and need to manually update the transaction log immediately. You might want to do this because, for example, you have lost the network link to a remote node.

When you use the REPAIR command you use qualifiers to specify which transactions you want to change. By default, the REPAIR command selects all transactions.

Once you have selected the transactions to change, enter the REPAIR subcommand mode. Within this mode, the prompt changes to REPAIR>, and you have an additional set of subcommands. Use these subcommands either to manually change the state of the transaction or to select the next transaction that matches your selection criteria. The subcommands are as follows:
**LMCP REPAIR**

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>Specifies that a Prepared transaction is to be aborted by removing its record from the transaction log. This writes a record of type Forgotten for the transaction. Note that DECdtm services use the presumed abort logging protocol.</td>
</tr>
<tr>
<td>COMMIT</td>
<td>Specifies that a Prepared transaction is to be committed. This writes a record of type Committed for the transaction.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Returns to the LMCP&gt; prompt.</td>
</tr>
<tr>
<td>FORGET</td>
<td>Specifies that a Committed transaction can be removed from the transaction log. This writes a record of type Forgotten for the transaction.</td>
</tr>
<tr>
<td>NEXT</td>
<td>Displays the next transaction that matches your selection criteria.</td>
</tr>
</tbody>
</table>

LMCP displays each of the selected transactions in turn, so that you can change them. For each selected transaction, you can either use the ABORT, COMMIT, and FORGET subcommands to change the state of the transaction, or use the NEXT subcommand to select the next transaction.

To exit from the REPAIR subcommand mode, enter the EXIT subcommand or press Ctrl/Z.

**Example**

LMCP> REPAIR/STATE=PREPARED DISK$JOURNALS:[LOGFILES]SYSTEM$ORANGE

In this example, transactions to be modified are selected from the transaction log for node ORANGE. The transactions selected are those in the Prepared state.

The first transaction is committed by manually changing its state from Prepared to Committed, then the NEXT subcommand is used to advance to the next selected transaction.

```
Dump of transaction log DISK$JOURNALS:[LOGFILES]SYSTEM$ORANGE;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 98A43B80-81B7-11CC-A27A-08002B1744C3
Penultimate Checkpoint: 00000407B9AC 07AC
Last Checkpoint: 00000407C3B7 07B7
Transaction state (1): PREPARED
Transaction ID: 9F7DF804-CBC4-11CC-863D-08002B17450A (18-OCT-2002 16:11:03.67)
DECdtm Services Log Format V1.1
Type (3): LOCAL RM
Name (1): "B" (42)
Type (4): PARENT
Log ID: AECC2FB64-C617-11CC-B458-08002B17450A
Name (13): "SYSTEM$BLUE" (45554C 42244D5 54535953)
Type (16): PARENT NODE
Log ID: AECC2FB64-C617-11CC-B458-08002B17450A
Name (6): "BLUE" (45554C42)
REPAIR> COMMIT
REPAIR> NEXT
```

15–18 Log Manager Control Program (LMCP) Utility
SHOW LOG

Displays information about transaction logs.
Requires read access to the transaction logs and the directories they are in.

Format

SHOW LOG [filespec]

Parameter

filespec
The file specification of the transaction logs you want to display information about. This can include the percent (%) and asterisk (*) wildcard characters.

The SHOW LOG command uses the following defaults:

- If you omit the disk and directory, the SHOW LOG command looks for the transaction log in the directories pointed to by SYS$JOURNAL, which must be defined in executive mode in the system logical name table.
- If you omit the file type, the SHOW LOG command uses .LM$JOURNAL.

Qualifiers

/CURRENT
Displays information about the local node’s transaction log. This includes the number of checkpoints and stalls that have occurred since DECdtm services started on this node.

To use the /CURRENT qualifier:

- You must have the CMKRNL privilege.
- You must omit the parameter to the SHOW LOG command.

/FULL
Lists all attributes of the transaction logs. For each transaction log, both the full file specification of the transaction log and its size are displayed.

If you do not specify which transaction log you want to display, the SHOW LOG command lists all transaction logs of the form SYSTEM$*.LM$JOURNAL, in all directories pointed to by the logical SYS$JOURNAL, which must be defined in executive mode in the system logical name table.

/OUTPUT[=filespec]
Requires read and write access to the directory in which the output file is to be created.

Specifies where the output of the SHOW LOG command is sent. If you omit this qualifier, output is sent to the current SYS$OUTPUT device (usually your terminal). To send the output to a file, use the /OUTPUT qualifier. If you do not supply a file specification, the output is sent to the file LMCP_SHOW.LIS in your default directory.
Example

LMCP> SHOW LOG/FULL

This example displays full details about the transaction logs in all directories pointed to by the logical SYS$JOURNAL. This logical is defined in executive mode in the system logical name table.

Directory of DISK$JOURNALS:[LOGFILES]
DISK$JOURNALS:[LOGFILES]SYSTEM$BLUE.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 647327A0-2674-11C9-8001-AA00040069F8
Penultimate Checkpoint: 00000001A0 0039
Last Checkpoint: 00000001C8A 008A
Total of 1 file.

Directory of DISK$RED:[LOGFILES]
DISK$RED:[LOGFILES]SYSTEM$RED.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 17BB94140-2674-11C9-8001-AA0004006AF8
Penultimate Checkpoint: 0000000ECDE5 41E5
Last Checkpoint: 000000F105FC 41FC
Total of 1 file.

Directory of DISK$LOGFILES:[LOGS]
DISK$LOGFILES:[LOGS]SYSTEM$YELLOW.LM$JOURNAL;1
End of file block 1002 / Allocated 1002
Log Version 1.0
Transaction log UID: 590DAA40-2640-11C9-B77A-08002B14179F
Penultimate Checkpoint: 00000C8B4819 2019
Last Checkpoint: 00000C8BC15B 335B
Total of 1 file.
Total of 3 files in 3 directories.
ACL Editor Keypad Editing Commands

By default, the access control list editor (ACL editor) prompts you for each access control entry (ACE) and provides values for some of the fields within an ACE. You can navigate the ACE fields by using keypad commands, such as FIELD and ITEM.

This appendix describes all the keypad editing commands supplied by the ACL editor. You can supplement or change these key definitions by modifying and recompiling the ACL editor section file SYS$LIBRARY:ACLEDIT.TPU (see Appendix B for more information). To get help on the ACL editor keypad commands, press PF2.

A.1 ACL Editor Keypad Commands

Figure A–1 shows the default ACL editor keypad commands for LK201 keyboards. The numeric keypad on VT100-series terminals is identical to that of the LK201 keyboard shown in Figure A–1; VT100 terminals, however, do not have the supplemental editing keypad (keys E1 through E6).
Table A–1 describes each of the keypad commands you can use with the ACL editor. In this table, KP$_n$ refers to a keypad key labeled with the number $n$. For example, KP4 refers to the keypad key labeled with the number 4.

### Table A–1 ACL Editor Keypad Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Key or Key Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCE</td>
<td>KP4</td>
<td>Sets the current direction forward for the FIND, FNDNXT, MOVE SCREEN, OVER ACE, and WORD commands. Movement is toward the end of the ACL.</td>
</tr>
<tr>
<td>ADV FIELD</td>
<td>GOLD-KP7</td>
<td>Completes the current ACE field and moves the cursor to the next ACE field.</td>
</tr>
<tr>
<td>BACKUP</td>
<td>KP5</td>
<td>Reverses the current direction for the FIND, FNDNXT, MOVE SCREEN, OVER ACE, and WORD keys. Movement is toward the beginning of the ACL.</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>GOLD-KP4</td>
<td>Positions the cursor after the last line of the last ACE. Any entries you add are placed at the end of the ACL.</td>
</tr>
<tr>
<td>DEL ACE</td>
<td>PF4</td>
<td>Deletes the entire ACE in which the cursor is positioned and stores it in the delete-ACE buffer.</td>
</tr>
<tr>
<td>DEL C</td>
<td>Comma</td>
<td>Deletes the character on which the cursor is positioned and stores it in the delete-character buffer.</td>
</tr>
<tr>
<td>DEL EOL</td>
<td>GOLD-KP2</td>
<td>Deletes text from the current cursor position to the end of the line and stores it in the delete-line buffer.</td>
</tr>
</tbody>
</table>

(continued on next page)
## ACL Editor Keypad Commands

### Command Table

<table>
<thead>
<tr>
<th>Command</th>
<th>Key or Key Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEL W</td>
<td>Minus</td>
<td>Deletes the text from the current cursor position to the beginning of the next word and stores it in the delete-word buffer.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Enter</td>
<td>Indicates that the current ACE is complete. The ACL editor terminates the insertion and verifies that the syntax of the ACE is complete. You can press the Enter key while the cursor is located at any position within the ACE. (Pressing the Return key produces the same results.)</td>
</tr>
<tr>
<td>EOL</td>
<td>KP2</td>
<td>Moves the cursor to the end of the current line.</td>
</tr>
<tr>
<td>FIELD</td>
<td>KP7</td>
<td>Completes the current ACE field and moves the cursor to the next ACE field or subfield, inserting text as needed. If the ACL editor is not in prompt mode, the ACL editor advances to the next field in the current ACE.</td>
</tr>
<tr>
<td>FIND</td>
<td>GOLD-PF3</td>
<td>Searches for an occurrence of a string. Press the FIND key and then enter the string from the main keyboard. Press the ENTER key to search for the string in the current direction, or the ADVANCE or BACKUP key to change the search direction.</td>
</tr>
<tr>
<td>FNDNXT</td>
<td>PF3</td>
<td>Searches in the current direction for the next occurrence of the string previously entered with the FIND key.</td>
</tr>
<tr>
<td>GOLD</td>
<td>PF1</td>
<td>When pressed before another keypad key, specifies the second key's alternate function (the bottom function on the keypad diagram).</td>
</tr>
<tr>
<td>HELP</td>
<td>PF2</td>
<td>Displays information about using the editing keypad.</td>
</tr>
<tr>
<td>HELP FMT</td>
<td>GOLD-PF2</td>
<td>Displays information about ACE formats.</td>
</tr>
<tr>
<td>INSERT</td>
<td>GOLD-KP0</td>
<td>Moves all text from the current line down one line, leaving a blank line where an ACE is to be inserted.</td>
</tr>
<tr>
<td>ITEM</td>
<td>Period</td>
<td>Selects the next item for the current ACE field. If the ACL editor is not in prompt mode, this key is ignored.</td>
</tr>
<tr>
<td>MOVE SCREEN</td>
<td>KP8</td>
<td>Moves the cursor one screen in the current direction (see ADVANCE or BACKUP). A screen is defined as two-thirds the number of lines in the display.</td>
</tr>
<tr>
<td>OVER ACE</td>
<td>KP0</td>
<td>Moves the cursor to the beginning of the next ACE (if the direction is set to ADVANCE) or to the beginning of the previous ACE (if the direction is set to BACKUP).</td>
</tr>
<tr>
<td>TOP</td>
<td>GOLD-KP5</td>
<td>Moves the cursor position to the first character of the first ACE in the access control list.</td>
</tr>
<tr>
<td>UND ACE</td>
<td>GOLD-PF4</td>
<td>Inserts the contents of the delete-ACE buffer in front of the ACE in which the cursor is currently positioned.</td>
</tr>
<tr>
<td>UND C</td>
<td>GOLD-Comma</td>
<td>Inserts the contents of the delete-character buffer directly in front of the cursor.</td>
</tr>
<tr>
<td>UND W</td>
<td>GOLD-Hyphen</td>
<td>Inserts the contents of the delete-word buffer directly in front of the cursor.</td>
</tr>
<tr>
<td>WORD</td>
<td>KP1</td>
<td>Moves the cursor one word forward (if the direction is set to ADVANCE) or backward (if the direction is set to BACKUP).</td>
</tr>
</tbody>
</table>
### A.2 Additional ACL Editing Keys and Key Sequences

In addition to keypad editing, the ACL editor lets you use other keyboard keys and key sequences to perform editing functions. Table A–2 describes these additional ACL editing keys and key sequences. Keys in parentheses indicate the equivalent key for an LK201-series keyboard.

**Table A–2 Additional ACL Editing Keys and Key Sequences**

<table>
<thead>
<tr>
<th>Key or Sequence</th>
<th>Action Taken When Key or Sequence Is Pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWN ARROW KEY</td>
<td>Moves the cursor to the character directly in line below it. If the ACE in which the cursor is positioned is new, the ACL editor processes the ACE before moving the cursor. If the entry is incomplete or formatted incorrectly, an error occurs and the cursor does not move.</td>
</tr>
<tr>
<td>LEFT ARROW KEY</td>
<td>Moves the cursor one character to the left. If the cursor is at the left margin, moves it to the rightmost character in the line above.</td>
</tr>
<tr>
<td>RIGHT ARROW KEY</td>
<td>Moves the cursor one character to the right. If the cursor is at the right margin, moves it to the leftmost character in the line below.</td>
</tr>
<tr>
<td>UP ARROW KEY</td>
<td>Moves the cursor to the character directly in line above it. If the ACE in which the cursor is positioned is new, the ACL editor processes the ACE before moving the cursor. If the entry is incomplete or formatted incorrectly, an error occurs and the cursor does not move.</td>
</tr>
<tr>
<td>GOLD-/&lt;</td>
<td>Shifts the text in the display window 8 characters to the left.</td>
</tr>
<tr>
<td>GOLD-&gt;</td>
<td>Shifts the text in the display window 8 characters to the right.</td>
</tr>
<tr>
<td>Backspace (F12)</td>
<td>Moves the cursor to the beginning of the current line. (Performs the same function as the backspace key.)</td>
</tr>
<tr>
<td>Ctrl/A</td>
<td>Changes the current mode from insert mode to overstrike mode or from overstrike mode to insert mode. Insert mode (the default) inserts a character to the left of the current character. Overstrike mode replaces the current character.</td>
</tr>
<tr>
<td>Ctrl/D</td>
<td>Allows you to execute one TPU command.</td>
</tr>
<tr>
<td>Ctrl/H</td>
<td>Moves the cursor to the beginning of the line. (Performs the same function as the backspace key.)</td>
</tr>
<tr>
<td>Ctrl/J</td>
<td>Deletes the text from the cursor back to the beginning of the word. (Performs the same function as the linefeed key.)</td>
</tr>
<tr>
<td>Ctrl/R</td>
<td>Refreshes the screen display. Clears and redraws the screen, deleting any extraneous characters or messages that might have appeared on the screen but are not part of the ACL you are editing. (Performs the same function as Ctrl/W.)</td>
</tr>
<tr>
<td>GOLD-Ctrl/R</td>
<td>Returns the ACL to its original state before the ACL editor was invoked. (Performs the same function as GOLD-Ctrl/W.)</td>
</tr>
<tr>
<td>Ctrl/U</td>
<td>Deletes the text from the cursor to the beginning of the line.</td>
</tr>
<tr>
<td>GOLD-Ctrl/U</td>
<td>Inserts the contents of the deleted-line buffer into the line at the current position. The line might wrap automatically.</td>
</tr>
<tr>
<td>Ctrl/W</td>
<td>See Ctrl/R.</td>
</tr>
<tr>
<td>GOLD-Ctrl/W</td>
<td>See GOLD Ctrl/R.</td>
</tr>
<tr>
<td>Ctrl/Z</td>
<td>Ends the editing session and updates the ACL. (Unless otherwise specified, any recovery and journal files are deleted.)</td>
</tr>
<tr>
<td>GOLD-Ctrl/Z</td>
<td>Ends (quits) the editing session without saving any of the changes made to the ACL. (Unless otherwise specified, any recovery and journal files are deleted.)</td>
</tr>
<tr>
<td>DELETE KEY</td>
<td>Deletes the character to the left of the cursor.</td>
</tr>
</tbody>
</table>

(continued on next page)
A.2 Additional ACL Editing Keys and Key Sequences

Table A–2 (Cont.) Additional ACL Editing Keys and Key Sequences

<table>
<thead>
<tr>
<th>Key or Sequence</th>
<th>Action Taken When Key or Sequence Is Pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linefeed (F13)</td>
<td>Deletes the text from the cursor back to the beginning of the word. If the cursor is positioned at the first character of the word, deletes to the beginning of the previous word.</td>
</tr>
<tr>
<td>Tab</td>
<td>Moves the text located to the right of the cursor to the next tab stop.</td>
</tr>
</tbody>
</table>

A.3 ACL Editing Keys on the Supplemental Keypad (LK201-Series Keyboards)

You can use the supplemental keypad on an LK201-series keyboard to move sections of text from one part of an ACL to another. However, note that certain supplemental editing keys (Insert Here, Remove, and Select) require a PASTE buffer, which is not enabled by default. To enable the PASTE buffer for the current editing session, perform the following actions:

1. Press Ctrl/D.
2. At the TPU command: prompt, enter the following statement:
   
   ```plaintext
 TPU command: ACLEDIT$X_PASTE_BUFFER:=1
   ```
3. Press Ctrl/D again, and enter the following statement:
   
   ```plaintext
 TPU command: ACLEDIT$X_CHECK_MODIFY:=0
   ```

Setting the value of the ACLEDIT$X_CHECK_MODIFY variable to 0 prevents the ACL editor from checking for a modifiable ACE. The two features (support for the PASTE buffer and the check for a modifiable ACE) are not compatible.

To enable the PASTE buffer for all ACL editing sessions, change the values of the variables ACLEDIT$X_PASTE_BUFFER and ACLEDIT$X_CHECK_MODIFY in the ACL editor section file and recompile the file (see Appendix B).

Table A–3 describes the supplemental keypad keys you can use with the ACL editor.

Table A–3 ACL Editing Keys on the Supplemental Keypad

<table>
<thead>
<tr>
<th>Key or Key Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>Elicits the Search for: prompt as the first step in the FIND operation. Type the search string after the prompt; then, press either the Do key or the Enter key to process the search. Performs the same function as the FIND keypad command.</td>
</tr>
<tr>
<td>Insert Here</td>
<td>Indicates where an ACE is to be inserted or, if support for the PASTE buffer is enabled, indicates the line where the selected text in the PASTE buffer is to be inserted.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes the selected text to the PASTE buffer. Each time you press the Remove key, the ACL editor deletes the previous contents of the PASTE buffer.</td>
</tr>
</tbody>
</table>

(continued on next page)
### ACL Editing Keys on the Supplemental Keypad

<table>
<thead>
<tr>
<th>Key or Key Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD-Remove (COPY)</td>
<td>Copies the selected text to the PASTE buffer. Each time you use the COPY command, the ACL editor deletes the previous contents of the PASTE buffer.</td>
</tr>
<tr>
<td>Select</td>
<td>Marks the beginning of a range of text to be removed or copied to the PASTE buffer. Press the Select key. Then, move the cursor to include the desired amount of text to be removed or copied. Press either Remove or GOLD-Remove (COPY) to complete the operation.</td>
</tr>
<tr>
<td>Prev Screen</td>
<td>Moves the cursor to the previous screen. By default, a screen is defined as two-thirds the number of lines in the display.</td>
</tr>
<tr>
<td>Next Screen</td>
<td>Moves the cursor one screen forward. By default, a screen is defined as two-thirds the number of lines in the display.</td>
</tr>
</tbody>
</table>
Customizing the ACL Editor

You can modify the access control list editor (ACL editor) by modifying and recompiling the ACL section file SYS$LIBRARY:ACLEDIT.TPU (the source file used to create the compiled ACL section file SYS$LIBRARY:ACLEDT$SECTION.TPU$SECTION). You can also create your own ACL section file.

Refer to the DEC Text Processing Utility Reference Manual for more information about writing and processing section files.

B.1 Modifying Variables in the ACL Section File

Table B–1 lists the ACL section file variables and their defaults.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ACLEDIT$X_CHECK_DUPLICATES | Controls whether a check for duplicate ACEs is made. This variable can take the following values:
0  No duplicate ACE check is made.
1  A duplicate ACE check is made. If the ACE to be entered matches an existing ACE, an error message is returned. This is the default. |
| ACLEDIT$X_CHECK_MODIFY | Allows or disallows modification of ACEs. This variable can take the following values:
0  The ACE can be modified.
1  The ACE cannot be modified. If an attempt is made to modify the ACE, it is replaced with the original ACE. This is the default. |
| ACLEDIT$X_DIRECTORY_FILE | Indicates whether the object is a directory file. This variable can take the following values:
0  The object is not a directory file.
1  The object is a directory file. |

(continued on next page)
Customizing the ACL Editor
B.1 Modifying Variables in the ACL Section File

Table B–1 (Cont.) ACL Section File Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLEDIT$X_PASTE_BUFFER</td>
<td>Controls whether PASTE buffer support is enabled for VT200 series terminals. This variable can take the following values:</td>
</tr>
<tr>
<td></td>
<td>0 PASTE buffer support is disabled. This is the default.</td>
</tr>
<tr>
<td></td>
<td>1 PASTE buffer support is enabled.</td>
</tr>
<tr>
<td>ACLEDIT$X_PROMPT</td>
<td>Controls whether automatic text insertion (prompt mode) is enabled. This variable can take the following values:</td>
</tr>
<tr>
<td></td>
<td>0 Prompt mode is disabled.</td>
</tr>
<tr>
<td></td>
<td>1 Prompt mode is enabled. This is the default.</td>
</tr>
<tr>
<td>ACLEDIT$X_USE_DEFAULT_OPT</td>
<td>Controls whether the DEFAULT option can be used with nondirectory ACEs. This variable can take the following values:</td>
</tr>
<tr>
<td></td>
<td>0 The DEFAULT option can only be used with ACEs of directory (.DIR) files. This is the default.</td>
</tr>
<tr>
<td></td>
<td>1 The DEFAULT option is available for use with ACEs of all object types.</td>
</tr>
<tr>
<td>ACLEDIT$C_WINDOW_SHIFT</td>
<td>Specifies the number of columns to shift the edit window in the direction wanted, GOLD key and left arrow for a left shift and GOLD key and right arrow for a right shift. The default is 8 columns.</td>
</tr>
</tbody>
</table>

If you modify any of the variables in Table B–1 or change any other part of the ACL section file, recompile the section file with the following command:

```
$ EDIT/TPU/NOSECTION/COMMAND=SYS$LIBRARY:ACLEDIT
```

Use the preceding command if you make changes directly to the source code file (SYS$LIBRARY:ACLEDIT) that creates the compiled ACL section file SYS$LIBRARY:ACLEDIT$SECTION. If you add a private command file to the existing ACL section file, recompile the section file using the following command:

```
$ EDIT/TPU/SECTION=SYS$LIBRARY:ACLEDT$SECTION/COMMAND=CUSTOM_ACL.TPU
```

The compiled DECtpu ACL section file is placed in your current directory. To use the new section file, perform one of the following actions:

- Move the compiled section file, ACLEDT$SECTION.TPU$SECTION, to the SYSSLIBRARY directory. This changes the default ACL editor section file for all users.
- Keep the compiled section file in your directory and define the logical name ACLEDT$SECTION in your LOGIN.COM file to point to the file, as follows:

```
$ DEFINE ACLEDT$SECTION yourdisk:[yourdir]ACLEDT$SECTION
```

Note that the default file type for the section file before compiling (the source file) is TPU, and the default file type for the compiled section file is TPU$SECTION.

For more information about writing and processing a DECtpu section file, refer to the DEC Text Processing Utility Reference Manual.
B.2 Using the ACL Editor CALL_USER Routine

The ACL editor CALL_USER routine is part of the shareable image SYS$LIBRARY:ACLEDTSHR.EXE. You can incorporate the ACL editor CALL_USER routine with its existing function codes into your own ACL section file, or you can write your own CALL_USER routine that recognizes a different set of function codes.

The ACL editor CALL_USER routine recognizes only those functions used by the ACL editor DECtpu section file. All other function codes are passed to a user-supplied CALL_USER routine; if the high-order word of the CALL_USER function code contains the ACL editor facility code (277 in decimal or 115 in hexadecimal), it is handled by the ACL editor CALL_USER routine. Otherwise, an attempt is made to locate a user-supplied CALL_USER routine. Refer to the description of the CALL_USER routine in the DEC Text Processing Utility Reference Manual for more information about creating your own CALL_USER routine.

Table B–2 describes the CALL_USER routine function codes supported by the ACL editor.

<table>
<thead>
<tr>
<th>Function Code</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18153473</td>
<td>ACLEDIT$C_PARSE_ACE</td>
<td>Parses the input string (ACE) and returns the parsed (binary) ACE if no errors are found. Otherwise, the returned string contains a zero as the first two characters, and the unparsed portion of the input ACE as the remainder of the string.</td>
</tr>
<tr>
<td>18153474</td>
<td>ACLEDIT$C_CHECK_MODIFY</td>
<td>Returns the string “READ_WRITE” if the ACE can be modified by the user. Otherwise, returns the string “READ_ONLY.”</td>
</tr>
<tr>
<td>18153475</td>
<td>ACLEDIT$C_PROMPT_MODE</td>
<td>Returns the string “PROMPT_MODE” if the prompt mode option was specified. Otherwise, returns the string “NOPROMPT_MODE.”</td>
</tr>
<tr>
<td>18153476</td>
<td>ACLEDIT$C_CHECK_ACE</td>
<td>Parses the input string (ACE) and returns the parsed (binary) ACE if no errors are found. Otherwise, the ACE text is highlighted in reverse video and a DECtpu variable of the form ACLEDITS$X_RANGE_x is created to identify the ACE in error. (The “x” is a sequential number starting with 1.)</td>
</tr>
<tr>
<td>18153477</td>
<td>ACLEDIT$C_CHECK_DIR</td>
<td>Returns the string “DIRECTORY_FILE” if the object being edited is a directory file. Otherwise, returns the string “NODIRECTORY_FILE.”</td>
</tr>
</tbody>
</table>

(continued on next page)
## Customizing the ACL Editor

### B.2 Using the ACL Editor CALL_USER Routine

Table B–2 (Cont.)  CALL_USER Function Codes

<table>
<thead>
<tr>
<th>Function Code</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18153478</td>
<td>ACLEDIT$C_SET_CANDIDATE</td>
<td>Parses the input string (ACE) and returns the string “PARSE_OK” if no error was encountered. Otherwise, returns the string “PARSE_ERROR.” If the parse was successful, a check is made for duplicate ACEs using the CALL_USER function ACLEDIT$C_CHECK_DUP.</td>
</tr>
<tr>
<td>18153479</td>
<td>ACLEDIT$C_CHECK_DUP</td>
<td>Parses the input string (ACE) and returns the string “PARSE_ERROR” if an error was encountered. Otherwise, the parsed (binary) ACE is compared with the candidate ACE set by the CALL_USER function ACLEDIT$C_SET_CANDIDATE. Returns the string “DUPLICATE ACE” if the ACE is a duplicate, or “UNIQUE ACE” if it is not a duplicate.</td>
</tr>
<tr>
<td>18153482</td>
<td>ACLEDIT$C_MESSAGE</td>
<td>Assumes the input string is a system error code and returns in the ACL editor message window the message text associated with the error code.</td>
</tr>
</tbody>
</table>
Table C–1 gives a summary of the system services that relate to accounting. No system service reads accounting files; to do this you must use knowledge of the structure of accounting files.

**Table C–1 Summary of Accounting System Services**

<table>
<thead>
<tr>
<th>System Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CREPRC</td>
<td>Creates a process in which accounting can be disabled.</td>
</tr>
<tr>
<td>$SNDJBC</td>
<td>Controls what resources are logged in the current accounting file, or logs a user-defined record in the current accounting file.</td>
</tr>
</tbody>
</table>

This appendix describes the structure of an accounting file. It is for programmers who want to access accounting data directly.

**Note**

The formats described here are subject to change without notice in a future release.

The symbols and offsets described in this appendix are defined by the $ACRDEF macro in the STARLET library.

**C.1 Format of an Accounting File Record**

An accounting record consists of an accounting record header and a number of information packets. The number and type of information packets depend on the type of the record.

Figure C–1 illustrates the general format of an accounting record. Table C–2 describes the fields in the record header. The type field in the record header is subdivided into five fields, described in Table C–3.
C.1 Format of an Accounting File Record

Figure C–1  Format of an Accounting Record

```
<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$W_TYPE</td>
<td>Identifies the type of the record. This field is subdivided into</td>
</tr>
<tr>
<td></td>
<td>five fields, described in Table C–3. (word)</td>
</tr>
<tr>
<td>ACR$W_LENGTH</td>
<td>Total length of the record, in bytes. (word)</td>
</tr>
<tr>
<td>ACR$Q_SYSTIME</td>
<td>System time (64-bit absolute time). (quadword)</td>
</tr>
</tbody>
</table>
```

Table C–2  Fields in an Accounting Record Header

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$W_TYPE</td>
<td>Identifies the type of the record. This field is subdivided into</td>
</tr>
<tr>
<td></td>
<td>five fields, described in Table C–3. (word)</td>
</tr>
<tr>
<td>ACR$W_LENGTH</td>
<td>Total length of the record, in bytes. (word)</td>
</tr>
<tr>
<td>ACR$Q_SYSTIME</td>
<td>System time (64-bit absolute time). (quadword)</td>
</tr>
</tbody>
</table>

Table C–3  ACR$W_TYPE Fields in an Accounting Record Header

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$V_PACKET</td>
<td>Identifies this header as a record header. This bit must be 0.</td>
</tr>
<tr>
<td></td>
<td>(1 bit)</td>
</tr>
<tr>
<td>ACR$V_TYPE</td>
<td>Identifies the type of the record. The eight record types are</td>
</tr>
<tr>
<td></td>
<td>described in Table C–4. (7 bits)</td>
</tr>
</tbody>
</table>

(continued on next page)
Table C–3 (Cont.) ACR$W_TYPE Fields in an Accounting Record Header

<table>
<thead>
<tr>
<th>Symbol Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$V_SUBTYPE</td>
<td>Identifies the type of process with which the record is associated. The subtypes (4 bits) are:</td>
</tr>
<tr>
<td></td>
<td><strong>Symbol</strong></td>
</tr>
<tr>
<td>ACR$K_BATCH</td>
<td>Batch process</td>
</tr>
<tr>
<td>ACR$K_DETACHED</td>
<td>Detached process</td>
</tr>
<tr>
<td>ACR$K_INTERACTIVE</td>
<td>Interactive process</td>
</tr>
<tr>
<td>ACR$K_NETWORK</td>
<td>Network process</td>
</tr>
<tr>
<td>ACR$K_SUBPROCESS</td>
<td>Subprocess</td>
</tr>
</tbody>
</table>

Note that this field is only meaningful for records of type ACR$K_IMGDEL and ACR$K_PRCDEL.

<table>
<thead>
<tr>
<th>Symbol Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$V_VERSION</td>
<td>Identifies the version of the accounting file record structure. The versions (3 bits) are:</td>
</tr>
<tr>
<td></td>
<td><strong>Symbol</strong></td>
</tr>
<tr>
<td>ACR$K_VERSION2</td>
<td>VAX/VMS Version 2.0</td>
</tr>
<tr>
<td>ACR$K_VERSION3T</td>
<td>VAX/VMS Version 3.0 field test</td>
</tr>
<tr>
<td>ACR$K_VERSION3</td>
<td>OpenVMS Alpha Version 1.0 and VAX/VMS Version 3.0 and later versions of Alpha and VAX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$V_CUSTOMER</td>
<td>Identifies whether the record was written by HP software or by customer software. If this bit is 0, the record was written by HP software. If this bit is 1, the record was written by customer software. (1 bit)</td>
</tr>
</tbody>
</table>

---

**Note**

ACR$K_CURVER = Current version. Set equal to ACR$K_VERSION3 in this release.

---

C.1.1 Types of Accounting Record

The type of an accounting record identifies the type of event that caused the record to be logged. The eight types of accounting records are shown in Table C–4. This table shows the information packets contained in each type of record.

Table C–4 Types of Accounting Record

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Event</th>
<th>Information Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$K_FILE_BL</td>
<td>The accounting file was opened</td>
<td>ACR$K_FILENAME</td>
</tr>
<tr>
<td>ACR$K_FILE_FL</td>
<td>The accounting file was closed</td>
<td>ACR$K_FILENAME</td>
</tr>
</tbody>
</table>

(continued on next page)
Table C–4 (Cont.) Types of Accounting Record

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Event</th>
<th>Information Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$K_IMGDEL</td>
<td>An image terminated</td>
<td>ACR$K_ID, ACR$K_Resource, ACR$K_IMAGENAME</td>
</tr>
<tr>
<td>ACR$K_LOGFAIL</td>
<td>A login attempt failed</td>
<td>ACR$K_ID, ACR$K_Resource</td>
</tr>
<tr>
<td>ACR$K_PRCDEL</td>
<td>A process terminated</td>
<td>ACR$K_ID, ACR$K_Resource</td>
</tr>
<tr>
<td>ACR$K_PRINT</td>
<td>A print job finished</td>
<td>ACR$K_ID, ACR$K_PRINT</td>
</tr>
<tr>
<td>ACR$K_SYSINIT</td>
<td>The system was initialized</td>
<td>ACR$K_ID, ACR$K_Resource</td>
</tr>
<tr>
<td>ACR$K_USER</td>
<td>An accounting message was sent by the $SNDJBC system service</td>
<td>ACR$K_ID, ACR$K_USER_DATA</td>
</tr>
</tbody>
</table>

C.1.2 Format of an Information Packet

The header, in each of the six types of information packets, defines the type of packet as follows:

- File name packet (ACR$K_FILENAME)
- Identification packet (ACR$K_ID)
- Image name packet (ACR$K_IMAGENAME)
- Print resource packet (ACR$K_PRINT)
- Resource packet (ACR$K_RESOURCE)
- User data packet (ACR$K_USER_DATA)

Section C.1.2.1 describes the general format of an information packet. Section C.1.2.2 to Section C.1.2.7 describe the format of each type of information packet.

C.1.2.1 General Format

Each information packet contains a packet header, followed by data fields. The data fields can contain fixed-length data, variable-length data, or offsets to variable-length data. Offsets contain the distance in bytes from the beginning of the packet to the variable-length data.

All variable-length data are represented as counted strings. Variable-length data follow the last fixed-length data field in the packet. Figure C–2 shows the general format of an information packet. An information packet may not have values in all of its data fields.

See Section C.1.2.2 to Section C.1.2.7 for complete descriptions of the data fields contained in each information packet.

All information packets start with a packet header that has ACR$W_LENGTH and ACR$W_TYPE fields (see Table C–5 and Table C–6).
### Figure C–2 Format of an Information Packet

![Format of an Information Packet Diagram]

#### Table C–5 Fields in an Information Packet Header

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$W_TYPE</td>
<td>Identifies the type of the packet. This field is subdivided into five fields, described in Table C–6. (word)</td>
</tr>
<tr>
<td>ACR$W_LENGTH</td>
<td>Total length of the packet, in bytes. (word)</td>
</tr>
</tbody>
</table>

#### Table C–6 ACR$W_TYPE Fields in an Information Packet Header

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$V_PACKET</td>
<td>Identifies this header as a packet header. This bit must be 1. (1 bit)</td>
</tr>
<tr>
<td>ACR$V_TYPE</td>
<td>Identifies the type of the packet. The six packet types (7 bits) are:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$K_FILENAME</td>
<td>File name packet</td>
</tr>
<tr>
<td>ACR$K_ID</td>
<td>Identification packet</td>
</tr>
<tr>
<td>ACR$K_IMAGENAME</td>
<td>Image name packet</td>
</tr>
<tr>
<td>ACR$K_PRINT</td>
<td>Print resource packet</td>
</tr>
<tr>
<td>ACR$KRESOURCE</td>
<td>Resource packet</td>
</tr>
<tr>
<td>ACR$K_USER_DATA</td>
<td>User data packet</td>
</tr>
</tbody>
</table>

(continued on next page)
Table C–6 (Cont.)  ACR$W_TYPE Fields in an Information Packet Header

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$V_SUBTYPE</td>
<td>Identifies the packet subtype; reserved for future use. (4 bits)</td>
</tr>
<tr>
<td>ACR$V_VERSION</td>
<td>See Table C–3.</td>
</tr>
<tr>
<td>ACR$V_CUSTOMER</td>
<td>See Table C–3.</td>
</tr>
</tbody>
</table>

C.1.2.2  File Name Packet (ACR$K_FILENAME)

The file name packet contains the name of the accounting file. Figure C–3 shows the format of the file name packet. Table C–7 describes the field contained in the packet. See Section C.1.2.1 for information on the packet header.

Figure C–3  Format of a File Name Packet

![Diagram of File Name Packet]

Table C–7  Data Fields in a File Name Packet

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$T_FILENAME</td>
<td>Name of the file (counted ASCII string that gives full file specification).</td>
</tr>
</tbody>
</table>

C.1.2.3 Identification Packet (ACR$K_ID)

The identification packet identifies the process that caused the record to be logged.

Figure C–4 shows the format of the identification packet. Table C–8 describes the fields contained in the packet. See Section C.1.2.1 for information on the packet header.
Figure C–4  Format of an Identification Packet

Table C–8  Data Fields in an Identification Packet

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$L_PID</td>
<td>Process identifier (PID) of the process. (longword)</td>
</tr>
<tr>
<td>ACR$L_OWNER</td>
<td>PID of the parent process. (longword)</td>
</tr>
<tr>
<td>ACR$L_UIC</td>
<td>UIC of the process. The UIC can be addressed as two separate words: ACR$W_MEM for the member number, and ACR$W_GRP for the group number. (longword)</td>
</tr>
<tr>
<td>ACR$Q_PRIV</td>
<td>Privileges held by the process. (quadword)</td>
</tr>
<tr>
<td>ACR$B_PRI</td>
<td>Base priority of the process. (byte)</td>
</tr>
<tr>
<td>ACR$B_IDFLGS</td>
<td>Flags byte; full address and full name present if low bit is set.</td>
</tr>
<tr>
<td>ACR$W_USERNAME</td>
<td>Offset to counted ASCII string containing the user name of the process. (word)</td>
</tr>
<tr>
<td>ACR$W_ACCOUNT</td>
<td>Offset to counted ASCII string containing the account name of the process. (word)</td>
</tr>
</tbody>
</table>

(continued on next page)
### Table C–8 (Cont.)  Data Fields in an Identification Packet

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$W_NODENAME</td>
<td>Offset to counted ASCII string containing the Phase W node name of the remote process. (word)</td>
</tr>
<tr>
<td>ACR$W_TERMINAL</td>
<td>Offset to counted ASCII string containing the terminal name. (word)</td>
</tr>
<tr>
<td>ACR$W_JOBNAME</td>
<td>Offset to counted ASCII string containing the job name. (word)</td>
</tr>
<tr>
<td>ACR$L_JOBID</td>
<td>Identification of the print or batch job (queue entry number). (longword)</td>
</tr>
<tr>
<td>ACR$W_QUEUE</td>
<td>Offset to counted ASCII string containing the name of the queue with which a batch or print job is associated. (word)</td>
</tr>
<tr>
<td>ACR$W_NODEADDR</td>
<td>Offset to a counted binary string containing the Phase W remote node address. (word)</td>
</tr>
<tr>
<td>ACR$W_REMOTEID</td>
<td>Offset to counted ASCII string containing the remote ID of the remote process (varies with network implementation and use). (word)</td>
</tr>
<tr>
<td>ACR$W_FULLADDR</td>
<td>Offset to a counted binary string containing the complete remote node network address. On a DECnet-Plus system, this is the remote node's NSAP address.</td>
</tr>
<tr>
<td>ACR$W_FULLNAME</td>
<td>Offset to a counted ASCII string containing the complete remote node name. On a DECnet-Plus system, this is the remote node's full name.</td>
</tr>
</tbody>
</table>

### C.1.2.4 Image Name Packet (ACR$K_IMAGENAME)

The image name packet contains the name of the image executed by the identified process.

Figure C–5 shows the format of the image name packet. Table C–9 describes the field contained in the packet. See Section C.1.2.1 for information on the packet header.

#### Figure C–5  Format of an Image Name Packet

![Image Name Packet Diagram]

ZK−0962−GE
Table C–9  Data Field in an Image Name Packet

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$T_IMAGENAME</td>
<td>Name of the image (counted ASCII string that gives full file specification).</td>
</tr>
</tbody>
</table>

C.1.2.5 Print Resource Packet (ACRSK_PRINT)

The print resource packet contains information about print jobs.

Figure C–6 shows the format of the print resource packet. Table C–10 describes the fields contained in the packet. See Section C.1.2.1 for information on the packet header.

Figure C–6  Format of a Print Resource Packet

<table>
<thead>
<tr>
<th>ACR$W_LENGTH</th>
<th>ACR$W_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Status</td>
<td>ACR$L_PRINTSTS</td>
</tr>
<tr>
<td>Queue Time</td>
<td>ACR$Q_QUETIME</td>
</tr>
<tr>
<td>(8 Bytes)</td>
<td></td>
</tr>
<tr>
<td>Begin Time</td>
<td>ACR$Q_BEGTIME</td>
</tr>
<tr>
<td>(8 Bytes)</td>
<td></td>
</tr>
<tr>
<td>Symbiont Time</td>
<td>ACR$L_SYMCPUTIM</td>
</tr>
<tr>
<td>Pages</td>
<td>ACR$L_PAGECNT</td>
</tr>
<tr>
<td>QIO Count</td>
<td>ACR$L_QIOCNT</td>
</tr>
<tr>
<td>GET Count</td>
<td>ACR$L_GETCNT</td>
</tr>
</tbody>
</table>
C.1 Format of an Accounting File Record

Table C–10 Data Fields in a Print Resource Packet

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$L_PRINTSTS</td>
<td>Status of the print job. (longword)</td>
</tr>
<tr>
<td>ACR$Q_QUETIME</td>
<td>Time the job was queued. (64-bit absolute time)</td>
</tr>
<tr>
<td>ACR$Q_BEGTIME</td>
<td>Time the job was started. (64-bit absolute time)</td>
</tr>
<tr>
<td>ACR$L_SYMCPUTIM</td>
<td>Symbiont CPU time (always zero). (longword)</td>
</tr>
<tr>
<td>ACR$L_PAGECNT</td>
<td>Number of pages printed. (longword)</td>
</tr>
<tr>
<td>ACR$L_QIOCNT</td>
<td>Number of QIOs issued to the printer. (longword)</td>
</tr>
<tr>
<td>ACR$L_GETCNT</td>
<td>Number of GETs from the file that was printed.</td>
</tr>
</tbody>
</table>

C.1.2.6 Resource Packet (ACR$K_RESOURCE)

The resource packet contains information about the identified process.

Figure C–7 shows the format of a resource packet. Table C–11 describes the fields contained in the packet. See Section C.1.2.1 for information on the packet header.

Figure C–7 Format of a Resource Packet

```
<table>
<thead>
<tr>
<th>ACR$W_LENGTH</th>
<th>ACR$W_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Type</td>
</tr>
<tr>
<td>Start Time</td>
<td>ACR$Q_LOGIN</td>
</tr>
<tr>
<td>(8 Bytes)</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>ACR$L_STATUS</td>
</tr>
<tr>
<td>Image Count</td>
<td>ACR$L_IMGCNT</td>
</tr>
<tr>
<td>CPU Time</td>
<td>ACR$L_CPUTIME</td>
</tr>
<tr>
<td>Page Faults</td>
<td>ACR$L_FAULTS</td>
</tr>
<tr>
<td>Fault I/O</td>
<td>ACR$L_FAULTIO</td>
</tr>
<tr>
<td>Working Set Peak</td>
<td>ACR$L_WSPEAK</td>
</tr>
<tr>
<td>Page File</td>
<td>ACR$L_PAGEFL</td>
</tr>
<tr>
<td>Direct I/O</td>
<td>ACR$L_DIOCNT</td>
</tr>
<tr>
<td>Buffered I/O</td>
<td>ACR$L_BIOCNT</td>
</tr>
<tr>
<td>Volumes Mounted</td>
<td>ACR$L_VOLUMES</td>
</tr>
<tr>
<td>Vector CPU Time</td>
<td>ACR$L_VP_CPUTIME</td>
</tr>
</tbody>
</table>
```
Table C–11  Data Fields in a Resource Packet

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$Q_LOGIN</td>
<td>64-bit absolute time at which the image was run or the process was created. (quadword)</td>
</tr>
<tr>
<td>ACR$L_STATUS</td>
<td>Final exit status of the image, or for a process, the final status of the last image executed in the process. (longword)</td>
</tr>
<tr>
<td>ACR$L_IMGCNT</td>
<td>Number of images run by the process. (longword)</td>
</tr>
<tr>
<td>ACR$L_CPUTDOWN</td>
<td>Total CPU time used by the image or process, measured in units of 10 milliseconds. This includes any vector CPU time. (longword)</td>
</tr>
<tr>
<td>ACR$L_FAULTS</td>
<td>Number of hard and soft page faults incurred by the image or process. (longword)</td>
</tr>
<tr>
<td>ACR$L_FAULTIO</td>
<td>Number of hard page faults incurred by the image or process. (longword)</td>
</tr>
<tr>
<td>ACR$L_WSPEAK</td>
<td>Maximum working set size used by the image or process. (longword)</td>
</tr>
<tr>
<td>ACR$L_PAGEFL</td>
<td>Maximum page file usage. (longword)</td>
</tr>
<tr>
<td>ACR$L_DIOCNT</td>
<td>Number of direct I/Os made by the image or process. (longword)</td>
</tr>
<tr>
<td>ACR$L_BIOCNT</td>
<td>Number of buffered I/Os made by the image or process. (longword)</td>
</tr>
<tr>
<td>ACR$L_VOLUMES</td>
<td>Number of volumes mounted by the image or process. (longword)</td>
</tr>
<tr>
<td>ACR$L_VP_CPUTDOWN</td>
<td>Vector CPU time used by the image or process, measured in units of 10 milliseconds. (longword)</td>
</tr>
</tbody>
</table>

C.1.2.7 User Data Packet (ACR$K_USER_DATA)

The user data packet contains an accounting message sent by the $SNDJBC system service.

Figure C–8 shows the format of the user data packet. Table C–12 describes the fields contained in the packet. See Section C.1.2.1 for information on the packet header.
C.1 Format of an Accounting File Record

Figure C–8 Format of a User Data Packet

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$W_LENGTH</td>
<td>Length</td>
</tr>
<tr>
<td>ACR$W_TYPE</td>
<td>Type</td>
</tr>
<tr>
<td>User Data</td>
<td>Count</td>
</tr>
</tbody>
</table>

(Maximum Length = 255 Bytes)

Table C–12 Data Field in a User Data Packet

<table>
<thead>
<tr>
<th>Symbolic Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR$T_USER_DATA</td>
<td>Up to 255 bytes of data (counted string).</td>
</tr>
</tbody>
</table>
ANALYZE/DISK_STRUCTURE performs the verification of a volume or volume set in eight distinct stages. During these stages, ANALYZE/DISK_STRUCTURE compiles information that is used in reporting errors and performing repairs.

Before ANALYZE/DISK_STRUCTURE can proceed with each stage, it must perform the following four initialization functions:

- Read the device name, validate access to the device, and save the device name
- Read the user-specified file names for the /LIST and /USAGE qualifiers, if specified, and open the files
- Assign all appropriate channels to the device being checked
- Write-lock the volume set to prevent simultaneous updates

The following sections describe the eight stages that ANALYZE/DISK_STRUCTURE goes through while verifying a disk. These descriptions assume that you specified the /REPAIR qualifier in the command. An annotated ANALYZE/DISK_STRUCTURE listing is included at the end of this appendix.

### D.1 Stage 1

In Stage 1, ANALYZE/DISK_STRUCTURE gathers various volume information (such as cluster size, volume labels, and the number of volumes in the set) from several reserved files, verifies the information for accuracy, reports all discrepancies, and corrects problems discovered during this stage.

ANALYZE/DISK_STRUCTURE identifies the volume and all the characteristics of that volume by using the parameters of the home block in INDEXF.SYS. When ANALYZE/DISK_STRUCTURE confirms this information, it builds a current version of VOLSET.SYS in memory and reads and verifies the status control block (SCB) of BITMAP.SYS.

ANALYZE/DISK_STRUCTURE then compares the volume-set attributes for the version of VOLSET.SYS in memory to the attributes listed in the version of VOLSET.SYS resident on the volume, reports discrepancies, and corrects errors.

### D.2 Stage 2

In Stage 2, ANALYZE/DISK_STRUCTURE copies the current version of QUOTA.SYS into working memory, and establishes the structure on which another QUOTA.SYS file is built during subsequent stages. In Stage 7, these copies are compared with each other and inconsistencies are reported.
D.3 Stage 3

Stage 3 checks consist of ANALYZE/DISK_STRUCTURE operations that use the reserved file INDEXF.SYS. During Stage 3, ANALYZE/DISK_STRUCTURE opens INDEXF.SYS, reads each file header, and completes the following steps:

- Validates each file’s FID, and confirms that all files can be retrieved through the FID
- Validates the header and the revision date of each file
- Validates any extension headers of each file
- Confirms that each segment number reflects the proper sequence of extension headers

ANALYZE/DISK_STRUCTURE also performs the following operations during Stage 3:

- Builds a map of header linkage so that ambiguities can be detected
- Determines the high block (HIBLK) and end-of-file block (EFBLK) record attributes and compares these values with the recorded values in INDEXF.SYS
- Checks the high-water mark (HIWATERMARK)

While performing these checks, ANALYZE/DISK_STRUCTURE builds several maps that it uses in subsequent stages. Table D–1 briefly describes each map built in Stage 3.

<table>
<thead>
<tr>
<th>Bitmap</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid file numbers</td>
<td>The current state of the bitmap for INDEXF.SYS</td>
</tr>
<tr>
<td>Lost file numbers</td>
<td>All the valid file numbers not yet found in a directory</td>
</tr>
<tr>
<td>Directory files</td>
<td>List of all directory files</td>
</tr>
<tr>
<td>Extension linkages</td>
<td>List of all valid extension headers</td>
</tr>
<tr>
<td>Multiply allocated clusters</td>
<td>List of all clusters that are referenced by more than one header</td>
</tr>
<tr>
<td>Allocated clusters</td>
<td>All allocated clusters on the volume (or volume set)</td>
</tr>
<tr>
<td>System map</td>
<td>The new storage bitmap</td>
</tr>
<tr>
<td>Valid file backlink</td>
<td>A map of all valid file backlinks</td>
</tr>
<tr>
<td>Invalid backlink</td>
<td>A map of all invalid backlinks</td>
</tr>
</tbody>
</table>

D.4 Stage 4

In Stage 4, ANALYZE/DISK_STRUCTURE builds a current version of BITMAP.SYS using the maps built during Stage 3. In addition, ANALYZE/DISK_STRUCTURE reports any discrepancies between the headers’ maps and the storage bitmap. In Stage 4, ANALYZE/DISK_STRUCTURE performs the following operations:

- Copies BITMAP.SYS into working memory
- Compares the corrected version of BITMAP.SYS with a map built from INDEXF.SYS
D.4 Stage 4

- Writes a corrected version of BITMAP.SYS to disk
- Reports multiply allocated clusters

D.5 Stage 5

In this stage, ANALYZE/DISK_STRUCTURE completes a pass of all entries in the invalid backlink map. ANALYZE/DISK_STRUCTURE searches the directory hierarchy of the volume to confirm that all files included in INDEXF.SYS are retrievable through the directory structure. In addition, ANALYZE/DISK_STRUCTURE identifies lost directories and attempts to reestablish valid backlinks to those directories.

In Stage 5, ANALYZE/DISK_STRUCTURE performs the following operations:

- Confirms the locations of all directories listed in the directory map (compiled in Stage 3) and the subsequent files in those directories
- Enters all directories indicated as lost and locates a valid parent (if any)

D.6 Stage 6

Stage 6 is essentially a cleanup operation for lost file headers. Following Stage 5, ANALYZE/DISK_STRUCTURE is left with a list of files that are truly lost—files that have backlinks to nonexistent directories. These files were not traceable through the directory structure. ANALYZE/DISK_STRUCTURE is also left with a list of files with bad backlinks; these files are traceable through the directory structure, but the backlinks of the files do not point back to the directory that contains them.

During Stage 6, ANALYZE/DISK_STRUCTURE performs the following operations:

- Checks the backlink map to locate all files with invalid backlinks, then repairs backlinks
- Checks the lost file bitmap for lost files and places lost files in [SYSLOST] if you specified /REPAIR
- If you specified the /USAGE qualifier, creates an entry for each lost file

D.7 Stage 7

In this stage, ANALYZE/DISK_STRUCTURE compares the values stored in the quota file built during Stage 2 with those stored in the reserved file QUOTA.SYS. During Stage 7, ANALYZE/DISK_STRUCTURE opens QUOTA.SYS and performs the following operations:

- Compares the block usage for each UIC listed in QUOTA.SYS to parallel statistics listed in the copy of QUOTA.SYS built in Stage 2
- Modifies QUOTA.SYS such that values in QUOTA.SYS match values in the copy built in Stage 2
- Closes QUOTA.SYS
Throughout the first seven stages, ANALYZE/DISK_STRUCTURE places operations that cannot be performed during a particular stage on a deferred list. The list includes FIDs sorted by operation. In Stage 8, ANALYZE/DISK_STRUCTURE performs all operations stored on the deferred list. In Stage 8, ANALYZE/DISK_STRUCTURE performs the following operations:

- Removes an FID from the deferred list, renames the file, and adds the file to SYSLOST.DIR or to a user-specified directory
- Updates QUOTA.SYS to reflect all additional blocks used by the UIC that received the lost file
- Updates VOLSET.SYS to correct inconsistencies discovered during previous ANALYZE/DISK_STRUCTURE stages

D.9 Annotated Example

The following example is an annotated sample of an ANALYZE/DISK_STRUCTURE session. The command used to generate this example did not include the /REPAIR qualifier.

%VERIFY-I-BADHEADER, file (487,173,1) MAIL$0004008EEAE0E0572.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (531,112,1) MAIL$0004008EEFBB198B.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (589,104,1) MAIL$0004008EEAF199B9.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (604,157,1) MAIL$0004008EF12C3B28.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (674,247,1) MAIL$0004008EF6053C9B.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (688,41,1) MAIL$0004008EF608AFF4.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (689,135,1) MAIL$0004008EE445A31.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (750,71,1) MAIL$0004008EE9E806D.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (753,217,1) MAIL$0004008EE7C4A017.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (780,236,1) MAIL$0004008EF777A8C.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (852,57,1) MAIL$0004008EF60615F6.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (856,44,1) MAIL$0004008EF7D2520.D.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1059,42,1) MAIL$0004008EEB045608.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1134,76,1) MAIL$0004008EE9E806D.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1316,147,1) MAIL$0004008EE7D2520.D.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1350,74,1) MAIL$0004008EE9B48B0.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1351,64,1) MAIL$0004008EEB09B036.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1490,104,1) MAIL$0004008EB48B0.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1493,106,1) LASTNOTIC.NIL;1
  invalid file header
%VERIFY-I-BADHEADER, file (1548,204,1) MAIL$0004008EF7B4D18B.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1613,61,1) MAIL$0004008EECE4BA5.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1812,81,1) MAIL$0004008EF7D05EC.MAI;1
  invalid file header
%VERIFY-I-BADHEADER, file (1848,26,1) MAIL$0004008EF78659B.MAI;1
invalid file header
%VERIFY-I-BADHEADER, file (1983,34119,1) MAIL$0004008EE7E49C13.MAI;1
invalid file header
%VERIFY-I-BADHEADER, file (1987,33907,1) REMIND.CAL;9
invalid file header
%VERIFY-I-BADHEADER, file (2196,123,1) MAIL$0004008EE6FA2DC9.MAI;1
invalid file header
%VERIFY-I-BADHEADER, file (2372,125,1) MAIL$0004008EF06339F9.MAI;1
invalid file header
%VERIFY-I-BADHEADER, file (2569,67,1) MAIL$0004008EF2BF0C15.MAI;1
invalid file header
%VERIFY-I-BADHEADER, file (2605,72,1) MAIL$0004008EE856FC73.MAI;1
invalid file header
%VERIFY-I-BADHEADER, file (2616,70,1) MAIL$0004008EF063C04F.MAI;1
invalid file header
%VERIFY-I-BADHEADER, file (2774,29818,1) LASTNOTIC.NIL;1
invalid file header
%VERIFY-I-ALLOCCLR, blocks incorrectly marked allocated
LBN 442398 to 445538, RVN 1
%VERIFY-I-BADHEADER, file (487,0,1) MAIL$0004008EEAE0572.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (487,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (531,0,1) MAIL$0004008EFBB198B.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (531,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (589,0,1) MAIL$0004008EEAF199B9.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (589,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (604,0,1) MAIL$0004008EF12C3B28.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (604,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (674,0,1) MAIL$0004008EF6053C9B.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (674,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (688,0,1) MAIL$0004008EF608AFF4.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (688,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (689,0,1) MAIL$0004008EE445A31.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (689,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (750,0,1) MAIL$0004008EEED19ADF.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (750,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (753,0,1) MAIL$0004008EE7C4A017.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (753,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (780,0,1) MAIL$0004008EF777ACA8.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (780,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (852,0,1) MAIL$0004008EF06C15F6.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (852,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (856,0,1) MAIL$0004008EE7D2520D.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (856,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (1059,0,1) MAIL$0004008EEB045608.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1059,0,1) lost extension file header
%VERIFY-I-BADHEADER, file (1134,0,1) MAIL$0004008EE9EC806D.MAI;1
ANALYZE/DISK_STRUCTURE—Stage Checks

D.9 Annotated Example

invalid file header
%VERIFY-I-LOSTEXTHDR, file (1134,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1316,0,1) MAIL$0004008EE6DA734F.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1316,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1350,0,1) MAIL$0004008E89BA88B0.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1350,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1351,0,1) MAIL$0004008EB09B036.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1351,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1490,0,1) MAIL$0004008E88B448B0.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1490,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1493,0,1) LASTNOTIC.NIL;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1493,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1548,0,1) MAIL$0004008EF7B4D1B8.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1548,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1613,0,1) MAIL$0004008EECEE4B5.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1613,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1812,0,1) MAIL$0004008EE7DF05EC.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1812,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1848,0,1) MAIL$0004008EF78659B9.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1848,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1983,0,1) MAIL$0004008EE7E49C13.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1983,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (1987,0,1) REMIND.CAL;9
invalid file header
%VERIFY-I-LOSTEXTHDR, file (1987,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (2196,0,1) MAIL$0004008EE6FA2DC9.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (2196,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (2372,0,1) MAIL$0004008EF06339F9.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (2372,0,1)
lost extension file header

D–6 ANALYZE/DISK_STRUCTURE—Stage Checks
%VERIFY-I-BADHEADER, file (2569,0,1) MAIL$0004008EF2BF0C15.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (2569,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (2605,0,1) MAIL$0004008EE856FC73.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (2605,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (2616,0,1) MAIL$0004008EF063C04F.MAI;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (2616,0,1)
lost extension file header
%VERIFY-I-BADHEADER, file (2774,0,1) LASTNOTIC.NIL;1
invalid file header
%VERIFY-I-LOSTEXTHDR, file (2774,0,1)
lost extension file header
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [ALLWAY]NOTES.LOG;25 4
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BLAIN.Boots]LOADER.OBJ;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BLAIN.MAIL]26000841.TMP;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BLAIN.NETSERVER.LOG;180
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BLAIN.NETSERVER.LOG;179
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BLAIN.NETSERVER.LOG;178
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BLAIN.NETSERVER.LOG;177
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BOEMUS.MAIL]MAIL$0004008EF94A72A0.MAI;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [BOEMUS.UPDATE.LOG;1
%VERIFY-I-BACKLINK, incorrect directory back link [CALGON.GER]OBJ.DIR;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [CALGON.TMP;1
%VERIFY-I-BACKLINK, incorrect directory back link [CLABIN.BACKUP.TMPSRC]BACKDEF.SDL;1
%VERIFY-I-BACKLINK, incorrect directory back link [CLABIN.BACKUP.TMPSRC]COMMON.REQ;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [CLABIN.NMAIL]NMAIL.LOG;77
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [CLABIN.NMAIL]NMAIL.LOG;76
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DESIN.8800]2840HT86.GNC;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DESIN.8800]2840RT86.GNC;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.MAIL]MAIL$0004008EF94A79B3.MAI;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]MORT.OBJ;15
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;36
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;35
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;34
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;33
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;32
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;31
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [DONOFF.PRO]OUTPUT.LOG;30
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GAMEB]CONFLICTS.LIS;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GAMEB]CONFLICTS.LIS;6
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GAMEB]NETSERVER.LOG;5
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GAMEB]NETSERVER.LOG;22
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GAMBLE.NMAIL]NMAIL.LOG;21
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GILLEY.MAIL]MAIL$0004008EF94A7B70.MAI;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GILLEY]NETSERVER.LOG;657
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [GILLEY]NETSERVER.LOG;656
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;33
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;32
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;31
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;30
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;29
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;28
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;27
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;26
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;25
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [HALL]2.LOG;24
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [NAMOLLY]NETSERVER.LOG;2
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [NAMOLLY]NETSERVER.LOG;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [RUSS]082654.LOG;1
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [SCHROEDER.LOGIN]NETSERVER.LOG;17
%VERIFY-I-BADDIRECT, directory SYSLOST.BOOTS has invalid format
%VERIFY-I-BADDIRECT, invalid file identification in directory entry [THOEN]NETSERVER.LOG;374
ANALYZE/DISK_STRUCTURE—Stage Checks

D.9 Annotated Example

%VERIFY-I-BADDIRENT, invalid file identification in directory entry [THOEN]NETSERVER.LOG;373
%VERIFY-I-BADDIRENT, invalid file identification in directory entry [THOEN]NETSERVER.LOG;367
%VERIFY-I-BADDIRENT, invalid file identification in directory entry [THOMAS.MAIL]MAIL$0004008EF94D75EB.MAI;1
%VERIFY-I-BADDIRENT, invalid file identification in directory entry [THOMAS.MAIL]MAIL$0004008EF955DDF3.MAI;1
%VERIFY-I-BADDIRENT, invalid file identification in directory entry [THOMAS.MAIL]MAIL$0004008EFD118B44.MAI;1
%VERIFY-I-LOSTSCAN, due to directory errors, lost files will not be entered

%VERIFY-I-INCQUOTA, QUOTA.SYS indicates 69663 blocks used, actual use is 69740 blocks for [11,402]
%VERIFY-I-INCQUOTA, QUOTA.SYS indicates 1764 blocks used, actual use is 1770 blocks for [12,12]
%VERIFY-I-INCQUOTA, QUOTA.SYS indicates 0 blocks used, actual use is 31 blocks for [11,720]

1. ANALYZE/DISK_STRUCTURE has completed the first two stages, and is beginning Stage 3. Stage 1 involves collection and verification of various volume information. ANALYZE/DISK_STRUCTURE found no problems with volume information. In Stage 2, ANALYZE/DISK_STRUCTURE copies the current version of QUOTA.SYS to working memory, and builds the structure on which a new copy is built during subsequent stages. The first error message produced by Stage 3. Stage 3 uses the reserved file INDEXF.SYS to locate a variety of file problems. Here, Stage 3 detects a number of invalid file headers. Note that the error message includes the FID and the file name.

2. This error message is produced during Stage 4, during which ANALYZE/DISK_STRUCTURE builds a current version of BITMAP.SYS, resolves multiple references to extension headers, and corrects discrepancies in the map sections of headers. Here, ANALYZE/DISK_STRUCTURE has found that the specified logical blocks on the specified relative volume were marked allocated in the storage bit map, but were not allocated to a file.

3. This message marks the beginning of Stage 5. Here, messages stating “lost extension file header” and “invalid file header” indicate that ANALYZE/DISK_STRUCTURE is performing a pass of all entries placed on the invalid backlink map. This map was created in Stage 3.

4. This message marks the beginning of the second phase of Stage 5, in which ANALYZE/DISK_STRUCTURE confirms that all files in INDEX.SYS are retrievable through the directory structure. Here, the series of “invalid file identification . . . ” messages indicates those directory entries that did not contain a valid file identification.

5. This message is produced by Stage 6, which is essentially a cleanup phase for lost files. This message indicates that ANALYZE/DISK_STRUCTURE encountered errors during the directory scan that were reported in previous messages. As a result, the file is not entered in directory [SYSLOST].

6. Here, ANALYZE/DISK_STRUCTURE begins Stage 7, in which it compares values stored in the quota file built during Stage 2 with values in the reserved file QUOTA.SYS. The last three messages here indicate discrepancies between the two files.

Note that no messages were produced during Stage 8. During Stage 8, ANALYZE/DISK_STRUCTURE executes all operations placed on the deferred list, and if you specified /REPAIR, updates QUOTA.SYS and VOLSET.SYS as necessary.
When you specify the /USAGE qualifier, ANALYZE/DISK_STRUCTURE creates a disk usage accounting file. The first record of this file, the identification record, contains a summary of the disk and volume characteristics. The identification record is followed by many file summary records, one record for each file on the disk. Each file summary record contains the owner, size, and name of a file.

The identification record is characterized by the type code USG$K_IDENT in the USG$B_TYPE field of the record. Table E–1 contains a description of all the fields in this record.

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>USG$L_SERIALNUM</td>
<td>Serial number of the volume. This is an octal longword value.</td>
</tr>
<tr>
<td>USG$T_STRUCNAM</td>
<td>Volume set name (if the volume is part of a volume set). For a Files-11 Structure Level 1 volume, this field contains binary zeros; for a Files-11 Structure Level 2 or 5 volume that is not part of a volume set, this field contains spaces. The length of this field is USG$S_STRUCNAME.</td>
</tr>
<tr>
<td>USG$T_VOLNAME</td>
<td>Volume name of relative volume 1. The length of this field is USG$S_VOLNAME.</td>
</tr>
<tr>
<td>USG$T_OWNERNAME</td>
<td>Volume owner name. The length of this field is USG$S_OWNERNAME.</td>
</tr>
<tr>
<td>USG$T_FORMAT</td>
<td>Volume format type. For a Files-11 Structure Level 1 volume, this field contains “DECFILE11A”; for a Files-11 Structure Level 2 or 5 volume, this field contains “DECFILE11B”. The length of this field is USG$S_FORMAT.</td>
</tr>
<tr>
<td>USG$Q_TIME</td>
<td>Quadword system time when this usage file was created. The length of this field is USG$S_TIME.</td>
</tr>
</tbody>
</table>

Each file summary record is characterized by the type code USG$K_FILE in the USG$B_TYPE field of the record. Table E–2 contains a description of all the fields in these records.
### Table E–2 File Record Format (Length USG$K_FILE_LEN)

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>USG$L_FILEOWNER</td>
<td>File owner UIC. This can be considered as a single longword value or as two word values (USG$W_UICMEMBER and USG$W_UICGROUP).</td>
</tr>
<tr>
<td>USG$W_UICMEMBER</td>
<td>The member field of the file owner UIC. This is an octal word value.</td>
</tr>
<tr>
<td>USG$W_UICGROUP</td>
<td>The group field of the file owner UIC. This is an octal word value.</td>
</tr>
<tr>
<td>USG$L_ALLOCATED</td>
<td>Number of blocks allocated to the file, including file headers. This is a decimal longword value.</td>
</tr>
<tr>
<td>USG$L_USED</td>
<td>Number of blocks used, up to and including the end-of-file block. This is a decimal longword value.</td>
</tr>
<tr>
<td>USG$W_DIR_LEN</td>
<td>Length of the directory string portion of USG$T_FILESPEC, including the brackets. This is a decimal word value.</td>
</tr>
<tr>
<td>USG$W_SPEC_LEN</td>
<td>Length of the complete file specification in USG$T_FILESPEC. This is a decimal word value.</td>
</tr>
<tr>
<td>USG$T_FILESPEC</td>
<td>File specification, in the following format:</td>
</tr>
<tr>
<td></td>
<td>[dir]nam.typ;ver</td>
</tr>
<tr>
<td></td>
<td>This field is of variable length. A file that has more than one directory entry is listed under the first file specification found. A lost file has an empty directory string &quot;[ ]&quot; and the file name is taken from the file header. In some cases this information does not exist; you must take this into consideration when you write application programs to process the usage file. The length of this field is USG$S_FILESPEC.</td>
</tr>
</tbody>
</table>

The symbolic names referenced in both the identification and the file summary records are defined in the system definition macro $USGDEF. The length of the identification record is USG$K_IDENT_LEN. The length of a file summary record is USG$K_FILE_LEN.
This appendix describes the format of the auditing messages written to the security auditing log file. The default audit log file SECURITY.AUDIT$JOURNAL is created by default in the SYS$COMMON:[SYSSMGR] directory.

Each security audit record consists of a header packet followed by one or more data packets, as shown in Figure F–1. The number of data packets depends on the type of information being sent. This appendix describes the format of the audit header and its data packets as well as the contents of the data packets.

Figure F–1  Format of a Security Audit Message
Table F–1 describes the fields contained in Figure F–2.

**Figure F–2  Audit Header Packet Format**

<table>
<thead>
<tr>
<th>Field Symbolic Offset Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$W_RECORD_SUBTYPE</td>
</tr>
<tr>
<td>NSA$W_RECORD_TYPE</td>
</tr>
<tr>
<td>NSA$W_PACKET_COUNT</td>
</tr>
<tr>
<td>NSA$W_FLAGS</td>
</tr>
<tr>
<td>NSA$C_VERSION_3</td>
</tr>
<tr>
<td>Unused</td>
</tr>
<tr>
<td>NSA$W_RECORD_SIZE</td>
</tr>
<tr>
<td>Unused</td>
</tr>
<tr>
<td>NSA$W_FACILITY</td>
</tr>
<tr>
<td>Unused</td>
</tr>
</tbody>
</table>

When you enter subtypes, do not include a prefix, as shown in Table F–2.

Symbols representing the types or subtypes of security events are listed in Table F–2. For each audit event record type defined by NSA$W_RECORD_TYPE, there is a record subtype defined by the symbol NSA$W_RECORD_SUBTYPE, which further defines the event.
Table F–2  Description of Audit Event Types and Subtypes

<table>
<thead>
<tr>
<th>Symbols for Event Types and Subtypes</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$C_MSG_AUDIT</td>
<td>Systemwide change to auditing</td>
</tr>
<tr>
<td>ALARM_STATE</td>
<td>Events enabled as alarms</td>
</tr>
<tr>
<td>AUDIT_DISABLED</td>
<td>Audit events disabled</td>
</tr>
<tr>
<td>AUDIT_ENABLED</td>
<td>Audit events enabled</td>
</tr>
<tr>
<td>AUDIT_INITIATE</td>
<td>Audit server startup</td>
</tr>
<tr>
<td>AUDIT_LOG_FIRST</td>
<td>First entry in audit log (backward link)</td>
</tr>
<tr>
<td>AUDIT_LOG_FINAL</td>
<td>Final entry in audit log (forward link)</td>
</tr>
<tr>
<td>AUDIT_STATE</td>
<td>Events enabled as audits</td>
</tr>
<tr>
<td>AUDIT_TERMINATE</td>
<td>Audit server shutdown</td>
</tr>
<tr>
<td>SNAPSHOT_ABORT(^1)</td>
<td>System snapshot attempt has aborted</td>
</tr>
<tr>
<td>SNAPSHOT_ACCESS(^1)</td>
<td>Snapshot file access/deaccess</td>
</tr>
<tr>
<td>SNAPSHOT_SAVE(^1)</td>
<td>System snapshot save in progress</td>
</tr>
<tr>
<td>SNAPSHOT_STARTUP(^1)</td>
<td>System booted from a snapshot file</td>
</tr>
<tr>
<td>NSA$C_MSG_BREAKIN</td>
<td>Break-in attempt detected</td>
</tr>
<tr>
<td>BATCH</td>
<td>Batch process</td>
</tr>
<tr>
<td>DETACHED</td>
<td>Detached process</td>
</tr>
<tr>
<td>DIALUP</td>
<td>Dialup interactive process</td>
</tr>
<tr>
<td>LOCAL</td>
<td>Local interactive process</td>
</tr>
<tr>
<td>NETWORK</td>
<td>Network server task</td>
</tr>
<tr>
<td>REMOTE</td>
<td>Interactive process from another network node</td>
</tr>
<tr>
<td>SUBPROCESS</td>
<td>Subprocess</td>
</tr>
<tr>
<td>NSA$C_MSG_CONNECTION</td>
<td>Logical link connection or termination</td>
</tr>
<tr>
<td>CNX_ABORT</td>
<td>Connection aborted</td>
</tr>
<tr>
<td>CNX_ACCEPT</td>
<td>Connection accepted</td>
</tr>
<tr>
<td>CNX_DECNET_CREATE</td>
<td>DECnet logical link created</td>
</tr>
<tr>
<td>CNX_DECNET_DELETE</td>
<td>DECnet logical link disconnected</td>
</tr>
<tr>
<td>CNX_DISCONNECT</td>
<td>Connection disconnected</td>
</tr>
<tr>
<td>CNX_INC_ABORT</td>
<td>Incoming connection request aborted</td>
</tr>
<tr>
<td>CNX_INC_ACCEPT</td>
<td>Incoming connection request accepted</td>
</tr>
<tr>
<td>CNX_INC_DISCONNECT</td>
<td>Incoming connection request disconnected</td>
</tr>
<tr>
<td>CNX_INC_REJECT</td>
<td>Incoming connection request rejected</td>
</tr>
<tr>
<td>CNX_INC_REQUEST</td>
<td>Incoming connection request</td>
</tr>
<tr>
<td>CNX_IPC_CLOSE</td>
<td>Interprocess communication association closed</td>
</tr>
<tr>
<td>CNX_IPC_OPEN</td>
<td>Interprocess communication association opened</td>
</tr>
<tr>
<td>CNX_REJECT</td>
<td>Connection rejected</td>
</tr>
</tbody>
</table>

\(^1\)Obsolete as of OpenVMS Version 7.1

(continued on next page)
### Description of Audit Event Types and Subtypes

<table>
<thead>
<tr>
<th>Symbols for Event Types and Subtypes</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNX_REQUEST</td>
<td>Connection requested</td>
</tr>
<tr>
<td>NSA$C_MSG_INSTALL</td>
<td>Use of the Install utility (INSTALL)</td>
</tr>
<tr>
<td>INSTALL_ADD</td>
<td>Known image installed</td>
</tr>
<tr>
<td>INSTALL_REMOVE</td>
<td>Known image deleted</td>
</tr>
<tr>
<td>NSA$C_MSG_LOGFAIL</td>
<td>Login failure</td>
</tr>
<tr>
<td>NSA$C_MSG_LOGIN</td>
<td>Successful login</td>
</tr>
<tr>
<td>NSA$C_MSG_LOGOUT</td>
<td>Successful logout</td>
</tr>
<tr>
<td>NSA$C_MSG_MOUNT</td>
<td>Volume mount or dismount</td>
</tr>
<tr>
<td>VOL_DISMOUNT</td>
<td>Volume dismount</td>
</tr>
<tr>
<td>VOL_MOUNT</td>
<td>Volume mount</td>
</tr>
<tr>
<td>NSA$C_MSG_NCP</td>
<td>Modification to network configuration database</td>
</tr>
<tr>
<td>NCP_COMMAND</td>
<td>Network Control Program (NCP) command issued</td>
</tr>
<tr>
<td>NSA$C_MSG_NETPROXY</td>
<td>Modification to network proxy database</td>
</tr>
<tr>
<td>NETPROXY_ADD</td>
<td>Record added to network proxy authorization file</td>
</tr>
<tr>
<td>NETPROXY_DELETE</td>
<td>Record removed from network proxy authorization file</td>
</tr>
<tr>
<td>NETPROXY_MODIFY</td>
<td>Record modified in network proxy authorization file</td>
</tr>
<tr>
<td>NSA$C_MSG_OBJ_ACCESS</td>
<td>Object access attempted</td>
</tr>
<tr>
<td>OBJ_ACCESS</td>
<td>Access attempted to create, delete, or deaccess an object</td>
</tr>
<tr>
<td>NSA$C_MSG_OBJ_CREATE</td>
<td>Object creation attempted</td>
</tr>
<tr>
<td>OBJ_CREATE</td>
<td>Access attempted to create an object</td>
</tr>
<tr>
<td>NSA$C_MSG_OBJ_DEACCESS</td>
<td>Object deaccessed</td>
</tr>
<tr>
<td>OBJ_DEACCESS</td>
<td>Attempt to complete access to an object</td>
</tr>
</tbody>
</table>

(continued on next page)
Table F–2 (Cont.) Description of Audit Event Types and Subtypes

<table>
<thead>
<tr>
<th>Symbols for Event Types and Subtypes</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$C_MSG_OBJ_DELETE</td>
<td>Object deletion attempted</td>
</tr>
<tr>
<td>OBJ_DELETE</td>
<td>Object deletion attempted</td>
</tr>
<tr>
<td>NSA$C_MSG_PROCESS</td>
<td>Process controlled through a system service</td>
</tr>
<tr>
<td>PRC_CANWAK</td>
<td>Process wakeup canceled</td>
</tr>
<tr>
<td>PRC_CREPRC</td>
<td>Process created</td>
</tr>
<tr>
<td>PRC_DELPRC</td>
<td>Process deleted</td>
</tr>
<tr>
<td>PRC_FORCEX</td>
<td>Process exit forced</td>
</tr>
<tr>
<td>PRC_GETJPI</td>
<td>Process information gathered</td>
</tr>
<tr>
<td>PRC_GRANTID</td>
<td>Process identifier granted</td>
</tr>
<tr>
<td>PRC_RESUME</td>
<td>Process resumed</td>
</tr>
<tr>
<td>PRC_REVOKID</td>
<td>Process identifier revoked</td>
</tr>
<tr>
<td>PRC_SCHDWK</td>
<td>Process wakeup scheduled</td>
</tr>
<tr>
<td>PRC_SETPRI</td>
<td>Process priority altered</td>
</tr>
<tr>
<td>PRC_SIGPRC</td>
<td>Process exception issued</td>
</tr>
<tr>
<td>PRC_SUSPND</td>
<td>Process suspended</td>
</tr>
<tr>
<td>PRC_TERM</td>
<td>Process termination notification requested</td>
</tr>
<tr>
<td>PRC_WAKE</td>
<td>Process wakeup issued</td>
</tr>
<tr>
<td>NSA$C_MSG_PRVAUD</td>
<td>Use of privilege</td>
</tr>
<tr>
<td>PRVAUD_FAILURE</td>
<td>Unsuccessful use of privilege</td>
</tr>
<tr>
<td>PRVAUD_SUCCESS</td>
<td>Successful use of privilege</td>
</tr>
<tr>
<td>NSA$C_MSG_RIGHTSDB</td>
<td>Modification to the rights database</td>
</tr>
<tr>
<td>RDB_ADD_ID</td>
<td>Identifier added to rights database</td>
</tr>
<tr>
<td>RDB_CREATE</td>
<td>Rights database created</td>
</tr>
<tr>
<td>RDB_GRANT_ID</td>
<td>Identifier granted to user</td>
</tr>
<tr>
<td>RDB_MOD HOLDER</td>
<td>List of identifier holders modified</td>
</tr>
<tr>
<td>RDB_MOD_ID</td>
<td>Identifier name or attributes modified</td>
</tr>
<tr>
<td>RDB_REM_ID</td>
<td>Identifier removed from rights database</td>
</tr>
<tr>
<td>RDB_REVOKE_ID</td>
<td>Identifier taken away from user</td>
</tr>
<tr>
<td>NSA$C_MSG_SYSGEN</td>
<td>Use of the System Generation utility (SYSGEN)</td>
</tr>
<tr>
<td>SYSGEN_SET</td>
<td>System parameter modified</td>
</tr>
<tr>
<td>NSA$C_MSG_SYSTIME</td>
<td>Modification to system time</td>
</tr>
<tr>
<td>SYSTIM_SET</td>
<td>System time set</td>
</tr>
<tr>
<td>SYSTIM_CAL</td>
<td>System time calibrated</td>
</tr>
</tbody>
</table>

(continued on next page)
Security Audit Message Format
F.1 Audit Header Packet

Table F–2 (Cont.) Description of Audit Event Types and Subtypes

<table>
<thead>
<tr>
<th>Symbols for Event Types and Subtypes</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$C_MSG_SYSUAF</td>
<td>Modification to system user authorization file (SYSUAF)</td>
</tr>
<tr>
<td>SYSUAF_ADD</td>
<td>Record added to system user authorization file</td>
</tr>
<tr>
<td>SYSUAF_COPY</td>
<td>Record added to system user authorization file</td>
</tr>
<tr>
<td>SYSUAF_DELETE</td>
<td>Record deleted from system user authorization file</td>
</tr>
<tr>
<td>SYSUAF_MODIFY</td>
<td>Record modified in system user authorization file</td>
</tr>
<tr>
<td>SYSUAF_RENAME</td>
<td>Record renamed in system user authorization file</td>
</tr>
</tbody>
</table>

Table F–3 identifies any flags associated with the audited event.

The symbol NSA$K_MSG_HDR_LENGTH defines the current size of the message header (in bytes).

Table F–3 Description of Audit Event Flags

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$M_ACL</td>
<td>Event generated by an alarm access control entry (ACE) or an audit ACE.</td>
</tr>
<tr>
<td>NSA$M_ALARM</td>
<td>Event is a security alarm.</td>
</tr>
<tr>
<td>NSA$M_AUDIT</td>
<td>Event is a security audit.</td>
</tr>
<tr>
<td>NSA$M_FLUSH</td>
<td>Event forced the audit server to write all buffered event messages to the audit log file.</td>
</tr>
<tr>
<td>NSA$M_FOREIGN</td>
<td>Event occurred outside of the system trusted computing base.</td>
</tr>
<tr>
<td>NSA$M_MANDATORY</td>
<td>Event resulted from a mandatory process audit.</td>
</tr>
</tbody>
</table>

Note

All other flags besides those listed in the table are reserved by HP.

F.2 Audit Data Packets

Figure F–3 illustrates the format of an audit data packet. NSA$K_PKT_HDR_LENGTH defines the current size of each packet header (in bytes).

Note that audit data packets do not appear in any predefined order within an event message, and packet types can appear more than once throughout the event message.

For examples of the types of data appearing in different event messages, refer to the appendix of alarm messages in the HP OpenVMS Guide to System Security.
Table F–4 describes the fields contained in these packets.

**Table F–4  Description of the Audit Data Packet**

<table>
<thead>
<tr>
<th>Field</th>
<th>Symbolic Offset</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet size</td>
<td>NSA$W_PACKET_SIZE</td>
<td>Indicates the size of the data packet. (Word)</td>
</tr>
<tr>
<td>Packet type</td>
<td>NSA$W_PACKET_TYPE</td>
<td>Indicates the type of data in the packet, as described in Table F–5.</td>
</tr>
<tr>
<td>Packet data</td>
<td>NSA$R_PACKET_DATA</td>
<td>Variable length field containing the packet data.</td>
</tr>
</tbody>
</table>

Table F–5 describes the types of data in audit packets.

**Table F–5  Types of Data in Audit Packets**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Packet Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$ _ACCESS_DESIRED</td>
<td>Access requested or granted to the object as defined by $ARMDEF (Longword)</td>
</tr>
<tr>
<td>NSA$ _ACCESS_MODE</td>
<td>Access mode of the process (Byte)</td>
</tr>
<tr>
<td>NSA$ _ACCOUNT</td>
<td>Account name associated with the process (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$ _ALARM_NAME</td>
<td>Name of the user (or the security class operators terminal) to receive the record (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$ _ASSOCIATION_NAME</td>
<td>Interprocess communication (IPC) association name (String of 1-256 characters)</td>
</tr>
<tr>
<td>NSA$ _AUDIT_FLAGS</td>
<td>Bit mask of enabled or disabled events. This is reserved to HP. (40-byte record) (String of 1-65 characters)</td>
</tr>
<tr>
<td>NSA$ _AUDIT_NAME</td>
<td>Journal file to receive the audit record (String of 1-65 characters)</td>
</tr>
<tr>
<td>NSA$ _COMMAND_LINE</td>
<td>Command line the user entered (String of 1-2048 characters)</td>
</tr>
<tr>
<td>NSA$ _CONNECTION_ID</td>
<td>Interprocess communication (IPC) connection identification (Longword)</td>
</tr>
<tr>
<td>NSA$ _DECNET_LINK_ID</td>
<td>DECnet logical link identification (Longword)</td>
</tr>
<tr>
<td>NSA$ _DECNET_OBJECT_NAME</td>
<td>DECnet object name (String of 1-16 characters)</td>
</tr>
<tr>
<td>NSA$ _DECNET_OBJECT_NUMBER</td>
<td>DECnet object number (Longword)</td>
</tr>
<tr>
<td>NSA$ _DEFAULT_USERNAME</td>
<td>Default local user name for incoming network proxy requests (String of 1-32 characters)</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Packet Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$_DEVICE_NAME</td>
<td>Device name where the volume resides (String of 1-64 characters)</td>
</tr>
<tr>
<td>NSA$_DIRECTORY_ENTRY</td>
<td>Directory entry associated with file system operation (Longword)</td>
</tr>
<tr>
<td>NSA$_DIRECTORY_ID</td>
<td>Directory file identification (Array of 3 words)</td>
</tr>
<tr>
<td>NSA$_DIRECTORY_NAME</td>
<td>Directory file name</td>
</tr>
<tr>
<td>NSA$_DISMOUNT_FLAGS</td>
<td>The $DMTDEF macro in STARLET defines the dismount flags; each flag is one quadword.</td>
</tr>
<tr>
<td>NSA$_EFC_NAME</td>
<td>Event flag cluster name (String of 1-16 characters)</td>
</tr>
<tr>
<td>NSA$_EVENT_FACILITY</td>
<td>Facility code for the generated event (Word)</td>
</tr>
<tr>
<td>NSA$_FIELD_NAME</td>
<td>Name of the field being modified. This is used in combination with NSA$_ORIGINAL_DATA and NSA$_NEW_DATA. (String of 1-256 characters)</td>
</tr>
<tr>
<td>NSA$_FILE_ID</td>
<td>File identification (Array of words)</td>
</tr>
<tr>
<td>NSA$_FINAL_STATUS</td>
<td>Status (successful or unsuccessful) causing the auditing facility to be invoked (Longword)</td>
</tr>
<tr>
<td>NSA$_HOLDER_NAME</td>
<td>Name of user holding the identifier (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_HOLDER_OWNER</td>
<td>Owner (UIC) of holder (Longword)</td>
</tr>
<tr>
<td>NSA$_ID_ATTRIBUTES</td>
<td>Attributes of the identifier, which are defined by the $KGBDEF macro in STARLET (Longword)</td>
</tr>
<tr>
<td>NSA$_IDENTIFIERS_USED</td>
<td>Identifiers (from the access control entry (ACE) granting access) used to gain access to the object (Array of longwords)</td>
</tr>
<tr>
<td>NSA$_ID_NAME</td>
<td>Name of the identifier (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_ID_NEW_ATTRIBUTES</td>
<td>New attributes of the identifier, which are defined by the $KGBDEF macro in STARLET (Longword)</td>
</tr>
<tr>
<td>NSA$_ID_NEW_NAME</td>
<td>New name of the identifier (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_ID_NEW_VALUE</td>
<td>New value of the identifier (Longword)</td>
</tr>
<tr>
<td>NSA$_ID_VALUE</td>
<td>Value of the identifier (Longword)</td>
</tr>
<tr>
<td>NSA$_ID_VALUE_ASCII</td>
<td>Identification value provided by $IDTOASC (Longword)</td>
</tr>
<tr>
<td>NSA$_IMAGE_NAME</td>
<td>Name of the image being executed when the event took place (String of 1-1024 characters)</td>
</tr>
<tr>
<td>NSA$_INSTALL_FILE</td>
<td>The name of the installed file (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_INSTALL_FLAGS</td>
<td>The INSTALL flags correspond to qualifiers for the Install utility (for example, NSA$M_INS_EXECUTE_ONLY); each flag is one longword.</td>
</tr>
<tr>
<td>NSA$_LMN_PARENT_NAME</td>
<td>Name of the parent logical name table (String of 1-31 characters)</td>
</tr>
<tr>
<td>NSA$_LMN_TABLE_NAME</td>
<td>Name of the logical name table (String of 1-31 characters)</td>
</tr>
<tr>
<td>NSA$_LOCAL_USERNAME</td>
<td>User name of the account available for incoming network proxy requests (String of 1-32 characters)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Packet Contents</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NSA$_LOGICAL_NAME</td>
<td>Logical name associated with the device (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_MAILBOX_UNIT</td>
<td>Mailbox unit number (Longword)</td>
</tr>
<tr>
<td>NSA$_MATCHING_ACE</td>
<td>ACE granting or denying access (Array of bytes)</td>
</tr>
<tr>
<td>NSA$_MESSAGE</td>
<td>Associated message code; see NSA$_MSGFILNAM for translation (Longword)</td>
</tr>
<tr>
<td>NSA$_MOUNT_FLAGS</td>
<td>The MOUNT flags defined by the $MNTDEF macro in STARLET (Longword)</td>
</tr>
<tr>
<td>NSA$_MSGFILNAM</td>
<td>Message file containing the translation for the message code in NSA$_MESSAGE (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_NEW_DATA</td>
<td>Contents of the field named in NSA$_FIELD_NAME after the event occurred. NSA$_ORIGINAL_DATA contains the field contents prior to the event. (String of 1-n characters)</td>
</tr>
<tr>
<td>NSA$_NEW_IMAGE_NAME</td>
<td>Name of the new image (String of 1-1024 characters)</td>
</tr>
<tr>
<td>NSA$_NEW_OWNER</td>
<td>New process owner (UIC) (Longword)</td>
</tr>
<tr>
<td>NSA$_NEW_PRIORITY</td>
<td>New process priority (Longword)</td>
</tr>
<tr>
<td>NSA$_NEW_PRIVILEGES</td>
<td>New privileges (Quadword)</td>
</tr>
<tr>
<td>NSA$_NEW_PROCESS_ID</td>
<td>New identification of the process (Longword)</td>
</tr>
<tr>
<td>NSA$_NEW_PROCESS_NAME</td>
<td>New name of the process (String of 1-15 characters)</td>
</tr>
<tr>
<td>NSA$_NEW_PROCESS_OWNER</td>
<td>New owner (UIC) of the process (Longword)</td>
</tr>
<tr>
<td>NSA$_NEW_USERNAME</td>
<td>New user name (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_NOP</td>
<td>Packet in static event list to omit from processing</td>
</tr>
<tr>
<td>NSA$_OBJECT_CLASS</td>
<td>Object class name, as defined by the system or by the user (String of 1-23 characters)</td>
</tr>
<tr>
<td>NSA$_OBJECT_MAX_CLASS</td>
<td>The minimum access classification of the object (20-byte record)</td>
</tr>
<tr>
<td>NSA$_OBJECT_MIN_CLASS</td>
<td>The minimum access classification of the object (20-byte record)</td>
</tr>
<tr>
<td>NSA$_OBJECT_NAME</td>
<td>Object’s name (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_OBJECT_NAME_2</td>
<td>Alternate object name; currently applies to file-backed global sections where the alternate name of global section is the file name. (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_OBJECT_OWNER</td>
<td>UIC or general identifier of the process causing the auditable event (Longword)</td>
</tr>
<tr>
<td>NSA$_OBJECT_PROTECTION</td>
<td>UIC-based protection of the object (Vector of words or longwords)</td>
</tr>
<tr>
<td>NSA$_OBJECT_TYPE</td>
<td>Object’s type code, as listed in $ACLDEF. (String of 1-23 characters)</td>
</tr>
<tr>
<td>NSA$_OLD_PRIORITY</td>
<td>Former process priority (Longword)</td>
</tr>
<tr>
<td>NSA$_OLD_PRIVILEGES</td>
<td>Former privileges (Quadword)</td>
</tr>
</tbody>
</table>

(continued on next page)
### Table F–5 (Cont.)  Types of Data in Audit Packets

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Packet Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$_ORIGINAL_DATA</td>
<td>Contents of the field named in NSA$_FIELD_NAME before the event occurred. NSA$_NEW_DATA contains the field contents following the event. (String of 1-n characters)</td>
</tr>
<tr>
<td>NSA$_PARAMS_INUSE</td>
<td>Set of parameter values given to the SYSGEN command USE (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_PARAMS_WRITE</td>
<td>File name for the SYSGEN command WRITE (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_PARENT_ID</td>
<td>Process identifier (PID) of the parent process; only used when auditing events pertaining to a subprocess (Longword)</td>
</tr>
<tr>
<td>NSA$_PARENT_NAME</td>
<td>Parent's process name; only used when auditing events pertaining to a subprocess (String of 1-15 characters)</td>
</tr>
<tr>
<td>NSA$_PARENT_OWNER</td>
<td>Owner (UIC) of the parent process (Longword)</td>
</tr>
<tr>
<td>NSA$_PARENT_USERNAME</td>
<td>User name associated with the parent process (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_PASSWORD</td>
<td>Password used in unsuccessful break-in attempt (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_PRIVILEGES</td>
<td>Privilege mask (Quadword)</td>
</tr>
<tr>
<td>NSA$_PRIVS_MISSING</td>
<td>Privileges that are lacking (Longword or quadword)</td>
</tr>
<tr>
<td>NSA$_PRIVS_USED</td>
<td>Privileges used to gain access to the object (Longword or quadword)</td>
</tr>
<tr>
<td>NSA$_PROCESS_ID</td>
<td>PID of the process causing the auditable event (Longword)</td>
</tr>
<tr>
<td>NSA$_PROCESS_NAME</td>
<td>Process' name that caused the auditable event (String of 1-15 characters)</td>
</tr>
<tr>
<td>NSA$_REM_ASSOCIATION_NAME</td>
<td>Interprocess communication (IPC) remote association name (String of 1-256 characters)</td>
</tr>
<tr>
<td>NSA$_REMOTE_LINK_ID</td>
<td>Remote logical link identification number (Longword)</td>
</tr>
<tr>
<td>NSA$_REMOTE_NODE_ID</td>
<td>DECnet address of the remote process (Longword)</td>
</tr>
<tr>
<td>NSA$_REMOTE_NODENAME</td>
<td>DECnet node name of the remote process (String of 1-6 characters)</td>
</tr>
<tr>
<td>NSA$_REMOTE_USERNAME</td>
<td>User name of the remote process (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_REQUEST_NUMBER</td>
<td>Request number associated with the system service call (Longword)</td>
</tr>
<tr>
<td>NSA$_RESOURCE_NAME</td>
<td>Lock resource name (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_SECTION_NAME</td>
<td>Global section name (String of 1-42 characters)</td>
</tr>
<tr>
<td>NSA$_SNAPSHOT_BOOTFILE</td>
<td>The name of the snapshot boot file, the saved system image file from which the system just booted (String of 1-255 characters)</td>
</tr>
<tr>
<td>NSA$_SNAPSHOT_SAVE_FILNAM</td>
<td>The name of the snapshot save file, which is the original location of the snapshot file at the time that the system was saved (String of 1-255 characters)</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Packet Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$_SNAPSHOT_TIME</td>
<td>The time the picture of the configuration was taken and saved in the snapshot boot file (Quadword)</td>
</tr>
<tr>
<td>NSA$_SOURCE_PROCESS_ID</td>
<td>Identification of process originating the request (Longword)</td>
</tr>
<tr>
<td>NSA$_SUBJECT_CLASS</td>
<td>The current access class of the process causing the auditable event (A 20-byte record)</td>
</tr>
<tr>
<td>NSA$_SUBJECT_OWNER</td>
<td>Owner (UIC) of the process causing the event (Longword)</td>
</tr>
<tr>
<td>NSA$_SYSTEM_ID</td>
<td>SCS identification of the cluster node where the event took place (SYSGEN parameter SCSSYSTEMID) (Longword)</td>
</tr>
<tr>
<td>NSA$_SYSTEM_NAME</td>
<td>System Communication Services (SCS) node name where the event took place (SYSGEN parameter SCSNODE) (String of 1-6 characters)</td>
</tr>
<tr>
<td>NSA$_SYSTEM_SERVICE_NAME</td>
<td>Name of the system service associated with the event (String of 1-256 characters)</td>
</tr>
<tr>
<td>NSA$_SYSTIM_NEW</td>
<td>New system time (Quadword)</td>
</tr>
<tr>
<td>NSA$_SYSTIM_OLD</td>
<td>Old system time (Quadword)</td>
</tr>
<tr>
<td>NSA$_TARGET_DEVICE_NAME</td>
<td>Target device name (String of 1-64 characters)</td>
</tr>
<tr>
<td>NSA$_TARGET_PROCESS_CLASS</td>
<td>The target process classification. (A 20-byte vector)</td>
</tr>
<tr>
<td>NSA$_TARGET_PROCESS_ID</td>
<td>Target process identifier (PID) (Longword)</td>
</tr>
<tr>
<td>NSA$_TARGET_PROCESS_NAME</td>
<td>Target process name (String of 1-64 characters)</td>
</tr>
<tr>
<td>NSA$_TARGET_PROCESS_OWNER</td>
<td>Target process owner (UIC) (Longword)</td>
</tr>
<tr>
<td>NSA$_TARGET_USERNAME</td>
<td>Target user name (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_TERMINAL</td>
<td>Name of the terminal to which the process was connected when the auditable event occurred (String of 1-256 characters)</td>
</tr>
<tr>
<td>NSA$_TIME_STAMP</td>
<td>The time that the event occurred (Quadword)</td>
</tr>
<tr>
<td>NSA$_TRANSPORT_NAME</td>
<td>Name of transport: interprocess communication (IPC), DECnet, or System Management Integrator (SMI), which handles requests from the SYSMAN utility (String of 1-256 characters)</td>
</tr>
<tr>
<td>NSA$_UAF_ADD</td>
<td>Name of the authorization record being added (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_UAF_COPY</td>
<td>Original and new names of the authorization record being copied (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_UAF_DELETE</td>
<td>Name of the authorization record being removed (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_UAF_FIELDS</td>
<td>Fields being changed in an authorization record and their new values. This is reserved to HP. (Quadword bit mask)</td>
</tr>
<tr>
<td>NSA$_UAF_MODIFY</td>
<td>Name of the authorization record being modified (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_UAF_RENAME</td>
<td>Name of the authorization record being renamed (String of 1-32 characters)</td>
</tr>
</tbody>
</table>
### Table F–5 (Cont.)  Types of Data in Audit Packets

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Packet Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA$_UAF_SOURCE</td>
<td>User name of the source record for an Authorize utility (AUTHORIZE) copy operation (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_USERNAME</td>
<td>User name of process causing the auditable event (String of 1-32 characters)</td>
</tr>
<tr>
<td>NSA$_VOLUME_NAME</td>
<td>Volume name (String of 1-15 characters)</td>
</tr>
<tr>
<td>NSA$_VOLUME_SET_NAME</td>
<td>Volume set name (String of 1-15 characters)</td>
</tr>
</tbody>
</table>
Valid Combinations of BACKUP Qualifiers

The following figures show the qualifiers that can be used in BACKUP save, restore, copy, compare and list operations. The figures also indicate valid combinations of BACKUP qualifiers.

- Figure G–1 shows command qualifiers used in save operations.
- Figure G–2 shows input file-selection qualifiers used in save operations.
- Figure G–3 shows output save-set qualifiers used in save operations.
- Figure G–4 shows command qualifiers used in restore operations.
- Figure G–5 shows input save-set qualifiers used in restore operations.
- Figure G–6 shows output file qualifiers used in restore operations.
- Figure G–7 shows command qualifiers used in copy operations.
- Figure G–8 shows input file-selection qualifiers used in copy operations.
- Figure G–9 shows output file qualifiers used in copy operations.
- Figure G–10 shows command qualifiers used in compare operations.
- Figure G–11 shows input file-selection qualifiers used in compare operations.
- Figure G–12 shows input save-set qualifiers used in compare operations.
Valid Combinations of BACKUP Qualifiers

Figure G–1 Command Qualifiers Used in Save Operations

<table>
<thead>
<tr>
<th>Command Qualifiers</th>
<th>/NOASSIST(^1)</th>
<th>/BRIEF(^2)</th>
<th>/DELETE</th>
<th>/FAST(^1)</th>
<th>/FULL(^1)</th>
<th>/IGNORE</th>
<th>/IMAGE</th>
<th>/NOINITIALIZE</th>
<th>/INTERCHANGE</th>
<th>/JOURNAL</th>
<th>/LIST</th>
<th>/NOINCREMENTAL</th>
<th>/NOLOG</th>
<th>/PHYSICAL</th>
<th>/RECORD</th>
<th>/VERIFY</th>
<th>/VOLUME(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>File–Selection Qualifiers</td>
<td></td>
</tr>
<tr>
<td>/BACKUP</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CONFIRM</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CREATED</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/EXPIRED</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/MODIFIED</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SINCE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>File Qualifiers</td>
<td></td>
</tr>
<tr>
<td>/BLOCK_SIZE</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/COMMENT</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/NOCRC</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/DENSITY(^8)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/GROUP_SIZE</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/LABEL(^7)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/PROTECTION</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/NOREWIND(^4)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SAVE_SET(^8)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/TAPE_EXPIRATION</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Use only when saving to magnetic tape save sets.
2 You must specify the /LIST qualifier with this qualifier.
3 When you specify /LIST with /LOG, direct the output from the list operation to a file.
4 You must specify /IMAGE with this qualifier.
5 Required when creating save sets on disk.
6 You must specify /REWIND with this qualifier.
Valid Combinations of BACKUP Qualifiers

Figure G–2  Input File-Selection Qualifiers Used in Save Operations

<table>
<thead>
<tr>
<th>Qualifiers</th>
<th>Y Y Y Y Y N Y N N Y</th>
<th>Y Y Y Y Y Y Y Y</th>
<th>Y Y Y Y Y Y N Y</th>
<th>Y Y Y Y Y Y Y Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BACKUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/BEFORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CONFIRM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/CREATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/EXPIRED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/MODIFIED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/SINCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Qualifiers</th>
<th>Y Y Y Y Y Y Y Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BLOCK_SIZE</td>
<td></td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td></td>
</tr>
<tr>
<td>/COMMENT</td>
<td></td>
</tr>
<tr>
<td>/[NO]CRC</td>
<td></td>
</tr>
<tr>
<td>/DENSITY</td>
<td></td>
</tr>
<tr>
<td>/GROUP_SIZE</td>
<td></td>
</tr>
<tr>
<td>/LABEL</td>
<td></td>
</tr>
<tr>
<td>/PROTECTION</td>
<td></td>
</tr>
<tr>
<td>/[NO]REWIND</td>
<td></td>
</tr>
<tr>
<td>/SAVE_SET</td>
<td></td>
</tr>
<tr>
<td>/TAPE_EXPIRATION</td>
<td></td>
</tr>
</tbody>
</table>

1 Use only when saving to magnetic tape save sets.
2 You must specify /REWIND with this qualifier.
3 Required when creating save sets on disk.
Valid Combinations of BACKUP Qualifiers

Figure G–3 Output Save-Set Qualifiers Used in Save Operations

<table>
<thead>
<tr>
<th>Input File Selection Qualifiers</th>
<th>Output Save-Set Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BACKUP</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/CONFIRM</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/CREATED</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/EXPIRED</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/MODIFIED</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
</tr>
</tbody>
</table>

1 Use only when saving to magnetic tape save sets.
2 You must specify /REWIND with this qualifier.
3 Required when creating save sets on disk.
### Figure G–4 Command Qualifiers Used in Restore Operations

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– Y Y Y Y N Y Y Y Y Y</td>
<td>Y – N Y Y Y Y N Y Y Y</td>
<td>Y N – Y Y Y Y N Y Y Y</td>
<td>Y Y Y Y – N Y Y N Y Y Y</td>
<td>N Y Y N – Y Y Y Y N Y Y Y</td>
<td>Y Y Y Y Y Y Y Y Y – Y</td>
<td>Y N N N N N N – N Y N</td>
<td>Y Y Y Y Y Y Y Y Y Y</td>
<td>Y Y Y Y N Y Y Y N Y Y –</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input Save–Set Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>/[NO]CRC</td>
</tr>
<tr>
<td>/LABEL[^1]</td>
</tr>
<tr>
<td>/[NO]REWIND[^1]</td>
</tr>
<tr>
<td>/SAVE_SET[^5]</td>
</tr>
<tr>
<td>/SELECT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output File Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BY_OWNER</td>
</tr>
<tr>
<td>/NEW_VERSION</td>
</tr>
<tr>
<td>/OVERLAY</td>
</tr>
<tr>
<td>/REPLACE</td>
</tr>
</tbody>
</table>

[^1]: Use only when restoring from magnetic tape save sets.
[^2]: You must specify the /LIST qualifier with this qualifier.
[^3]: When you specify /LIST with /LOG, direct the output from the list operation to a file.
[^4]: You must specify /IMAGE with this qualifier.
[^5]: Required when restoring save sets from disk.
**Valid Combinations of BACKUP Qualifiers**

**Figure G–5  Input Save-Set Qualifiers Used in Restore Operations**

<table>
<thead>
<tr>
<th>Input Save-Set Qualifiers</th>
<th>/[NO]CRC</th>
<th>/[NO]REWIND</th>
<th>SAVE_SET</th>
<th>SELECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>/[NO]CRC</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/[NO]REWIND ¹</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SAVE_SET ²</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
</tr>
<tr>
<td>SELECT</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output File Qualifiers</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BY_OWNER</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>NEW_VERSION</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>OVERLAY</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

¹ Use only when restoring from magnetic tape save sets.
² Required when restoring save sets from disk.

**Figure G–6  Output File Qualifiers Used in Restore Operations**

<table>
<thead>
<tr>
<th>Input Save-Set Qualifiers</th>
<th>BY_OWNER</th>
<th>NEW_VERSION</th>
<th>OVERLAY</th>
<th>REPLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/[NO]CRC</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/[NO]REWIND ¹</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SAVE_SET ²</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SELECT</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output File Qualifiers</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BY_OWNER</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>NEW_VERSION</td>
<td>Y</td>
<td>–</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>OVERLAY</td>
<td>Y</td>
<td>N</td>
<td>–</td>
<td>N</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>–</td>
</tr>
</tbody>
</table>

¹ Use only when restoring from magnetic tape save sets.
² Required when restoring save sets from disk.
## Valid Combinations of BACKUP Qualifiers

### Figure G–7 Command Qualifiers Used in Copy Operations

<table>
<thead>
<tr>
<th>Command Qualifiers</th>
<th>Input File-Selection Qualifiers</th>
<th>Output File Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BRIEF&lt;sup&gt;1&lt;/sup&gt;</td>
<td>– Y Y Y N Y Y Y Y Y Y Y N Y Y Y Y</td>
<td>/BY_OWNER Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/DELETE</td>
<td>Y – Y Y Y Y Y Y Y Y N N Y Y Y</td>
<td>/NEW_VERSION Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/FAST</td>
<td>Y Y – Y Y Y Y Y Y Y Y N Y Y Y</td>
<td>/OVERLAY Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/FULL&lt;sup&gt;1&lt;/sup&gt;</td>
<td>N Y – Y Y Y Y Y Y Y Y N Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/IGNORE</td>
<td>Y Y Y Y – Y Y Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/IMAGE</td>
<td>Y Y Y Y Y Y – Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/[NO]INITIALIZE</td>
<td>Y Y Y Y Y Y – Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/LIST</td>
<td>Y Y Y Y Y Y – Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/[NO]LOG</td>
<td>Y Y Y Y Y Y – Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/PHYSICAL</td>
<td>N N N N Y N N N N N Y N N Y N</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/RECORD</td>
<td>Y N Y Y Y Y Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/[NO]TRUNCATE</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/VERIFY</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
<tr>
<td>/VOLUME&lt;sup&gt;3&lt;/sup&gt;</td>
<td>Y Y Y Y Y Y Y Y Y Y Y Y Y</td>
<td>/REPLACE Y Y Y Y Y N Y Y Y Y N</td>
</tr>
</tbody>
</table>

1 You must specify the /LIST qualifier with this qualifier.
2 When you specify /LIST with /LOG, direct the output from the list operation to a file.
3 You must specify /IMAGE with this qualifier.
Valid Combinations of BACKUP Qualifiers

<table>
<thead>
<tr>
<th>Input File-Selection Qualifiers</th>
<th>/BACKUP</th>
<th>/BEFORE</th>
<th>/BY_OWNER</th>
<th>/CONFIRM</th>
<th>/CREATED</th>
<th>/EXCLUDE</th>
<th>/EXPIRED</th>
<th>/MODIFIED</th>
<th>/SINCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BACKUP</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/CONFIRM</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/CREATED</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/EXPIRED</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>–</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/MODIFIED</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output File Qualifiers</th>
<th>/BY_OWNER</th>
<th>/NEW_VERSION</th>
<th>/OVERLAY</th>
<th>/REPLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BY_OWNER</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/NEW_VERSION</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/OVERLAY</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/REPLACE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
## Valid Combinations of BACKUP Qualifiers

### Figure G–9  Output File Qualifiers Used in Copy Operations

<table>
<thead>
<tr>
<th>Input File–Selection Qualifiers</th>
<th>/BY_OWNER</th>
<th>/NEW_VERSION</th>
<th>/OVERLAY</th>
<th>/REPLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BACKUP</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/BY_OWNER</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/CONFIRM</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/CREATED</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/EXPIRED</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/MODIFIED</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output File Qualifiers</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>/BY_OWNER</td>
<td>–</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/NEW_VERSION</td>
<td>Y</td>
<td>–</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>/OVERLAY</td>
<td>Y</td>
<td>N</td>
<td>–</td>
<td>N</td>
</tr>
<tr>
<td>/REPLACE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>–</td>
</tr>
</tbody>
</table>

ZK–0945A–GE
## Valid Combinations of BACKUP Qualifiers

### Figure G–10 Command Qualifiers Used in Compare Operations

<table>
<thead>
<tr>
<th>Command Qualifiers</th>
<th>/NO\ASSIST</th>
<th>/BRIEF</th>
<th>/COMPARE</th>
<th>/FAST</th>
<th>/FULL</th>
<th>/IMAGE</th>
<th>/LIST</th>
<th>/NO\LOG</th>
<th>/PHYSICAL</th>
<th>/VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>/NO\ASSIST^1</td>
<td>Y Y Y Y Y Y</td>
<td>- Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/BRIEF^2</td>
<td>Y Y Y Y Y Y</td>
<td>Y - Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/COMPARE</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/FAST</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/FULL^2</td>
<td>Y Y Y Y Y Y</td>
<td>Y N Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/IMAGE</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/LIST</td>
<td>Y Y Y Y Y Y</td>
<td>Y N Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/NO\LOG</td>
<td>Y Y Y Y Y Y</td>
<td>Y N Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/PHYSICAL</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/VOLUME^4</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
</tbody>
</table>

### Input File–Selection Qualifiers

<table>
<thead>
<tr>
<th>Qualifiers</th>
<th>Y Y Y Y Y Y</th>
<th>Y Y Y Y</th>
<th>Y Y Y Y Y Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BY_OWNER</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Y Y Y Y Y Y</td>
<td>Y Y Y Y</td>
<td>Y Y Y Y Y Y</td>
</tr>
</tbody>
</table>

---

1 Use only when comparing magnetic tape save sets.
2 You must specify the /LIST qualifier with this qualifier.
3 When you specify /LIST with /LOG, direct the output from the list operation to a file.
4 You must specify /IMAGE with this qualifier.
**Valid Combinations of BACKUP Qualifiers**

**Figure G–11 Input File-Selection Qualifiers Used in Compare Operations**

<table>
<thead>
<tr>
<th>Input File–Selection Qualifiers</th>
<th>/BY_OWNER</th>
<th>/BEFORE</th>
<th>/EXCLUDE</th>
<th>/SINCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BY_OWNER</td>
<td>—</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Y</td>
<td>—</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Y</td>
<td>Y</td>
<td>—</td>
<td>Y</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>—</td>
</tr>
</tbody>
</table>

**Input Save–Set Qualifiers**

<table>
<thead>
<tr>
<th>/[NO]REWIND¹</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SAVE_SET²</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/SELECT</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

¹ Use only when comparing magnetic tape save sets.
² Required when comparing save sets on disk.

---

**Figure G–12 Input Save-Set Qualifiers Used in Compare Operations**

<table>
<thead>
<tr>
<th>Input File–Selection Qualifiers</th>
<th>/[NO]REWIND</th>
<th>/SAVE_SET</th>
<th>/SELECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BY_OWNER</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/BEFORE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/EXCLUDE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>/SINCE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

**Input Save–Set Qualifiers**

<table>
<thead>
<tr>
<th>/[NO]REWIND¹</th>
<th>—</th>
<th>Y</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SAVE_SET²</td>
<td>Y</td>
<td>—</td>
<td>Y</td>
</tr>
<tr>
<td>/SELECT</td>
<td>Y</td>
<td>Y</td>
<td>—</td>
</tr>
</tbody>
</table>

¹ Use only when comparing magnetic tape save sets.
² Required when comparing save sets on disk.
Index

A

Access control
required by ACL editor,  Vol. 1: A-L, 1–4
with Identifier ACEs,  Vol. 1: A-L, 1–14
Access control entries
See ACEs
Access control list editor
See ACL editor
Access control lists
See ACLs
Accounting
ACCOUNTING command,  Vol. 1: A-L, 2–3
Accounting files
copying records between,  Vol. 1: A-L, 2–8, 2–24
processing to produce reports,  Vol. 1: A-L, 2–9, 2–12, 2–33
record format of,  Vol. 1: A-L, C–1
types of record in,  Vol. 1: A-L, 2–37
Accounting reports
brief reports,  Vol. 1: A-L, 2–9
full reports,  Vol. 1: A-L, 2–12
summary reports,  Vol. 1: A-L, 2–33
Accounting utility (ACCOUNTING),  Vol. 1: A-L, 2–3
ACEs (access control entries),  Vol. 1: A-L, 1–3, 1–5
Creator ACEs,  Vol. 1: A-L, 1–10
Default Protection ACEs,  Vol. 1: A-L, 1–12
Identifier ACEs,  Vol. 1: A-L, 1–14
relationship to ACLs,  Vol. 1: A-L, 1–3
security alarm,  Vol. 1: A-L, 1–6
security audit,  Vol. 1: A-L, 1–8
Subsystem ACEs,  Vol. 1: A-L, 1–16
ACL qualifiers,  Vol. 1: A-L, 1–18 to 1–23
/CLASS qualifier,  Vol. 1: A-L, 1–19
control access to objects,  Vol. 1: A-L, 1–4
customizing,  Vol. 1: A-L, B–1
exiting from,  Vol. 1: A-L, 1–4
file format required,  Vol. 1: A-L, 1–4
how to use,  Vol. 1: A-L, 1–3
ACL editor (cont’d)
keypad editing,  Vol. 1: A-L, A–1
/MODE qualifier,  Vol. 1: A-L, 1–21
object ownership,  Vol. 1: A-L, 1–4
privileges required,  Vol. 1: A-L, 1–4
prompting by,  Vol. 1: A-L, A–1
specifying file type,  Vol. 1: A-L, 1–4
specifying object class,  Vol. 1: A-L, 1–4
wildcard restriction,  Vol. 1: A-L, 1–4
ACLs (access control lists)
list of supported object classes,  Vol. 1: A-L, 1–3
relationship to ACEs,  Vol. 1: A-L, 1–3
ACL section files,  Vol. 1: A-L, B–1
ACP system parameters
See also System parameters
ACP_BASEPRIO,  Vol. 2: M-Z, C–7
ACP_DATACHECK,  Vol. 2: M-Z, C–7
ACP_DINDXCACHE,  Vol. 2: M-Z, C–8
ACP_DIRCACHE,  Vol. 2: M-Z, C–8
ACP_EXTCACHE,  Vol. 2: M-Z, C–8
ACP_EXTLIMIT,  Vol. 2: M-Z, C–8
ACP_FIDCACHE,  Vol. 2: M-Z, C–9
ACP_HDRCACHE,  Vol. 2: M-Z, C–9
ACP_MAPCACHE,  Vol. 2: M-Z, C–9
ACP_MAXREAD,  Vol. 2: M-Z, C–9
ACP_MULTIPLE,  Vol. 2: M-Z, C–9
ACP_QUOCACHE,  Vol. 2: M-Z, C–9
ACP_REBLDSYSD,  Vol. 2: M-Z, C–9
ACP_SHARE,  Vol. 2: M-Z, C–9
ACP_SWAPFLGS,  Vol. 2: M-Z, C–9
ACP_SYSACC,  Vol. 2: M-Z, C–10
ACP_WINDOW,  Vol. 2: M-Z, C–10
ACP_WORKSET,  Vol. 2: M-Z, C–10
ACP_WRITEBACK,  Vol. 2: M-Z, C–10
ACP_XQP_RES,  Vol. 2: M-Z, C–10
Actual node name,  Vol. 1: A-L, 14–63
Actual port name,  Vol. 1: A-L, 14–63
Actual service name,  Vol. 1: A-L, 14–63
Adapters
See Bus adapters
ADD (Field) command
   in Show Cluster utility, Vol. 2: M-Z, 5–32
ADD/IDENTIFIER command
   in Authorize utility, Vol. 1: A-L, 5–21
ADD/PROXY command
   in Authorize utility, Vol. 1: A-L, 5–23
ADD CIRCUITS command
   in Show Cluster utility, Vol. 2: M-Z, 5–23
ADD CLUSTER command
   in Show Cluster utility, Vol. 2: M-Z, 5–25
ADD command
   in Install utility, Vol. 1: A-L, 12–6
ADD CONNECTIONS command
   in Show Cluster utility, Vol. 2: M-Z, 5–27
ADD COUNTERS command
   in Show Cluster utility, Vol. 2: M-Z, 5–29
ADD CREDITS command
   in Show Cluster utility, Vol. 2: M-Z, 5–31
ADD DEVICE command
   in UCM, Vol. 2: M-Z, 8–12
ADD ERRORS command
   in Show Cluster utility, Vol. 2: M-Z, 5–32
ADD LOCAL_PORTS command
   in Show Cluster utility, Vol. 2: M-Z, 5–35
ADD MEMBERS command
   in Show Cluster utility, Vol. 2: M-Z, 5–37
ADD SYSTEMS command
   in Show Cluster utility, Vol. 2: M-Z, 5–38
AFFINITY_SKIP system parameter, Vol. 2: M-Z, C–11
AFFINITY_TIME system parameter, Vol. 2: M-Z, C–11
AGEN$FEEDBACK.DAT file, Vol. 1: A-L, 6–8, 6–9
AGEN$FEEDBACK.EXE file, Vol. 1: A-L, 6–8
AGEN$PARAMS.REPORT file, Vol. 1: A-L, 6–10
Alarm ACEs, Vol. 1: A-L, 1–6
specifying access
   specifying attributes for, Vol. 1: A-L, 1–6
Alarm messages
See Security alarm messages
ALF (automatic login facility)
adding records, Vol. 2: M-Z, 7–12
displaying records, Vol. 2: M-Z, 7–16
removing records, Vol. 2: M-Z, 7–14
ALF ADD command
   in SYSMAN, Vol. 2: M-Z, 7–12
ALF REMOVE command
   in SYSMAN, Vol. 2: M-Z, 7–14
ALF SHOW command
   in SYSMAN, Vol. 2: M-Z, 7–16
/ALIAS qualifier
   in Backup utility, Vol. 1: A-L, 7–15
ALLOCCLASS system parameter, Vol. 2: M-Z, C–11
ALPHAVMSSYS.OLD file, Vol. 1: A-L, 6–11
ALPHAVMSSYS.PAR file, Vol. 1: A-L, 6–11
ANALYZE/AUDIT command, Vol. 1: A-L, 4–4
See also Audit Analysis utility
/BINARY qualifier, Vol. 1: A-L, 4–6
/FULL qualifier, Vol. 1: A-L, 4–10
/IGNORE qualifier, Vol. 1: A-L, 4–11
/INTERACTIVE qualifier, Vol. 1: A-L, 4–12
/SUMMARY qualifier, Vol. 1: A-L, 4–26
ANALYZE/DISK_STRUCTURE utility
ANALYZE/DISK_STRUCTURE stages, Vol. 1: A-L, D–1
Analyse/Disk_Structure utility (ANALYZE/DISK_STRUCTURE)
examining shadow sets, Vol. 1: A-L, 3–17
preventing updates to a volume, Vol. 1: A-L, 3–12
qualifiers, Vol. 1: A-L, 3–7 to 3–21
/NO|CONFIRM, Vol. 1: A-L, 3–9
/NO|LIST, Vol. 1: A-L, 3–11
/NO|LOCK_VOLUME, Vol. 1: A-L, 3–12
/NO|READ_CHECK, Vol. 1: A-L, 3–14
/NO|REPAIR, Vol. 1: A-L, 3–16
/USAGE, Vol. 1: A-L, 3–21
repairing disk errors, Vol. 1: A-L, 3–4, 3–16
reporting disk errors, Vol. 1: A-L, 3–4
requirements and limitations, Vol. 1: A-L, 3–7
See also the Error Log Viewer (ELV)
ANALYZE/ERROR_LOG command, Vol. 1: A-L, 10–3
See also the Error Log Report Formatter (ERF) utility
displaying, Vol. 1: A-L, 14–61
mapping, Vol. 1: A-L, 14–45
defined, Vol. 1: A-L, 14–17
setting up, Vol. 1: A-L, 14–43
/ARB_SUPPORT
qualifier for CREATE command, Vol. 1: A-L, 12–7, 12–23
ARB_SUPPORT system parameter, Vol. 2: M-Z, C–11
Arrow keys
definition, Vol. 2: M-Z, 5–71
functions of, Vol. 2: M-Z, B–3
/ASSIST qualifier in Backup utility, Vol. 1: A-L, 7–16
Asterisk ( * ) as wildcard character, Vol. 1: A-L, 7–8
Asynchronous device
LAT application ports for, Vol. 1: A-L, 14–11, 14–43
ATTACH command in LATCP, Vol. 1: A-L, 14–5
in SYSMAN, Vol. 2: M-Z, 7–17
Attributes
Holder Hidden, Vol. 1: A-L, 5–21, 5–52, 5–74
Name Hidden, Vol. 1: A-L, 5–21, 5–52, 5–74
No Access, Vol. 1: A-L, 5–21, 5–52, 5–74
specifying identifier characteristics, Vol. 1: A-L, 1–17
Audit ACEs, Vol. 1: A-L, 1–8
specifying access, Vol. 1: A-L, 1–9
specifying attributes, Vol. 1: A-L, 1–8
Audit Analysis utility (ANALYZE/AUDIT), Vol. 1: A-L, 4–3 to 4–38
CONTINUE command, Vol. 1: A-L, 4–29
default input file, Vol. 1: A-L, 4–4
directing output, Vol. 1: A-L, 4–4
DISPLAY command, Vol. 1: A-L, 4–30
EXIT command, Vol. 1: A-L, 4–32
exiting from, Vol. 1: A-L, 4–4, 4–32
HELP command, Vol. 1: A-L, 4–33
interactive commands, Vol. 1: A-L, 4–12, 4–28
invoking, Vol. 1: A-L, 4–4
LIST command, Vol. 1: A-L, 4–34
POSITION command, Vol. 1: A-L, 4–37
qualifiers, Vol. 1: A-L, 4–4
selecting by access type, Vol. 1: A-L, 4–15
selecting by account name, Vol. 1: A-L, 4–15
selecting by device name, Vol. 1: A-L, 4–16
selecting by facility, Vol. 1: A-L, 4–16
selecting by identifier, Vol. 1: A-L, 4–17
selecting by identifier holder, Vol. 1: A-L, 4–17
Audit Analysis utility (ANALYZE/AUDIT) (cont’d)
selecting by image name, Vol. 1: A-L, 4–18
selecting by installation event, Vol. 1: A-L, 4–18
selecting by local proxy account, Vol. 1: A-L, 4–18
selecting by network attribute, Vol. 1: A-L, 4–22
selecting by object, Vol. 1: A-L, 4–20
selecting by parent process, Vol. 1: A-L, 4–21
selecting by privilege, Vol. 1: A-L, 4–21
selecting by process, Vol. 1: A-L, 4–21
selecting by system characteristic, Vol. 1: A-L, 4–23
selecting by terminal name, Vol. 1: A-L, 4–23
selecting by user name, Vol. 1: A-L, 4–23
SHOW command, Vol. 1: A-L, 4–38
Audit data packets
See Security audit data packets
Audit event flags
See Security audit event messages
Audit header packets
See Security audit header packets
Auditing security records
See Security audit records
Audit log files
See Security audit log files
Audit messages
See Security audit event messages
Audit reports
See Security audit reports
AUTHORIZE command
See Authorize utility
Authorized privileges
assigning to known images, Vol. 1: A-L, 12–24
Authorize utility (AUTHORIZE)
ADD/IDENTIFIER command, Vol. 1: A-L, 5–21
commands summary (table), Vol. 1: A-L, 5–6
controlling access with identifiers, Vol. 1: A-L, 1–14
CREATE RIGHTS command, Vol. 1: A-L, 5–38
EXIT command, Vol. 1: A-L, 5–51
GRANT/IDENTIFIER command, Vol. 1: A-L, 5–52
Authorize utility (AUTHORIZE) (cont’d)
HELP command, Vol. 1: A-L, 5–54
invoking, Vol. 1: A-L, 5–4
LIST/IDENTIFIER command, Vol. 1: A-L, 5–58
LIST/PROXY command, Vol. 1: A-L, 5–60
LIST command, Vol. 1: A-L, 5–56
MODIFY/IDENTIFIER command, Vol. 1: A-L, 5–58
MODIFY/PROXY command, Vol. 1: A-L, 5–74
MODIFY/SYSTEM_PASSWORD command, Vol. 1: A-L, 5–76
MODIFY/SYSTEM_PASSWORD command, Vol. 1: A-L, 5–78
privileges required, Vol. 1: A-L, 5–3
REMOVE/PROXY command, Vol. 1: A-L, 5–81
REMOVE command, Vol. 1: A-L, 5–79
permissions required, Vol. 1: A-L, 5–2
RENAME command, Vol. 1: A-L, 5–86
restrictions, Vol. 1: A-L, 5–3
REVOKE/IDENTIFIER command, Vol. 1: A-L, 5–84
Autoconfiguration
Alpha devices, Vol. 2: M-Z, 7–69
VAXstation 2000 (table), Vol. 2: M-Z, D–7
AUTOCONFIGURE command
in SYSGEN, Vol. 2: M-Z, 6–5
AUTOGEN
NEWPARAMS.DAT file, Vol. 1: A-L, 6–3
AUTOGEN.COM command procedure, Vol. 1: A-L, 6–3
calculation of parameter values, Vol. 1: A-L, 6–10
collection of data, Vol. 1: A-L, 6–9, 6–10
displaying page, swap, and dump file size calculations, Vol. 1: A-L, 6–10
default, Vol. 1: A-L, 6–13
end phase
specifying when invoking, Vol. 1: A-L, 6–13
examining calculations of, Vol. 1: A-L, 6–7
execution mode
specifying when invoking, Vol. 1: A-L, 6–13
feedback, Vol. 1: A-L, 6–3, 6–8
collection of, Vol. 1: A-L, 6–8
data file, Vol. 1: A-L, 6–8
AUTOGEN.COM command procedure
feedback (cont’d)
parameters affected by, Vol. 1: A-L, 6–8
files used by, Vol. 1: A-L, 6–12
 generation of known image file list (VMSIMAGES.DAT), Vol. 1: A-L, 6–10
GENFILES phase, Vol. 1: A-L, 6–11
GENPARAMS phase, Vol. 1: A-L, 6–10
GETDATA phase, Vol. 1: A-L, 6–10
HELP phase, Vol. 1: A-L, 6–12
input files, Vol. 1: A-L, 6–12
invoking, Vol. 1: A-L, 6–13
operations performed by, Vol. 1: A-L, 6–9
output files, Vol. 1: A-L, 6–12
parameters to, Vol. 1: A-L, 6–13
phases, Vol. 1: A-L, 6–9
specifying when invoking, Vol. 1: A-L, 6–13
REBOOT phase, Vol. 1: A-L, 6–11
restriction with changing system files sizes, Vol. 1: A-L, 6–11
SAVPARAMS phase, Vol. 1: A-L, 6–9
SETPARAMS phase, Vol. 1: A-L, 6–11
SHUTDOWN phase, Vol. 1: A-L, 6–11
start phase
default, Vol. 1: A-L, 6–13
specifying when invoking, Vol. 1: A-L, 6–13
system parameters affected by, Vol. 1: A-L, 6–7
system parameters affected by feedback, Vol. 1: A-L, 6–8
TESTFILES phase, Vol. 1: A-L, 6–10
when to run, Vol. 1: A-L, 6–6
AUTOGEN.PAR, Vol. 1: A-L, 6–9, 6–11
Automatic login facility
See ALF
AUTO_DLIGHT_SAV system parameter, Vol. 2: M-Z, C–12
AWSMIN system parameter, Vol. 2: M-Z, C–12
AWSTIME system parameter, Vol. 2: M-Z, C–12

B
Backlinks
directory
See Image backup
See Incremental backup
See Standalone BACKUP
See Backup utility
See element lists
See backup utility
See element lists
See Image backup
See Incremental backup
See Standalone BACKUP
BACKUP command, Vol. 1: A-L, 7–5 to 7–96
See also Backup utility
See element lists
See Image backup
See Incremental backup
See Standalone BACKUP
BACKUP command (cont’d)
format, Vol. 1: A-L, 7–5
input specifier, Vol. 1: A-L, 7–5
output specifier, Vol. 1: A-L, 7–5
specifying wildcard characters, Vol. 1: A-L, 7–8
types of qualifiers, Vol. 1: A-L, 7–7
using with save sets, Vol. 1: A-L, 7–5

/BACKUP qualifier
in Backup utility, Vol. 1: A-L, 7–17

Backup utility (BACKUP)
command line qualifiers, Vol. 1: A-L, 7–7
call command syntax, Vol. 1: A-L, 7–5
compare operation for, Vol. 1: A-L, 7–26
/DELETE qualifier, Vol. 1: A-L, 7–33
directing output from, Vol. 1: A-L, 7–11
exiting from, Vol. 1: A-L, 7–11
improving the speed of, Vol. 1: A-L, 7–41
invoking, Vol. 1: A-L, 7–11

/BUFFER_COUNT qualifier in Backup utility, Vol. 1: A-L, 7–21

Buffers per-connection
allocating, Vol. 2: M-Z, C–14

BUGCHECK
dumps System Dump Priority processes early, Vol. 2: M-Z, 7–57
in-memory hardcoded list of priority processes, Vol. 2: M-Z, 7–57

BUGCHECKFATAL system parameter, Vol. 2: M-Z, C–13
BUGREBOOT system parameter, Vol. 2: M-Z, C–13

Bus adapters
generic names, Vol. 2: M-Z, 6–31
listing, Vol. 2: M-Z, 6–31
nexus numbers, Vol. 2: M-Z, 6–31
specifying, Vol. 2: M-Z, 6–5, 6–10

Buses display on Alpha systems, Vol. 2: M-Z, 7–87

/BY_NODE qualifier
in Monitor utility, Vol. 2: M-Z, 1–12

/BY_OWNER qualifier as Backup utility input file qualifier, Vol. 1: A-L, 7–22
as Backup utility output file qualifier, Vol. 1: A-L, 7–23

.Channel COUNT system parameter, Vol. 2: M-Z, C–12

Batch execution
on remote nodes, Vol. 2: M-Z, 7–5

/BEFORE qualifier
in Backup utility, Vol. 1: A-L, 7–18

/BEGINNING qualifier, Vol. 2: M-Z, 5–15
in Monitor utility, Vol. 2: M-Z, 1–12

Binary output from Audit Analysis utility, Vol. 1: A-L, 4–6


/BLOCK_SIZE qualifier
in Backup utility, Vol. 1: A-L, 7–19

Bootstrap operations, Vol. 2: M-Z, 6–3

BORROWLIM system parameter, Vol. 2: M-Z, C–12

Break-in attempts
LAT protocol, Vol. 2: M-Z, C–27

BREAKPOINTS system parameter, Vol. 2: M-Z, C–13

Brief format listings, Vol. 1: A-L, 4–7

/BRIEF qualifier
in Backup utility, Vol. 1: A-L, 7–20

Brief report example, Vol. 1: A-L, 9–34

Balsect COUNT system parameter, Vol. 2: M-Z, C–12

Batch execution on remote nodes, Vol. 2: M-Z, 7–5

/BUFFER_COUNT qualifier
in Backup utility, Vol. 1: A-L, 7–21

BUGCHECK
dumps System Dump Priority processes early, Vol. 2: M-Z, 7–57
in-memory hardcoded list of priority processes, Vol. 2: M-Z, 7–57

BUGCHECKFATAL system parameter, Vol. 2: M-Z, C–13
Bugreboot system parameter, Vol. 2: M-Z, C–13

Bus adapters
generic names, Vol. 2: M-Z, 6–31
listing, Vol. 2: M-Z, 6–31
nexus numbers, Vol. 2: M-Z, 6–31
specifying, Vol. 2: M-Z, 6–5, 6–10

Buses display on Alpha systems, Vol. 2: M-Z, 7–87

/BY_NODE qualifier
in Monitor utility, Vol. 2: M-Z, 1–12

/BY_OWNER qualifier as Backup utility input file qualifier, Vol. 1: A-L, 7–22
as Backup utility output file qualifier, Vol. 1: A-L, 7–23

C

Changing page, swap, and dump file sizes, Vol. 1: A-L, 6–3


CHANNELCNT system parameter, Vol. 2: M-Z, C–13

Checksumming enabling on VCs, Vol. 2: M-Z, 4–19

CHECK_CLUSTER system parameter, Vol. 2: M-Z, C–13

CIRCUITS class
adding, Vol. 2: M-Z, 5–23
fields belonging to, Vol. 2: M-Z, 5–3
removing, Vol. 2: M-Z, 5–52

Circuit timer, Vol. 1: A-L, 14–33

Classes
SHOW CLUSTER, Vol. 2: M-Z, 5–3

Classname qualifier
in Monitor utility

/ALL, Vol. 2: M-Z, 1–56
/CPU, Vol. 2: M-Z, 1–42
/TOPBIO, Vol. 2: M-Z, 1–50
/TOPCPU, Vol. 2: M-Z, 1–50
Classname qualifier
  in Monitor utility (cont’d)
    /TOPDIO, Vol. 2: M-Z, 1–50
    /TOPFAULT, Vol. 2: M-Z, 1–50
    /TOPRBS, Vol. 2: M-Z, 1–50
Class scheduler database, Vol. 2: M-Z, 7–20
CLASS_PROT system parameter, Vol. 2: M-Z, C–13
CLASS_SCHEDULE ADD command
  in SYSMAN, Vol. 2: M-Z, 7–19
CLASS_SCHEDULE DELETE command
  in SYSMAN, Vol. 2: M-Z, 7–24
CLASS_SCHEDULE MODIFY command
  in SYSMAN, Vol. 2: M-Z, 7–25
CLASS_SCHEDULE RESUME command
  in SYSMAN, Vol. 2: M-Z, 7–27
CLASS_SCHEDULE SHOW command
  in SYSMAN, Vol. 2: M-Z, 7–28
CLASS_SCHEDULE SUSPEND command
  in SYSMAN, Vol. 2: M-Z, 7–29
CLEAR DEVICE command
CLEAR DLL command
CLEAR NODE command
CLISYMTBL system parameter, Vol. 2: M-Z, C–13
CLOCK_INTERVAL system parameter, Vol. 2: M-Z, C–13
CLOSE LOG command
  in LMCP, Vol. 1: A-L, 15–4
CLU$PARAMS.DAT file, Vol. 1: A-L, 6–4
CLUE
  See Crash Log Utility Extractor
CLUSTER class
  adding, Vol. 2: M-Z, 5–25
  fields belonging to, Vol. 2: M-Z, 5–5, 5–33
  of data, Vol. 2: M-Z, 5–3
  removing, Vol. 2: M-Z, 5–53
CLUSTER class record
  in Monitor utility, Vol. 2: M-Z, A–11
Cluster performance statistics
  in Monitor utility, Vol. 2: M-Z, 1–19
CLUSTER_AUTHORIZE.DAT files, Vol. 2: M-Z, 7–30, 7–34
CLUSTER_CONFIG.COM command procedure, Vol. 2: M-Z, 7–30
CLUSTER_CREDITS system parameter, Vol. 2: M-Z, C–14
Command mode for Audit Analysis utility
  manipulating the display interactively, Vol. 1: A-L, 4–12, 4–28
Command procedures (cont’d)
  building, Vol. 2: M-Z, 5–64
  control for SHOW CLUSTER output, Vol. 2: M-Z, 5–13
  correcting system time, Vol. 2: M-Z, 7–32
Command procedures (cont’d)
  in SYSMAN, Vol. 2: M-Z, 7–10
executing at system startup, Vol. 2: M-Z, 7–133
executing DCL commands with DO, Vol. 2: M-Z, 7–53
parameters for, Vol. 1: A-L, 13–6
Commands
Command summary
/COMMENT qualifier
  in Monitor utility, Vol. 2: M-Z, 1–12
Compaction of data
  See Data compaction
Compare operations
  for BACKUP, Vol. 1: A-L, 7–26
/COMPARE qualifier
  in Backup utility, Vol. 1: A-L, 7–26
CONCEAL_DEVICES system parameter, Vol. 2: M-Z, C–14
CONFIGURATION SET CLUSTER_AUTHORIZATION command
  in SYSMAN, Vol. 2: M-Z, 7–30
CONFIGURATION SET TIME command
  in SYSMAN, Vol. 2: M-Z, 7–32
CONFIGURATION SHOW CLUSTER_AUTHORIZATION command
  in SYSMAN, Vol. 2: M-Z, 7–34
CONFIGURATION SHOW TIME command
  in SYSMAN, Vol. 2: M-Z, 7–35
Configuration tables
  rebuilding on Alpha systems, Vol. 2: M-Z, 7–81, 7–84
CONFIGURE command
  in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–6
  in SYSGEN, Vol. 2: M-Z, 6–8
Configuring a printer, Vol. 1: A-L, 14–11
/CONFIRM qualifier
CONNECT/ADAPTER command
  in SYSGEN, Vol. 2: M-Z, 6–10
CONNECT command
  in Point-to-Point Protocol utility, Vol. 2: M-Z, 2–5
Connecting devices, Vol. 2: M-Z, 6–5, 6–10
  on Alpha systems, Vol. 2: M-Z, 7–71
Connections
Connections (cont’d)
specifying type with LATCP, Vol. 1: A-L, 14–34

CONNECTIONS class
adding or restoring, Vol. 2: M-Z, 5–27
fields belonging to, Vol. 2: M-Z, 5–5
removing, Vol. 2: M-Z, 5–54

CONNECT NODE command
in AuditCP utility, Vol. 1: A-L, 13–10

CONTINUE command
in Audit Analysis utility, Vol. 1: A-L, 4–29

CONVERT command
in LANCP utility, Vol. 1: A-L, 13–10

CONTINUE command
in Audit Analysis utility, Vol. 1: A-L, 4–29

CONVERT qualifier, Vol. 2: M-Z, 5–16

CONTINUE command
in Audit Analysis utility, Vol. 1: A-L, 4–29

CRDENABLE system parameter, Vol. 2: M-Z, C–15

CRD_CONTROL system parameter, Vol. 2: M-Z, C–14

CREATE/PROXY command
in Authorize utility, Vol. 1: A-L, 5–37

CREATE/RIGHTS command
in Authorize utility, Vol. 1: A-L, 5–38

CREATE command
in Install utility, Vol. 1: A-L, 12–7

/CONTINUOUS qualifier
in Backup utility, Vol. 1: A-L, 7–30

COUNTERS class
adding, Vol. 2: M-Z, 5–29
fields belonging to, Vol. 2: M-Z, 5–7
removing, Vol. 2: M-Z, 5–56

Creator ACEs
specifying access, Vol. 1: A-L, 1–11
specifying attributes, Vol. 1: A-L, 1–10

CREDITS class
adding, Vol. 2: M-Z, 5–31
fields belonging to, Vol. 2: M-Z, 5–7
removing, Vol. 2: M-Z, 5–57

CSR (Control and Status Register)
addresses, Vol. 2: M-Z, 6–8, 6–10
display on Alpha systems, Vol. 2: M-Z, 7–87
fixed space, Vol. 2: M-Z, D–1
floating space, Vol. 2: M-Z, D–1
vector addresses, Vol. 2: M-Z, 6–10

CTLIMGLIM system parameter, Vol. 2: M-Z, C–15

CTLPAGES system parameter, Vol. 2: M-Z, C–15

CWCOREPRC_ENABLE system parameter, Vol. 2: M-Z, C–15

D

Data compaction
by AUTOGEN, Vol. 1: A-L, 6–10

Data field
Vol. 2: M-Z, 5–3

Data link
creating with LATCP, Vol. 1: A-L, 14–7
modifying LAT characteristics of, Vol. 1: A-L, 14–31
number supported by LAT software, Vol. 1: A-L, 14–9
DECevent utility

brief report example, Vol. 1: A-L, 9–34


device classes, Vol. 1: A-L, 9–17
including, Vol. 1: A-L, 9–22

device name, Vol. 1: A-L, 9–22
including, Vol. 1: A-L, 9–22

device name constructs, Vol. 1: A-L, 9–17

/DUMP qualifier, Vol. 1: A-L, 9–10

/ENTRY qualifier, Vol. 1: A-L, 9–16

entry type
including, Vol. 1: A-L, 9–22


/events reported

/examples


/FULL qualifier, Vol. 1: A-L, 9–21

/full report example, Vol. 1: A-L, 9–33


/informational messages, Vol. 1: A-L, 9–25


/output
binary format, Vol. 1: A-L, 9–8


/QUALIFIER
 qualifiers, Vol. 1: A-L, 9–4 to 9–32

DECevent utility (cont’d)


terse, Vol. 1: A-L, 9–32

/reject (FSTERR), Vol. 1: A-L, 9–20

/full, Vol. 1: A-L, 9–21


DECnet


/device classes, Vol. 1: A-L, 9–17


/device name constructs, Vol. 1: A-L, 9–17

/DUMP qualifier, Vol. 1: A-L, 9–10

/ENTRY qualifier, Vol. 1: A-L, 9–16


/FULL qualifier, Vol. 1: A-L, 9–21

/full report example, Vol. 1: A-L, 9–33


/informational messages, Vol. 1: A-L, 9–25


/output
binary format, Vol. 1: A-L, 9–8


/QUALIFIER

/QUALIFIER
 qualifiers, Vol. 1: A-L, 9–4 to 9–32

DECServers

changing device characteristics, Vol. 1: A-L, 14–10, 14–43

Device protection


Default Protection ACEs, Vol. 1: A-L, 1–10, 1–12

Default user authorization records

modifying, Vol. 1: A-L, 5–49

DEFINE/KEY command, Vol. 2: M-Z, B–3

in LATCP, Vol. 1: A-L, 14–19
in Show Cluster utility, Vol. 2: M-Z, 5–40
in SYSMAN, Vol. 2: M-Z, 7–36

DEFINE DEVICE command


DEFINE NODE command


Defining keys, Vol. 2: M-Z, 7–36
to execute SYSMAN commands, Vol. 2: M-Z, 7–36

DEFMBXBUFQUO system parameter, Vol. 2: M-Z, C–16
DISKQUOTA CREATE command
in SYSMAN, Vol. 2: M-Z, 7–40
DISKQUOTA DELETE command
See DISKQUOTA REMOVE
in SYSMAN, Vol. 2: M-Z, 7–42
DISKQUOTA DISABLE command
in SYSMAN, Vol. 2: M-Z, 7–43
DISKQUOTA ENABLE command
in SYSMAN, Vol. 2: M-Z, 7–45
DISKQUOTA MODIFY command
in SYSMAN, Vol. 2: M-Z, 7–47
DISKQUOTA REBUILD command
in SYSMAN, Vol. 2: M-Z, 7–49
DISKQUOTA REMOVE command
in SYSMAN, Vol. 2: M-Z, 7–50

Disk quotas
creating, Vol. 2: M-Z, 7–40
disabling, Vol. 2: M-Z, 7–43
displaying, Vol. 2: M-Z, 7–52
file
adding entry, Vol. 2: M-Z, 7–38
initializing usage count, Vol. 2: M-Z, 7–38
modifying an entry, Vol. 2: M-Z, 7–47
rebuilding, Vol. 2: M-Z, 7–49
removing an entry, Vol. 2: M-Z, 7–42, 7–50

DISKQUOTA SHOW command
in SYSMAN, Vol. 2: M-Z, 7–52

Disk statistics
in Monitor utility, Vol. 2: M-Z, 7–40
creating
example, Vol. 1: A-L, 3–21

Disk volumes
repairing errors, Vol. 1: A-L, 3–16

DISK_QUORUM system parameter, Vol. 2: M-Z, C–18

DISPLAY command
in Audit Analysis utility, Vol. 1: A-L, 4–30
/DISPLAY qualifier
in Monitor utility, Vol. 2: M-Z, 1–13
Displays
refreshing screen with LATCP, Vol. 1: A-L, 14–29
Displays from SHOW CLUSTER
display formatting, Vol. 2: M-Z, 5–13

Distributed lock management statistics
in Monitor utility, Vol. 2: M-Z, 1–29
DLCKEXTRASTK system parameter, Vol. 2: M-Z, C–18
DLOCK class record
in Monitor utility, Vol. 2: M-Z, A–16

DNVOSI1 system parameter, Vol. 2: M-Z, C–18

DORANTWAIT system parameter, Vol. 2: M-Z, C–18

DOSD (dump off system disk)
DUMPSTYLE system parameter, Vol. 2: M-Z, C–19

DR_UNIT_BASE system parameter, Vol. 2: M-Z, C–18

Dual-architecture OpenVMS Cluster systems
installing images, Vol. 2: M-Z, 7–54
example, Vol. 2: M-Z, 7–55

DUMPBUG system parameter, Vol. 2: M-Z, C–18

DUMP command
in LMCP, Vol. 1: A-L, 15–9

Dump files
changing size, Vol. 1: A-L, 6–3
displaying the size calculated by AUTOGEN,
Vol. 1: A-L, 6–10
generating a new file sized by AUTOGEN, Vol. 1: A-L, 6–11
setting priority, Vol. 2: M-Z, 7–57

DUMPSTYLE system parameter, Vol. 2: M-Z, C–19

DUMP_PRIORITY ADD command
in SYSMAN, Vol. 2: M-Z, 7–57

DUMP_PRIORITY LIST command
in SYSMAN, Vol. 2: M-Z, 7–60

DUMP_PRIORITY LOAD command
in SYSMAN, Vol. 2: M-Z, 7–61

DUMP_PRIORITY MODIFY command
in SYSMAN, Vol. 2: M-Z, 7–62

DUMP_PRIORITY REMOVE command
in SYSMAN, Vol. 2: M-Z, 7–64

DUMP_PRIORITY SHOW command
in SYSMAN, Vol. 2: M-Z, 7–65

DUMP_PRIORITY UNLOAD command
in SYSMAN, Vol. 2: M-Z, 7–66

Dynamic lock remastering statistics
in Monitor utility, Vol. 2: M-Z, 1–56

Dynamic parameters
modifying, Vol. 2: M-Z, 6–45, 7–103
Dynamic service rating, Vol. 1: A-L, 14–16, 14–48

See also ACL editor

Editing ACLs
See ACL editor

Editing sessions
keypad for ACL editing, Vol. 1: A-L, A–1

EDIT keypad function, Vol. 2: M-Z, 5–40, B–3

ENABLE command
in SYSGEN, Vol. 2: M-Z, 6–16
Error Log Report Formatter (ERF) (cont’d)

/INCLUDE qualifier, Vol. 1: A-L, 10–14
invoking, Vol. 1: A-L, 10–4
/LOG qualifier, Vol. 1: A-L, 10–17
messages
  informational, Vol. 1: A-L, 10–17
/MODEL qualifier, Vol. 1: A-L, 10–18
/NODE qualifier, Vol. 1: A-L, 10–19
output
  ASCII format, Vol. 1: A-L, 10–7
  binary format, Vol. 1: A-L, 10–7
page faults reported, Vol. 1: A-L, 10–26
/PAGE qualifier, Vol. 1: A-L, 10–21
qualifiers, Vol. 1: A-L, 10–4 to 10–26
/REGISTER_DUMP qualifier, Vol. 1: A-L, 10–22
report format
  ASCII, Vol. 1: A-L, 10–7, 10–8
  binary, Vol. 1: A-L, 10–7, 10–14, 10–23
  brief, Vol. 1: A-L, 10–8
  hexadecimal longword, Vol. 1: A-L, 10–22
  rejected entries, Vol. 1: A-L, 10–23
  run-time statistics, Vol. 1: A-L, 10–24, 10–26
restrictions, Vol. 1: A-L, 10–4
/SID_REGISTER qualifier, Vol. 1: A-L, 10–24
/STATISTICS qualifier, Vol. 1: A-L, 10–26
ERROR LOG utility
See Error Log Report Formatter (ERF)

Error Log utility (ERROR LOG)

See Error Log Report Formatter (ERF)

Error Log Viewer (ELV)

brief report example, Vol. 1: A-L, 11–31
qualifiers, Vol. 1: A-L, 11–6 to 11–9
default report example, Vol. 1: A-L, 11–31
DUMP command, Vol. 1: A-L, 11–11
event classes, Vol. 1: A-L, 11–19
event header information, Vol. 1: A-L, 11–19
EXIT command, Vol. 1: A-L, 11–16
full report example, Vol. 1: A-L, 11–32
Error Log Viewer (ELV) (cont'd)
interactive shell mode, Vol. 1: A-L, 11–4
invoking, Vol. 1: A-L, 11–4
one-line-per-event report example, Vol. 1: A-L, 11–30
report formats
standard report detail levels, Vol. 1: A-L, 11–19
brief, Vol. 1: A-L, 11–19
default, Vol. 1: A-L, 11–19
one-line-per-event, Vol. 1: A-L, 11–19
supported event types, Vol. 1: A-L, 11–3
terse format, Vol. 1: A-L, 11–32
terse report example, Vol. 1: A-L, 11–32
TRANSLATE command, Vol. 1: A-L, 11–18
Errors
reporting, Vol. 1: A-L, 3–4
ERRORS class
adding, Vol. 2: M-Z, 5–32
fields belonging to, Vol. 2: M-Z, 5–7
removing, Vol. 2: M-Z, 5–58
Ethernet address
See LAN addresses
Ethernet controllers
See LAN controllers
Ethernet link
See Data link
Event classes
extracting audit records by, Vol. 1: A-L, 4–8
Event records
See Security audit reports
Event types, Vol. 1: A-L, 4–8
/EXACT_ORDER qualifier
Examples
annotated, Vol. 1: A-L, D–4 to D–8
comparing files, Vol. 1: A-L, 7–27
image save operation, Vol. 1: A-L, 7–52
incremental save operation, Vol. 1: A-L, 7–54
initializing an output disk, Vol. 1: A-L, 7–55
list operation, Vol. 1: A-L, 7–52
protecting an output save-set, Vol. 1: A-L, 7–75
repairing errors on a disk volume, Vol. 1: A-L, 3–16
selective backup, Vol. 1: A-L, 7–17, 7–18
Examples (cont’d)
specifying block size, Vol. 1: A-L, 7–19
specifying density for magnetic tape, Vol. 1: A-L, 7–35
specifying redundancy group blocks, Vol. 1: A-L, 7–45
using wildcard characters, Vol. 1: A-L, 7–9
/EXCLUDE qualifier
Excluding devices, Vol. 2: M-Z, 7–85
Exclusion list
displaying, Vol. 2: M-Z, 7–91
EXECUTE command
in Authorize utility, Vol. 1: A-L, 5–51
in CLUE, Vol. 1: A-L, 8–8
in Install utility, Vol. 1: A-L, 12–13
in LATCP, Vol. 1: A-L, 14–26
in Monitor utility, Vol. 2: M-Z, 1–8
in Point-to-Point Protocol utility, Vol. 2: M-Z, 2–9
in Show Cluster utility, Vol. 2: M-Z, 5–44
in SYSGEN, Vol. 2: M-Z, 6–4
in SYSMAN, Vol. 2: M-Z, 7–67
in UCM, Vol. 2: M-Z, 8–15
EXPECTED_VOTES system parameter, Vol. 2: M-Z, C–20
/EXPIRED qualifier
in Backup utility, Vol. 1: A-L, 7–40
EXTRACPU system parameter, Vol. 2: M-Z, C–20
EXTRACT command
in CLUE, Vol. 1: A-L, 8–9
EXTRACT FILE command
in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–16
EXTRACT PDF command
in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–19
EXTRACT PTF command
in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–22
EXTRACT RELEASE_NOTES command
in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–25
EXUSRSTK system parameter, Vol. 2: M-Z, C–20

F

/FAST qualifier
in Backup utility, Vol. 1: A-L, 7–41
FAST_PATH system parameter, Vol. 2: M-Z, C–20
FAST_PATH_PORTS system parameter, Vol. 2: M-Z, C–21
FCP class record
in Monitor utility, Vol. 2: M-Z, A–17
Feedback
See AUTOGEN, feedback
FEEDBACK mode, Vol. 1: A-L, 6–3, 6–12
Field of data
definition, Vol. 2: M-Z, 5–33
definition of each, Vol. 2: M-Z, 5–34
removing, Vol. 2: M-Z, 5–59
Fields
SHOW CLUSTER, Vol. 2: M-Z, 5–3
File backward link records
File forward link records
File primitive statistics
in Monitor utility, Vol. 2: M-Z, 1–32
Files
AGEN$FEEDBACK.DAT, Vol. 1: A-L, 6–8
AGEN$FEEDBACK.EXE, Vol. 1: A-L, 6–8
AGEN$PARAMS.REPORT, Vol. 1: A-L, 6–10
ALPHAVMSSYS.OLD, Vol. 1: A-L, 6–11
ALPHAVMSSYS.PAR, Vol. 1: A-L, 6–11
AUTOGEN.PAR, Vol. 1: A-L, 6–9, 6–11; Vol. 2: M-Z, 6–43, 6–45
containing AUTOGEN feedback, Vol. 1: A-L, 6–8
containing list of known images, Vol. 1: A-L, 6–10
controlling access to, Vol. 1: A-L, 1–12, 1–14
creating
dependency on directory ownership, Vol. 1: A-L, 1–10
in a directory with a Default Protection ACE, Vol. 1: A-L, 1–12
default parameter, Vol. 1: A-L, 6–11
device driver, Vol. 2: M-Z, 6–19
format required by ACL editor, Vol. 1: A-L, 1–4
for paging, Vol. 1: A-L, 6–11
for swapping, Vol. 1: A-L, 6–11
for system crash dumps, Vol. 1: A-L, 6–11
I/O driver, Vol. 2: M-Z, 6–18
input of device list, Vol. 2: M-Z, 6–8
output cluster report, Vol. 2: M-Z, 5–19, 5–74
parameter, Vol. 1: A-L, 6–9, 6–11; Vol. 2: M-Z, 6–45
PARAMS.DAT, Vol. 1: A-L, 6–10

Files (cont’d)
restoring
to original directories, Vol. 1: A-L, 7–9
SETPARAMS.DAT, Vol. 1: A-L, 7–10, 6–11
SHOW_CLUSTERS.LIS, Vol. 2: M-Z, 5–19, 5–74
startup, Vol. 2: M-Z, 7–133
disabling, Vol. 2: M-Z, 7–135
displaying, Vol. 2: M-Z, 7–144
startup command procedure, Vol. 2: M-Z, 6–22, 6–38, 6–45
SYSGEN session output, Vol. 2: M-Z, 6–4, 6–21
SYSGTTSSTR.MSG, Vol. 2: M-Z, 6–42
system parameter, Vol. 2: M-Z, 6–43, 6–45
UIC-based protection
propagating in a directory tree, Vol. 1: A-L, 1–12
used by AUTOGEN command procedure, Vol. 1: A-L, 6–12
VAXVMSSYS.OLD, Vol. 1: A-L, 6–11
VAXVMSSYS.PAR, Vol. 1: A-L, 6–11; Vol. 2: M-Z, 6–45
VMSIMAGES.DAT, Vol. 1: A-L, 6–10
writing alarm messages to audit logs, Vol. 1: A-L, 1–8

File system cache (ACP) system parameters
in Monitor utility, Vol. 2: M-Z, 1–37

File system cache statistics
monitoring, Vol. 2: M-Z, 1–34

FILES_SELECTED qualifier
in Backup utility, Vol. 1: A-L, 7–42

File types
specifying for ACL editor, Vol. 1: A-L, 1–4
FILE_SYSTEM_CACHE class record
in Monitor utility, Vol. 2: M-Z, A–19

FIND command
in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–28

Flags
Floating address, Vol. 2: M-Z, D–1

FLUSH_INTERVAL qualifier
in Monitor utility, Vol. 2: M-Z, 1–13

Format for SHOW CLUSTER
specifying processor types, Vol. 2: M-Z, 5–38

Formats
of software kits
changing, Vol. 2: M-Z, 3–10

FREEGOAL system parameter, Vol. 2: M-Z, C–21

FREEELIM system parameter, Vol. 2: M-Z, C–21

FSTERR report
example, Vol. 1: A-L, 9–36
Help
  online for Analyze Audit, Vol. 1: A-L, 4–33
HELP command
  in Audit Analysis utility, Vol. 1: A-L, 4–33
  in Authorize utility, Vol. 1: A-L, 5–54
  in CLUE, Vol. 1: A-L, 8–10
  in Install utility, Vol. 1: A-L, 12–14
  in LATCP, Vol. 1: A-L, 14–27
  in Monitor utility, Vol. 2: M-Z, 1–9
  in Point-to-Point Protocol utility, Vol. 2: M-Z, 2–10
  in Show Cluster utility, Vol. 2: M-Z, 5–45
  in SYSMAN, Vol. 2: M-Z, 7–68
  in UCM, Vol. 2: M-Z, 8–16
HELP phase of AUTOGEN, Vol. 1: A-L, 6–12
History of installed software, Vol. 2: M-Z, 3–56
Holder Hidden attribute, Vol. 1: A-L, 5–21, 5–52, 5–74
/HOMEBLOCKS qualifier
I/O addresses, Vol. 2: M-Z, 6–40
I/O class record
  in Monitor utility, Vol. 2: M-Z, A–20
I/O databases, Vol. 2: M-Z, 6–35
displaying on Alpha systems, Vol. 2: M-Z, 7–89
I/O drivers
  loading, Vol. 2: M-Z, 6–18
  replacing with new version of, Vol. 2: M-Z, 6–19
I/O statistics
  in Monitor utility, Vol. 2: M-Z, 1–38
ICBM (IOGEN Configuration Building Module), Vol. 2: M-Z, 7–85, 7–86, 7–92
Identifier ACEs, Vol. 1: A-L, 1–14
types of identifiers, Vol. 1: A-L, 1–14
Identifiers
environmental, Vol. 1: A-L, 1–14
general, Vol. 1: A-L, 1–14, 1–16
granting to a process, Vol. 1: A-L, 1–16
resource
  and directory ownership, Vol. 1: A-L, 1–10
  revoking, Vol. 1: A-L, 5–86
specifying characteristics of, Vol. 1: A-L, 1–17
types, Vol. 1: A-L, 1–14
/HEADER_ONLY qualifier
  in Backup utility, Vol. 1: A-L, 7–46
/GROUP_SIZE qualifier
  in Backup utility, Vol. 1: A-L, 7–45
GROWLIM system parameter, Vol. 2: M-Z, C–24
HANGUP characteristic
  application LAT devices, Vol. 1: A-L, 14–10
/HEADER_ONLY qualifier
  in Backup utility, Vol. 1: A-L, 7–46
IEEE_ADDRESS system parameter, Vol. 2: M-Z, C–24
IEEE_ADDRESS system parameter, Vol. 2: M-Z, C–24
/IGNORE qualifier
in Backup utility, Vol. 1: A-L, 7–48
IJOBBLIM system parameter, Vol. 2: M-Z, C–24
Image
applying an ACE to, Vol. 1: A-L, 1–16
authorized privileges, Vol. 1: A-L, 12–8, 12–24
header-resident, Vol. 1: A-L, 12–8, 12–25
privileged, Vol. 1: A-L, 12–8, 12–25
protecting installed, Vol. 1: A-L, 12–9, 12–25
Image backup definition, Vol. 1: A-L, 7–4
Image mode, Vol. 1: A-L, 7–51
/IMAGE qualifier
in Backup utility, Vol. 1: A-L, 7–51
IMGIOCNT system parameter, Vol. 2: M-Z, C–24
IMGREG_PAGES system parameter, Vol. 2: M-Z, C–24
Incoming LAT connections, Vol. 1: A-L, 14–34
Incremental backup definition, Vol. 1: A-L, 7–4
Incremental mode
restoring files, Vol. 1: A-L, 7–53
/INCREMENTAL qualifier
in Backup utility, Vol. 1: A-L, 7–53
Initialization
erasing home blocks, Vol. 1: A-L, 3–10
Initialization files creating, Vol. 2: M-Z, 5–64
default specification, Vol. 2: M-Z, 7–4
establishing SHOW CLUSTER reports, Vol. 2: M-Z, 5–13
use with SYSMAN, Vol. 2: M-Z, 7–4
Initialization procedures, Vol. 1: A-L, D–1
INITIALIZE command
in Monitor utility, Vol. 2: M-Z, 1–10
in Show Cluster utility, Vol. 2: M-Z, 5–46
/INITIALIZE qualifier
INITIAL mode, Vol. 1: A-L, 6–12
Input files
security audit log files, Vol. 1: A-L, 4–3
/INPUT qualifier
in Monitor utility, Vol. 2: M-Z, 1–13
Input stream
switching control to other processes, Vol. 2: M-Z, 7–17
/INPUT_FILES qualifier
in Backup utility, Vol. 1: A-L, 7–57
INSTALL command
in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–31
in SYSGEN, Vol. 2: M-Z, 6–17
Installing software
getting product information, Vol. 2: M-Z, 3–56
POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–31
removing software, Vol. 2: M-Z, 3–53
Install utility (INSTALL) commands
ADD, Vol. 1: A-L, 12–6
CREATE, Vol. 1: A-L, 12–7
DELETE, Vol. 1: A-L, 12–12
HELP, Vol. 1: A-L, 12–14
LIST, Vol. 1: A-L, 12–15
PURGE, Vol. 1: A-L, 12–21
REMOVE, Vol. 1: A-L, 12–22
REPLACE, Vol. 1: A-L, 12–23
TRANSLATE, Vol. 1: A-L, 12–3
exiting, Vol. 1: A-L, 12–3
invoking, Vol. 1: A-L, 12–3
/TRANSLATE qualifier, Vol. 1: A-L, 12–3
Interactive commands
See Command mode for Audit Analysis utility
/INTERCHANGE qualifier
in Backup utility, Vol. 1: A-L, 7–58
/INTERVAL qualifier, Vol. 2: M-Z, 5–18
in Monitor utility, Vol. 2: M-Z, 1–14
INTSTKPAGES system parameter, Vol. 2: M-Z, C–25
Invoking AUTOGEN, Vol. 1: A-L, 6–13
Invoking SYSGEN, Vol. 2: M-Z, 6–4
Invoking SYSMAN, Vol. 2: M-Z, 7–4
IO AUTOCONFIGURE command
in SYSMAN, Vol. 2: M-Z, 7–69
IO CONNECT command
in SYSMAN, Vol. 2: M-Z, 7–71
IO CREATE_WWID command
in SYSMAN, Vol. 2: M-Z, 7–75
IO FIND_WWID command
in SYSMAN, Vol. 2: M-Z, 7–76
IOGEN Configuration Building Module
See ICBM
IO LIST_WWID command
in SYSMAN, Vol. 2: M-Z, 7–79
IO LOAD command
in SYSMAN, Vol. 2: M-Z, 7–80
IO REBUILD command
in SYSMAN, Vol. 2: M-Z, 7–81
IO REPLACE_WWID command
in SYSMAN, Vol. 2: M-Z, 7–82
IO SCSI_PATH_VERIFY command
in SYSMAN, Vol. 2: M-Z, 7–84
IO SET EXCLUDE command
in SYSMAN, Vol. 2: M-Z, 7–85
IO SET PREFIX command
   in SYSMAN, Vol. 2: M-Z, 7–86
IO SHOW BUS command
   in SYSMAN, Vol. 2: M-Z, 7–87
IO SHOW DEVICE command
   in SYSMAN, Vol. 2: M-Z, 7–89
IO SHOW EXCLUDE command
   in SYSMAN, Vol. 2: M-Z, 7–91
IO SHOW PREFIX command
   in SYSMAN, Vol. 2: M-Z, 7–92
IOTA system parameter, Vol. 2: M-Z, C–25
IO_PREFER_CPUS system parameter, Vol. 2: M-Z, C–25
K
JBOBLIM system parameter, Vol. 2: M-Z, C–25
JOBCTLD system parameter, Vol. 2: M-Z, C–25
/JOURNAL qualifier
   in Backup utility, Vol. 1: A-L, 7–59
Keypad definitions, Vol. 2: M-Z, 5–13, 5–71
SHOW CLUSTER, Vol. 2: M-Z, B–1
Keypad editing
   editing commands, Vol. 1: A-L, A–1
   for ACL editor, Vol. 1: A-L, A–1
Keys
   defining, Vol. 2: M-Z, 7–36
   defining in LATCP, Vol. 1: A-L, 14–19
   defining in SYSMAN, Vol. 2: M-Z, 7–3
   displaying definition, Vol. 2: M-Z, 7–122
KFILSTCNT system parameter, Vol. 2: M-Z, C–25
Known file entries, Vol. 1: A-L, 12–3
Known file lists, Vol. 1: A-L, 12–3
Known images, Vol. 1: A-L, 12–3
   adding, Vol. 1: A-L, 12–6
   attributes of, Vol. 1: A-L, 12–17
   creating, Vol. 1: A-L, 12–7
   deleting, Vol. 1: A-L, 12–12
   replacing, Vol. 1: A-L, 12–23
   substituting, Vol. 1: A-L, 12–3
KSTACKPAGES system parameter, Vol. 2: M-Z, C–25
L
/LABEL qualifier
   in Backup utility, Vol. 1: A-L, 7–62
LAMAPREGS system parameter, Vol. 2: M-Z, C–25
LAN addresses, Vol. 1: A-L, 14–7
LAN controllers
   address, Vol. 1: A-L, 14–59
   device name, Vol. 1: A-L, 14–8
   physical address, Vol. 1: A-L, 14–7
LAN Control Program (LANCP) utility
   commands
   CONNECT NODE, Vol. 1: A-L, 13–10
   @ (Execute Procedure), Vol. 1: A-L, 13–6
   SHOW LOG, Vol. 1: A-L, 13–49
   SHOW NODE, Vol. 1: A-L, 13–51
   SPAWN, Vol. 1: A-L, 13–53
   TRIGGER NODE, Vol. 1: A-L, 13–54
   deleting node information, Vol. 1: A-L, 13–9, 13–29
   displaying node information, Vol. 1: A-L, 13–26, 13–51
   exiting, Vol. 1: A-L, 13–4
Index–16
LAN Control Program (LANCP) utility (cont’d)
setting device information, Vol. 1: A-L, 13–14
LANCP (Local Area Network Control Program)
See LAN Control Program (LANCP) utility
LANs (local area networks)
deleting node information, Vol. 1: A-L, 13–9, 13–29
displaying node information, Vol. 1: A-L, 13–26, 13–51
LANCP SPAWN command, Vol. 1: A-L, 13–53
setting device information, Vol. 1: A-L, 13–14
LAN_FLAGS system parameter, Vol. 2: M-Z, C–26
Large buffers, Vol. 1: A-L, 14–36
LAT$STARTUP.COM command procedure, Vol. 1: A-L, 14–41
LAT Control Program (LATCP) utility
announcements, Vol. 1: A-L, 14–33
exiting, Vol. 1: A-L, 14–26
invoking, Vol. 1: A-L, 14–3
setting SCSSYSTEMID system parameter, Vol. 1: A-L, 14–7
LATCP
See LAT Control Program utility
LAT protocol
LAT software
changing DECServer characteristics, Vol. 1: A-L, 14–10, 14–43
caracteristics
added or changed, Vol. 1: A-L, 14–3
storing, Vol. 1: A-L, 14–3
incoming, Vol. 1: A-L, 14–34
specifying type of, Vol. 1: A-L, 14–34
devices
changing HANGUP characteristic, Vol. 1: A-L, 14–10
device unit number, Vol. 1: A-L, 14–40
outgoing connections, Vol. 1: A-L, 14–40
service
creating, Vol. 1: A-L, 14–15
database, Vol. 1: A-L, 14–37, 14–40
LAT software
service (cont’d)
displaying counters, Vol. 1: A-L, 14–66
displaying information, Vol. 1: A-L, 14–66
limiting size of node database, Vol. 1: A-L, 14–37, 14–40
modifying characteristics of, Vol. 1: A-L, 14–47
starting with SET NODE/STATE=ON, Vol. 1: A-L, 14–39
LCKMGR_CPUID system parameter, Vol. 2: M-Z, C–26
LGI system parameters
LGI_BRK_DISUSER, Vol. 2: M-Z, C–27
LGI_BRK_LIM, Vol. 2: M-Z, C–27
LGI_BRK_TERM, Vol. 2: M-Z, C–27
LGI_BRK_TMO, Vol. 2: M-Z, C–27
LGI_CALLOUTS, Vol. 2: M-Z, C–27
LGI_HID_TIM, Vol. 2: M-Z, C–27
LGI_PWD_TMO, Vol. 2: M-Z, C–27
LGI_RETRY_LIM, Vol. 2: M-Z, C–28
LGI_RETRY_TMO, Vol. 2: M-Z, C–28
See also System parameters
Login security
LICENSE LOAD command
in SYSMAN, Vol. 2: M-Z, 7–93
Licenses
deactivating, Vol. 2: M-Z, 7–94
LICENSE UNLOAD command
in SYSMAN, Vol. 2: M-Z, 7–94
Links
creating with LATCP, Vol. 1: A-L, 14–7
deleting with LATCP, Vol. 1: A-L, 14–22
displaying characteristics using LATCP, Vol. 1: A-L, 14–53
displaying counters using LATCP, Vol. 1: A-L, 14–50
displaying information using LATCP, Vol. 1: A-L, 14–50
modifying characteristics using LATCP, Vol. 1: A-L, 14–31
name options in LATCP, Vol. 1: A-L, 14–7
LIST/IDENTIFIER command
in Authorize utility, Vol. 1: A-L, 5–58
LIST/PROXY command
in Authorize utility, Vol. 1: A-L, 5–60

LIST/RIGHTS command

LIST command
in Audit Analysis utility, Vol. 1: A-L, 5–34
in Authorize utility, Vol. 1: A-L, 5–56
in Install utility, Vol. 1: A-L, 12–15

LIST DEVICE command

Listing
save-set information, Vol. 1: A-L, 7–20, 7–43, 7–64
system user authorization file (SYSUAF), Vol. 1: A-L, 5–56

LIST NODE command


in Backup utility, Vol. 1: A-L, 7–64

LMCP
See Log Manager Control Program (LMCP) utility

LNMPHASHTBL system parameter, Vol. 2: M-Z, C–28
LNMSHASHTBL system parameter, Vol. 2: M-Z, C–28

Load balancing, Vol. 1: A-L, 14–16, 14–48
and CPU power, Vol. 1: A-L, 14–34

LOAD command
in SYSGEN, Vol. 2: M-Z, 6–18

Loading device drivers
on Alpha systems, Vol. 2: M-Z, 7–69, 7–71, 7–80
Loading I/O driver, Vol. 2: M-Z, 6–18
LOAD_PWD_POLICY system parameter, Vol. 2: M-Z, C–28
LOAD_SYS_IMAGES system parameter, Vol. 2: M-Z, C–28

Local area cluster environments
setting system date and time, Vol. 2: M-Z, 7–32

LOCAL_PORTS class
adding, Vol. 2: M-Z, 5–35
fields belonging to, Vol. 2: M-Z, 5–8
removing, Vol. 2: M-Z, 5–60
LOCK class record
in Monitor utility, Vol. 2: M-Z, A–22

LOCKDIRWT system parameter, Vol. 2: M-Z, C–29
LOCKIDTBL system parameter, Vol. 2: M-Z, C–29
LOCKIDTBL_MAX system parameter, Vol. 2: M-Z, C–29
LOCKRETRY system parameter, Vol. 2: M-Z, C–29

/LOCK_VOLUME qualifier

Login command procedures

Log Manager Control Program (LMCP) utility,
Vol. 1: A-L, 15–1
CLOSE LOG command, Vol. 1: A-L, 15–4
DUMP command, Vol. 1: A-L, 15–9
REPAIR command, Vol. 1: A-L, 15–16
SHOW LOG command, Vol. 1: A-L, 15–19

/LOG qualifier
in Backup utility, Vol. 1: A-L, 7–66
LONGWAIT system parameter, Vol. 2: M-Z, C–29
Lost files

LPBEGIN phase of system startup, Vol. 2: M-Z, 7–140
LPBETA phase of system startup, Vol. 2: M-Z, 7–140
LPMAIN phase of system startup, Vol. 2: M-Z, 7–140
LTA device, Vol. 1: A-L, 14–34
LTDRIVER (LAT port driver)
turning on and off, Vol. 1: A-L, 14–3

Magnetic tape devices
serving within a cluster, Vol. 2: M-Z, C–68
Management environment
defining, Vol. 2: M-Z, 7–117
MAXBOB* system parameters, Vol. 2: M-Z, C–30
MAXBOBMEM system parameter, Vol. 2: M-Z, C–30
MAXBUF system parameter, Vol. 2: M-Z, C–30
MAXCLASSPRI system parameter, Vol. 2: M-Z, C–30
MAXPROCESSCNT system parameter, Vol. 2: M-Z, C–30
MAXPROCESSCNT system parameter, Vol. 2: M-Z, C–30
MAXQUEPRI system parameter, Vol. 2: M-Z, C–30
MAXSYSGROUP system parameter, Vol. 2: M-Z, C–31
MC_SERVICES_P0 system parameter, Vol. 2: M-Z, C–31
MC_SERVICES_P1 system parameter, Vol. 2: M-Z, C–31
MC_SERVICES_P2 system parameter, Vol. 2: M-Z, C–31
MC_SERVICES_P3 system parameter, Vol. 2: M-Z, C–31
MC_SERVICES_P4 system parameter, Vol. 2: M-Z, C–31
MC_SERVICES_P5 system parameter, Vol. 2: M-Z, C–31
MC_SERVICES_P6 system parameter, Vol. 2: M-Z, C–32
MC_SERVICES_P7 system parameter, Vol. 2: M-Z, C–32
MC_SERVICES_P8 system parameter, Vol. 2: M-Z, C–32
MC_SERVICES_P9 system parameter, Vol. 2: M-Z, C–32
/MEDIA_FORMAT qualifier
MEMBERS class
adding, Vol. 2: M-Z, 5–37
fields belonging to, Vol. 2: M-Z, 5–9
removing, Vol. 2: M-Z, 5–61
Memory
multiport, Vol. 2: M-Z, 6–23
Memory reservations
displays on running system, Vol. 2: M-Z, 7–116
frees on running system, Vol. 2: M-Z, 7–109
MINCLASSPRI system parameter, Vol. 2: M-Z, C–32
MINWSCNT system parameter, Vol. 2: M-Z, C–33
MMG_CTLFLAGS system parameter, Vol. 2: M-Z, C–33
MODES class record
in Monitor utility, Vol. 2: M-Z, A–23
Modes of execution, Vol. 1: A-L, 6–12
for SYSMAN startup files, Vol. 2: M-Z, 7–133
Modes of operation, Vol. 1: A-L, 3–4
image, Vol. 1: A-L, 7–51
physical, Vol. 1: A-L, 7–73
/MODIFIED qualifier
in Backup utility, Vol. 1: A-L, 7–68
MODIFY/IDENTIFIER command
in Authorize utility, Vol. 1: A-L, 5–74
MODIFY/PROXY command
in Authorize utility, Vol. 1: A-L, 5–76
MODIFY/SYSTEM_PASSWORD command
in Authorize utility, Vol. 1: A-L, 5–78
MODIFY command
MODIFY DEVICE command
in UCM, Vol. 2: M-Z, 8–17
Modifying page, swap, and dump file sizes, Vol. 1: A-L, 6–3
Modifying system parameters
recommended method, Vol. 1: A-L, 6–3
MONITOR ALL_CLASSES command
in Monitor utility, Vol. 2: M-Z, 1–17
MONITOR CLUSTER command
in Monitor utility, Vol. 2: M-Z, 1–19
MONITOR command
in Monitor utility, Vol. 2: M-Z, 1–11
MONITOR DECNET command
in Monitor utility, Vol. 2: M-Z, 1–24
MONITOR DISK command
in Monitor utility, Vol. 2: M-Z, 1–26
MONITOR DLOCK command
in Monitor utility, Vol. 2: M-Z, 1–29
MONITOR FCP command
in Monitor utility, Vol. 2: M-Z, 1–32
MONITOR FILE_SYSTEM_CACHE command
in Monitor utility, Vol. 2: M-Z, 1–34
MONITOR IO command
in Monitor utility, Vol. 2: M-Z, 1–38
MONITOR LOCK command
in Monitor utility, Vol. 2: M-Z, 1–40
MONITOR MODES command
in Monitor utility, Vol. 2: M-Z, 1–42
MONITOR MSCP_SERVER command
in Monitor utility, Vol. 2: M-Z, 1–46
MONITOR PAGE command
in Monitor utility, Vol. 2: M-Z, 1–48
MONITOR PROCESSES command
in Monitor utility, Vol. 2: M-Z, 1–50
MONITOR RLOCK command
in Monitor utility, Vol. 2: M-Z, 1–56
MONITOR RMS command
in Monitor utility, Vol. 2: M-Z, 1–58
MONITOR SCS command
in Monitor utility, Vol. 2: M-Z, 1–62
MONITOR STATES command
in Monitor utility, Vol. 2: M-Z, 1–66
MONITOR SYSTEM command
in Monitor utility, Vol. 2: M-Z, 1–70
MONITOR TIMER command
in Monitor utility, Vol. 2: M-Z, 1–74
MONITOR TRANSACTION command
in Monitor utility, Vol. 2: M-Z, 1–76
Monitor utility (MONITOR)
classname qualifiers
/ALL, Vol. 2: M-Z, 1–56
/CPU, Vol. 2: M-Z, 1–42
/TOPBIO, Vol. 2: M-Z, 1–50
/TOPCPU, Vol. 2: M-Z, 1–50
/TOPDIO, Vol. 2: M-Z, 1–50
/TOPFAULT, Vol. 2: M-Z, 1–50
/TOPRBS, Vol. 2: M-Z, 1–50
Monitor utility (MONITOR) (cont’d)
collection interval, Vol. 2: M-Z, 1–14
command qualifiers, Vol. 2: M-Z, 1–12 to 1–16
commands, Vol. 2: M-Z, 1–5 to 1–83
CONVERT, Vol. 2: M-Z, 1–6
EXECUTE, Vol. 2: M-Z, 1–7
EXIT, Vol. 2: M-Z, 1–8
HELP, Vol. 2: M-Z, 1–9
INITIALIZE, Vol. 2: M-Z, 1–10
MONITOR, Vol. 2: M-Z, 1–11
MONITOR ALL_CLASSES, Vol. 2: M-Z, 1–17
MONITOR CLUSTER, Vol. 2: M-Z, 1–19
MONITOR DECNET, Vol. 2: M-Z, 1–24
MONITOR DISK, Vol. 2: M-Z, 1–26
MONITOR DLOCK, Vol. 2: M-Z, 1–29
MONITOR FCP, Vol. 2: M-Z, 1–32
MONITOR FILE_SYSTEM_CACHE, Vol. 2: M-Z, 1–34
MONITOR IO, Vol. 2: M-Z, 1–38
MONITOR LOCK, Vol. 2: M-Z, 1–40
MONITOR MODES, Vol. 2: M-Z, 1–42
MONITOR MSCP_SERVER, Vol. 2: M-Z, 1–46
MONITOR PAGE, Vol. 2: M-Z, 1–48
MONITOR PROCESSES, Vol. 2: M-Z, 1–50
MONITOR RLOCK, Vol. 2: M-Z, 1–56
MONITOR RMS, Vol. 2: M-Z, 1–58
MONITOR SCS, Vol. 2: M-Z, 1–62
MONITOR STATES, Vol. 2: M-Z, 1–66
MONITOR SYSTEM, Vol. 2: M-Z, 1–70
MONITOR TIMER, Vol. 2: M-Z, 1–74
MONITOR TRANSACTION, Vol. 2: M-Z, 1–76
MONITOR VBS, Vol. 2: M-Z, 1–79
SET DEFAULT, Vol. 2: M-Z, 1–82
SHOW DEFAULT, Vol. 2: M-Z, 1–83
directing output, Vol. 2: M-Z, 1–4
exiting, Vol. 2: M-Z, 1–4
invoking, Vol. 2: M-Z, 1–4
recording file record formats, Vol. 2: M-Z, A–1
to A–13
MONITOR_SERVER process
created on remote cluster node, Vol. 2: M-Z, 1–20
log file, Vol. 2: M-Z, 1–21
network startup, Vol. 2: M-Z, 1–21
purpose, Vol. 2: M-Z, 1–20
startup time, Vol. 2: M-Z, 1–21
MOP downline load services
MOP downline load services (cont’d)
MOUNT command
avoiding use of /CLUSTER with SYSMAN DO command, Vol. 2: M-Z, 1–7–54
Mount error message, Vol. 1: A-L, 7–82
Mount verification
forced by VERIFY utility, Vol. 1: A-L, 3–4
MOVE command
in Show Cluster utility, Vol. 2: M-Z, 5–47
MOVE keypad function, Vol. 2: M-Z, B–3
MPDEV_AFB_INTVL system parameter, Vol. 2: M-Z, C–33
MPDEV_D* system parameters, Vol. 2: M-Z, C–33
MPDEV_ENABLE system parameter, Vol. 2: M-Z, C–34
MPDEV_LCRETRIES system parameter, Vol. 2: M-Z, C–34
MPDEV_POLLER system parameter, Vol. 2: M-Z, C–34
MPDEV_REMOTE system parameter, Vol. 2: M-Z, C–34
MPW_HILIMIT system parameter, Vol. 2: M-Z, C–34
MPW_IOLIMIT system parameter, Vol. 2: M-Z, C–34
MPW_LOLIMIT system parameter, Vol. 2: M-Z, C–35
MPW_LOWAITLIMIT system parameter, Vol. 2: M-Z, C–35
MPW_THRES system parameter, Vol. 2: M-Z, C–35
MPW_WAITLIMIT system parameter, Vol. 2: M-Z, C–35
MPW_WAITLIMIT system parameter, Vol. 2: M-Z, C–35
MPW_WRTCLUSTER system parameter, Vol. 2: M-Z, C–36
MSCP_BUFFER system parameter, Vol. 2: M-Z, C–36
MSCP_CMD_TMO system parameter, Vol. 2: M-Z, C–36
MSCP_CREDITS system parameter, Vol. 2: M-Z, C–36
MSCP_LOAD system parameter, Vol. 2: M-Z, C–36
MSCP_SERVER class record
in Monitor utility, Vol. 2: M-Z, A–25
MSCP_SERVER_ALL system parameter, Vol. 2: M-Z, C–36
Multicast address
cluster
displaying, Vol. 2: M-Z, 7–34
Multicast messages, Vol. 1: A-L, 14–25, 14–50
timer for, Vol. 1: A-L, 14–37
Multiport memory
connecting, Vol. 2: M-Z, 6–23
initializing, Vol. 2: M-Z, 6–24
Multiport memory (cont’d)
sharing, Vol. 2: M-Z, 6–23
MULTIPROCESSING system parameter, Vol. 2: M-Z, C–37
MULTITHREAD system parameter, Vol. 2: M-Z, C–38
MVSUPMSG_INTVL system parameter, Vol. 2: M-Z, C–38
MVSUPMSG_NUM system parameter, Vol. 2: M-Z, C–38
MVTIMEOUT system parameter, Vol. 2: M-Z, C–38
Name Hidden attribute, Vol. 1: A-L, 5–21, 5–52, 5–74
NET$PROXY.DAT files
NETPROXY.DAT files
modifying, Vol. 1: A-L, 5–3
modifying, Vol. 1: A-L, 5–3
Network statistics
in Monitor utility, Vol. 2: M-Z, 1–24
NET_CALLOUTS system parameter, Vol. 2: M-Z, C–39
NEWPARAMS.DAT file, Vol. 1: A-L, 6–3
/NEW_VERSION qualifier
in Backup utility, Vol. 1: A-L, 7–69
NEXT FILE command
NEXT RECORD command
Nexus numbers
showing, Vol. 2: M-Z, 6–31, 6–32, 6–39
NISCS_CONV_BOOT system parameter, Vol. 2: M-Z, C–39
NISCS_LAN_OVRHHD system parameter, Vol. 2: M-Z, C–39
NISCS_LOAD_PEA0 system parameter, Vol. 2: M-Z, C–39
NISCS_MAX_PKT SZ system parameter, Vol. 2: M-Z, C–39
NISCS_PORT_SERV system parameter, Vol. 2: M-Z, C–40
NJOBBLIM system parameter, Vol. 2: M-Z, C–40
NOAUTOCONFIG system parameter, Vol. 2: M-Z, C–40
NOCLUSTER system parameter, Vol. 2: M-Z, C–40
Node names, Vol. 1: A-L, 14–33
Node numbers
display on Alpha systems, Vol. 2: M-Z, 7–87
/NODE qualifier
in Monitor utility, Vol. 2: M-Z, 1–15
Nodes
database, Vol. 1: A-L, 14–37, 14–40
deleting node information, Vol. 1: A-L, 13–9, 13–29
displaying characteristics of, Vol. 1: A-L, 14–58
limit, Vol. 1: A-L, 14–37
modifying characteristics of, Vol. 1: A-L, 14–33
NOFEEDBACK mode, Vol. 1: A-L, 6–12
NOPGFLSWP system parameter, Vol. 2: M-Z, C–40
/[NO]CONFIRM qualifier
/[NO]LIST qualifier
/[NO]LOCK_VOLUME qualifier
/[NO]READ_CHECK qualifier
/[NO]REPAIR qualifier
NPAGECALC system parameter, Vol. 2: M-Z, C–41
NPAGEDYN system parameter, Vol. 2: M-Z, C–41
NPAGERAD system parameter, Vol. 2: M-Z, C–41
NPACEVIR system parameter, Vol. 2: M-Z, C–42
NPAG_AGGRESSIVE system parameter, Vol. 2: M-Z, C–42
NPAG_BAP_MAX system parameter, Vol. 2: M-Z, C–42
NPAG_BAP_MAX_PA system parameter, Vol. 2: M-Z, C–42
NPAG_BAP_MIN system parameter, Vol. 2: M-Z, C–42
NPAG_BAP_MIN_PA system parameter, Vol. 2: M-Z, C–43
NPAG_GENTLE system parameter, Vol. 2: M-Z, C–43
NPAG_INTERVAL system parameter, Vol. 2: M-Z, C–43
NPAG_RING_SIZE system parameter, Vol. 2: M-Z, C–43

O

Object classes
security class object, Vol. 1: A-L, 1–3

Objects
controlling access to, Vol. 1: A-L, 1–14

Object types
See Object classes

OPCOM (Operator Communication Manager) messages

OpenVMS Backup utility
See Backup utility (BACKUP)

OpenVMS Cluster environments
command execution, Vol. 2: M-Z, 7–54
DCL commands interacting with SYSMAN cluster commands, Vol. 2: M-Z, 7–5
displaying group number, Vol. 2: M-Z, 7–34
displaying multicast address, Vol. 2: M-Z, 7–34
displaying network information, Vol. 2: M-Z, 7–34
displaying system date and time, Vol. 2: M-Z, 7–35
dual-architecture
group number, Vol. 2: M-Z, 7–30
modifying security data, Vol. 2: M-Z, 7–30
password, Vol. 2: M-Z, 7–30
setting time, Vol. 2: M-Z, 7–32
updating security data, Vol. 2: M-Z, 7–30

OpenVMS RMS
See RMS

Operations
compare
for BACKUP, Vol. 1: A-L, 7–26
list, Vol. 1: A-L, 7–20, 7–43, 7–64
performed by BACKUP, Vol. 1: A-L, 7–3

Operator assistance
with BACKUP, Vol. 1: A-L, 7–16
/OPT/dir qualifier, Vol. 2: M-Z, 5–19
in Monitor utility, Vol. 2: M-Z, 1–15
/OPT/dir qualifier
in Backup utility, Vol. 1: A-L, 7–70, 7–71
/OPT/dir qualifier
as Backup utility input file qualifier, Vol. 1: A-L, 7–72

P

PACKAGE command
/PAGFILCNT system parameter, Vol. 2: M-Z, 7–30
/PAGE class record
in Monitor utility, Vol. 2: M-Z, A–27
/PAGEDYN system parameter, Vol. 2: M-Z, C–43
/PAGEFILE.SYS file
See Page files
Page files
changing size, Vol. 1: A-L, 6–3
displaying the size calculated by AUTOGEN,
Vol. 1: A-L, 6–10
generating a new file sized by AUTOGEN, Vol. 1: A-L, 6–11
Page management statistics
in Monitor utility, Vol. 2: M-Z, 1–48
/PAGEFILCNT system parameter, Vol. 2: M-Z, C–43
/PAGTBLPFC system parameter, Vol. 2: M-Z, C–43
/PAMAXPORT system parameter, Vol. 2: M-Z, C–43
/PAN command
in Show Cluster utility, Vol. 2: M-Z, 5–49
/PAN keypad function, Vol. 2: M-Z, B–3
/PANOPOLL system parameter, Vol. 2: M-Z, C–44
/PANUPOLLPOLL system parameter, Vol. 2: M-Z, C–44
/PAPOLLINTERVAL system parameter, Vol. 2: M-Z, C–44
/PAPPOOLINTERVAL system parameter, Vol. 2: M-Z, C–44

Parameter files
ALPHAVMSSYS.OLD, Vol. 1: A-L, 6–11
ALPHAVMSSYS.PAR, Vol. 1: A-L, 6–11
AUTOGEN.PAR, Vol. 1: A-L, 6–11
default, Vol. 1: A-L, 6–11
VAXVMSSYS.OLD, Vol. 1: A-L, 6–11
VAXVMSSYS.PAR, Vol. 1: A-L, 6–11
writing, Vol. 2: M-Z, 6–45, 7–103

Parameters
See also System parameters
changing, Vol. 2: M-Z, 7–97
passing to command procedures, Vol. 1: A-L, 13–6

PARAMETERS DISABLE CHECKS command
in SYSMAN, Vol. 2: M-Z, 7–95

PARAMETERS ENABLE CHECKS command
in SYSMAN, Vol. 2: M-Z, 7–96

PARAMETERS SET command
in SYSMAN, Vol. 2: M-Z, 7–97
PARAMETERS SHOW command in SYSMAN, Vol. 2: M-Z, 7–98
PARAMETERS USE command in SYSMAN, Vol. 2: M-Z, 7–102
PARAMETERS WRITE command in SYSMAN, Vol. 2: M-Z, 7–103
PARAMS.DAT file, Vol. 1: A-L, 6–10, 6–11
PASANITY system parameter, Vol. 2: M-Z, C–45
Password, Vol. 2: M-Z, 7–117
for OpenVMS Cluster, Vol. 2: M-Z, 7–30
PASTDGBUF system parameter, Vol. 2: M-Z, C–45
PASTIMOUT system parameter, Vol. 2: M-Z, C–45
PCFs (product configuration files)
CONFIGURE subcommand, Vol. 2: M-Z, 3–6
PDB (product database)
recording a volume label change, Vol. 2: M-Z, 3–51
PDFs (product description files)
of software products, Vol. 2: M-Z, 3–19
PEDRIVER
event-tracing facility, Vol. 2: M-Z, 4–6
Per-connection buffers
allocating, Vol. 2: M-Z, C–14
PE system parameter, Vol. 2: M-Z, C–45
PFCDEFAULT system parameter, Vol. 2: M-Z, C–45
PFN_COLOR_COUNT system parameter, Vol. 2: M-Z, C–46
/PHYSICAL qualifier
in Backup utility, Vol. 1: A-L, 7–73
PHYSICAL_MEMORY system parameter, Vol. 2: M-Z, C–46
PIOPAGES system parameter, Vol. 2: M-Z, C–46
PIXSCAN system parameter, Vol. 2: M-Z, C–47
Point-to-Point Protocol utility (PPPD)
commands
CONNECT, Vol. 2: M-Z, 2–5
DIAL_OUT, Vol. 2: M-Z, 2–6
DISCONNECT, Vol. 2: M-Z, 2–8
EXIT, Vol. 2: M-Z, 2–9
HELP, Vol. 2: M-Z, 2–10
SET, Vol. 2: M-Z, 2–11
SHOW, Vol. 2: M-Z, 2–15
description, Vol. 2: M-Z, 2–3
exiting, Vol. 2: M-Z, 2–3
overview, Vol. 2: M-Z, 2–3
POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–3
See also PRODUCT command
commands
CONFIGURE, Vol. 2: M-Z, 3–6
COPY, Vol. 2: M-Z, 3–10
DELETE RECOVERY_DATA, Vol. 2: M-Z, 3–14
EXTRACT FILE, Vol. 2: M-Z, 3–16
EXTRACT PDF, Vol. 2: M-Z, 3–19
EXTRACT PTF, Vol. 2: M-Z, 3–22
EXTRACT RELEASE_NOTES, Vol. 2: M-Z, 3–25
FIND, Vol. 2: M-Z, 3–28
INSTALL, Vol. 2: M-Z, 3–31
LIST, Vol. 2: M-Z, 3–36
PACKAGE, Vol. 2: M-Z, 3–39
RECONFIGURE, Vol. 2: M-Z, 3–43
REGISTER PRODUCT, Vol. 2: M-Z, 3–47
REGISTER VOLUME, Vol. 2: M-Z, 3–51
REMOVE, Vol. 2: M-Z, 3–53
SHOW HISTORY, Vol. 2: M-Z, 3–56
SHOW OBJECT, Vol. 2: M-Z, 3–58
SHOW PRODUCT, Vol. 2: M-Z, 3–61
SHOW RECOVERY_DATA, Vol. 2: M-Z, 3–64
invoking, Vol. 2: M-Z, 3–3
parameters, Vol. 2: M-Z, 3–3
POOLCHECK system parameter, Vol. 2: M-Z, C–47
POOLPAGING system parameter, Vol. 2: M-Z, C–47
Ports
characteristics, Vol. 1: A-L, 14–61
counters, Vol. 1: A-L, 14–61
creating with LATCP, Vol. 1: A-L, 14–10
deleting with LATCP, Vol. 1: A-L, 14–23
displaying characteristics of, Vol. 1: A-L, 14–61
displaying information using LATCP, Vol. 1: A-L, 14–61
limited, Vol. 1: A-L, 14–11, 14–44
logical name of, Vol. 1: A-L, 14–11
modifying characteristics of with LATCP, Vol. 1: A-L, 14–43
name, Vol. 1: A-L, 14–43
outgoing connection, Vol. 1: A-L, 14–61
setting type of, Vol. 1: A-L, 14–11
POSITION command
in Audit Analysis utility, Vol. 1: A-L, 4–37
POWEROFF system parameter, Vol. 2: M-Z, C–47
PPP connections  
establishing, Vol. 2: M-Z, 2–5  
setting characteristics, Vol. 2: M-Z, 2–11  
terminating, Vol. 2: M-Z, 2–8  
viewing characteristics, Vol. 2: M-Z, 2–15

PPPD  
See Point-to-Point Protocol utility

PQL system parameters  
PQL_DASTLM, Vol. 2: M-Z, C–47  
PQL_DBIOLM, Vol. 2: M-Z, C–48  
PQL_DCPULM, Vol. 2: M-Z, C–48  
PQL_DDIOLM, Vol. 2: M-Z, C–48  
PQL_DENQLM, Vol. 2: M-Z, C–48  
PQL_DDIOLM, Vol. 2: M-Z, C–48  
PQL_DDFILLM, Vol. 2: M-Z, C–48  
PQL_DJTQUOTA, Vol. 2: M-Z, C–48  
PQL_DPGFLQUOTA, Vol. 2: M-Z, C–48  
PQL_DPRCLM, Vol. 2: M-Z, C–48  
PQL_DQELM, Vol. 2: M-Z, C–48  
PQL_DWSDEFAULT, Vol. 2: M-Z, C–48  
PQL_DWSEXTENT, Vol. 2: M-Z, C–49  
PQL_DWSQUOTA, Vol. 2: M-Z, C–49  
PQL_MASTLM, Vol. 2: M-Z, C–49  
PQL_MBIOLM, Vol. 2: M-Z, C–49  
PQL_MBYTLM, Vol. 2: M-Z, C–49  
PQL_MCPULM, Vol. 2: M-Z, C–49  
PQL_MDIOLM, Vol. 2: M-Z, C–49  
PQL_MENQLM, Vol. 2: M-Z, C–49  
PQL_MFILLM, Vol. 2: M-Z, C–49  
PQL_MJTQUOTA, Vol. 2: M-Z, C–49  
PQL_MPGFLQUOTA, Vol. 2: M-Z, C–49  
PQL_MPRCLM, Vol. 2: M-Z, C–50  
PQL_MTQELM, Vol. 2: M-Z, C–50  
PQL_MWSDEFAULT, Vol. 2: M-Z, C–50  
PQL_MWSEXTENT, Vol. 2: M-Z, C–50  
PQL_MWSQUOTA, Vol. 2: M-Z, C–50

See also System parameters

process limits and quotas

PRCPOLINTERVAL system parameter, Vol. 2: M-Z, C–50

Prefix list  
displaying on Alpha systems, Vol. 2: M-Z, 7–92  
setting on Alpha systems, Vol. 2: M-Z, 7–86

Printers  
configuring in a LAT environment, Vol. 1: A-L, 14–11, 14–43

PRIORITY_OFFSET system parameter, Vol. 2: M-Z, C–50

Privileges  
assigning to installed images, Vol. 1: A-L, 12–8, 12–25  
assigning to known images, Vol. 1: A-L, 12–9, 12–25  
displaying current, Vol. 2: M-Z, 7–123  
modifying for environment, Vol. 2: M-Z, 7–119  
required by ACL editor, Vol. 1: A-L, 1–4

Privileges (cont’d)  
required by SYSMAN, Vol. 2: M-Z, 7–4  
to perform BACKUP operations, Vol. 1: A-L, 7–11

Process activity statistics  
in Monitor utility, Vol. 2: M-Z, 1–50

Processes  
granting identifiers to, Vol. 1: A-L, 1–16  
hibernating  
with ATTACH command, Vol. 2: M-Z, 7–17  
switching control of input stream to, Vol. 2: M-Z, 7–17  
transferring control from, Vol. 1: A-L, 14–5

PROCESSES class record  
in Monitor utility, Vol. 2: M-Z, A–28

Processor modes statistics  
in Monitor utility, Vol. 2: M-Z, 1–42

Process states statistics  
in Monitor utility, Vol. 2: M-Z, 1–66

Process types  
with Accounting utility, Vol. 1: A-L, 2–22

PROCSECTION system parameter, Vol. 2: M-Z, C–50

PRODUCT command, Vol. 2: M-Z, 3–3  
CONFIGURE subcommand, Vol. 2: M-Z, 3–6  
COPY subcommand, Vol. 2: M-Z, 3–10  
DELETE RECOVERY_DATA subcommand, Vol. 2: M-Z, 3–14

EXTRACT FILE subcommand, Vol. 2: M-Z, 3–16

EXTRACT PDF subcommand, Vol. 2: M-Z, 3–19

EXTRACT PDF subcommand, Vol. 2: M-Z, 3–22

EXTRACT RELEASE_NOTES subcommand, Vol. 2: M-Z, 3–25

FIND subcommand, Vol. 2: M-Z, 3–28

INSTALL subcommand, Vol. 2: M-Z, 3–31

LIST subcommand, Vol. 2: M-Z, 3–36

PACKAGE subcommand, Vol. 2: M-Z, 3–39

RECONFIGURE subcommand, Vol. 2: M-Z, 3–43

REGISTER PRODUCT subcommand, Vol. 2: M-Z, 3–47

REGISTER VOLUME subcommand, Vol. 2: M-Z, 3–51

REMOVE subcommand, Vol. 2: M-Z, 3–53

SHOW HISTORY subcommand, Vol. 2: M-Z, 3–56

SHOW OBJECT subcommand, Vol. 2: M-Z, 3–58

SHOW PRODUCT subcommand, Vol. 2: M-Z, 3–61

SHOW RECOVERY_DATA subcommand, Vol. 2: M-Z, 3–64

SHOW UTILITY subcommand, Vol. 2: M-Z, 3–66

Index–24
PRODUCT command (cont'd)
  UNDO PATCH subcommand, Vol. 2: M-Z, 3–67
Product configuration files
  See PCFs
Product description files
  See PDFs
Product text files
  See PTFs
Profiles, Vol. 2: M-Z, 7–117
  adjusting, Vol. 2: M-Z, 7–119
  displaying, Vol. 2: M-Z, 7–123
  in SYSMAN, Vol. 2: M-Z, 7–67
Protection codes
  propagating UIC-based protection in a directory tree, Vol. 1: A-L, 1–12
/PRETECTION qualifier
  in Backup utility, Vol. 1: A-L, 7–75
Protocol bit mask
  error definitions, Vol. 1: A-L, 14–58
Proxy accounts
  deleting, Vol. 1: A-L, 5–81
  modifying, Vol. 1: A-L, 5–76
PSEUDOLOA system parameter, Vol. 2: M-Z, C–51
PTFs (product text files)
  of software products, Vol. 2: M-Z, 3–22
PURGE command
  in Install utility, Vol. 1: A-L, 12–21
PURGE DEVICE command
PURGE NODE command
PU_OPTIONS system parameter, Vol. 2: M-Z, C–51
Q
QBUS_MULT_INTR system parameter, Vol. 2: M-Z, C–51
QDSKINTERVAL system parameter, Vol. 2: M-Z, C–51
QDSKVOTES system parameter, Vol. 2: M-Z, C–51
QUANTUM system parameter, Vol. 2: M-Z, C–51
Quota file
  creating, Vol. 2: M-Z, 7–40
  disabling, Vol. 2: M-Z, 7–43
  displaying, Vol. 2: M-Z, 7–52
  enabling, Vol. 2: M-Z, 7–45
  modifying, Vol. 2: M-Z, 7–47
  removing an entry, Vol. 2: M-Z, 7–42, 7–50
  updating, Vol. 2: M-Z, 7–49
R
RAD example, Vol. 2: M-Z, 7–149
RAD_SUPPORT system parameter, Vol. 2: M-Z, C–51
Range checking
  disabling, Vol. 2: M-Z, 7–95
  enabling, Vol. 2: M-Z, 7–96
REALTIME_SPTS system parameter, Vol. 2: M-Z, C–52
REBOOT phase of AUTOGEN, Vol. 1: A-L, 6–11
Rebuilding configuration tables
  on Alpha systems, Vol. 2: M-Z, 7–81
RECALL command
  in LATCP, Vol. 1: A-L, 14–28
RECNXINTERVAL system parameter, Vol. 2: M-Z, C–52
RECONFIGURE command
  in POLYCENTER Software Installation utility, Vol. 2: M-Z, 3–43
Recording files
  class types, Vol. 2: M-Z, A–8
  in Monitor utility
    class header, Vol. 2: M-Z, A–9
    class prefix for component classes, Vol. 2: M-Z, A–10
    class records, Vol. 2: M-Z, A–8
    data block, Vol. 2: M-Z, A–11
    description, Vol. 2: M-Z, A–1
    file header record, Vol. 2: M-Z, A–4
    HP control records, Vol. 2: M-Z, A–3
    I/O class record, Vol. 2: M-Z, A–20
    node transition record, Vol. 2: M-Z, A–7
    RLOCK class record, Vol. 2: M-Z, A–30
    RMS class record, Vol. 2: M-Z, A–31
    RMS file record, Vol. 2: M-Z, A–7
    SCS class record, Vol. 2: M-Z, A–37
    system information record, Vol. 2: M-Z, A–6
/RECORD qualifier
  in Backup utility, Vol. 1: A-L, 7–77
  in Monitor utility, Vol. 2: M-Z, 1–15
Records
  See also Security audit log files
Record types
  in Monitor utility, Vol. 2: M-Z, A–2
/RECORD_ATTRIBUTES qualifier
REFRESH command
  in LATCP, Vol. 1: A-L, 14–29
  in Show Cluster utility, Vol. 2: M-Z, 5–51
INDEX

REGISTER PRODUCT command
  in POLYCENTER Software Installation utility,
  Vol. 2: M-Z, 3–47
REGISTER VOLUME command
  in POLYCENTER Software Installation utility,
  Vol. 2: M-Z, 3–51
Release Notes
  on software products, Vol. 2: M-Z, 3–25
/RELEASE_TAPE qualifier
  in Backup utility, Vol. 1: A-L, 7–78
RELOAD command
  in SYSGEN, Vol. 2: M-Z, 6–19
  in UCM, Vol. 2: M-Z, 8–19
Remote nodes
  creating MONITOR_SERVER process on, Vol. 2: M-Z, 1–20
REMOVE (Field) command
  in Show Cluster utility, Vol. 2: M-Z, 5–59
REMOVE/IDENTIFIER command
REMOVE/PROXY command
  in Authorize utility, Vol. 1: A-L, 5–81
REMOVE CIRCUITS command
  in Show Cluster utility, Vol. 2: M-Z, 5–52
REMOVE CLUSTER command
  in Show Cluster utility, Vol. 2: M-Z, 5–53
REMOVE command
  in Authorize utility, Vol. 1: A-L, 5–79
  in Install utility, Vol. 1: A-L, 12–22
  in POLYCENTER Software Installation utility,
  Vol. 2: M-Z, 3–53
REMOVE CONNECTIONS command
  in Show Cluster utility, Vol. 2: M-Z, 5–54
REMOVE COUNTERS command
  in Show Cluster utility, Vol. 2: M-Z, 5–56
REMOVE CREDITS command
  in Show Cluster utility, Vol. 2: M-Z, 5–57
REMOVE ERRORS command
  in Show Cluster utility, Vol. 2: M-Z, 5–58
REMOVE LOCAL_PORTS command
  in Show Cluster utility, Vol. 2: M-Z, 5–60
REMOVE MEMBERS command
  in Show Cluster utility, Vol. 2: M-Z, 5–61
REMOVE SYSTEMS command
  in Show Cluster utility, Vol. 2: M-Z, 5–62
Removing installed software products, Vol. 2: M-Z, 3–53
RENAME/IDENTIFIER command
  in Authorize utility, Vol. 1: A-L, 5–85
RENAME command
  in Authorize utility, Vol. 1: A-L, 5–82
REPAIR command
  in LMCP, Vol. 1: A-L, 15–16
/REPAIR qualifier
REPLACE command
  in Install utility, Vol. 1: A-L, 12–23
/REPLACE qualifier
  in Backup utility, Vol. 1: A-L, 7–79
Report formats from Audit Analysis utility
  brief, Vol. 1: A-L, 4–7
  full, Vol. 1: A-L, 4–10
  summary, Vol. 1: A-L, 4–26
Reporting errors, Vol. 1: A-L, 3–4
Reports
  SHOW CLUSTER, Vol. 2: M-Z, 5–12
    command to modify, Vol. 2: M-Z, B–3
    controlling displays, Vol. 2: M-Z, 5–12, 5–13
default display, Vol. 2: M-Z, 5–46
  formatting, Vol. 2: M-Z, 5–70
  organization of, Vol. 2: M-Z, 5–3
  printing, Vol. 2: M-Z, 5–74
time period for, Vol. 2: M-Z, 5–15, 5–17
  update interval, Vol. 2: M-Z, 5–18, 5–72
Requirements and limitations
RESALLOC system parameter, Vol. 2: M-Z, C–52
Reserved Memory Registry
  adding an entry, Vol. 2: M-Z, 7–104
  adding RADs to a reservation, Vol. 2: M-Z, 7–108
  AUTOGEN processes, Vol. 2: M-Z, 7–104
  modifying an existing entry, Vol. 2: M-Z, 7–112
  previews reservation, Vol. 2: M-Z, 7–111
  removing an entry, Vol. 2: M-Z, 7–115
RESERVED_MEMORY commands
  in SYSMAN, Vol. 2: M-Z, 7–104
RESERVED_MEMORY EXTEND command, Vol. 2: M-Z, 7–108
RESERVED_MEMORY FREE command, Vol. 2: M-Z, 7–109
RESERVED_MEMORY LIST command, Vol. 2: M-Z, 7–111
RESERVED_MEMORY MODIFY command, Vol. 2: M-Z, 7–112
RESERVED_MEMORY REMOVE command, Vol. 2: M-Z, 7–115
RESERVED_MEMORY SHOW command, Vol. 2: M-Z, 7–116
RESHASHTBL system parameter, Vol. 2: M-Z, C–53
Resource accounting
  programming information, Vol. 1: A-L, C–1
Resource use
  producing reports of, Vol. 1: A-L, 2–9, 2–12, 2–33
RESTART command
  in UCM, Vol. 2: M-Z, 8–20
REVOKE/IDENTIFIER command
  in Authorize utility, Vol. 1: A-L, 5–86
/REWIND qualifier
  as Backup utility output save-set qualifier, Vol. 1: A-L, 7–81
Rights databases
  See RIGHTSLIST.DAT files
Rights identifier, Vol. 2: M-Z, 7–47
  for disk quota file, Vol. 2: M-Z, 7–38
RIGHTSLIST.DAT files
  adding identifiers to, Vol. 1: A-L, 5–21
  altering identifiers in, Vol. 1: A-L, 5–74
  displaying identifiers in, Vol. 1: A-L, 5–92
  displaying records in, Vol. 1: A-L, 5–96
  renaming identifiers, Vol. 1: A-L, 5–85
RJOBLIM system parameter, Vol. 2: M-Z, C–53
RLOCK class record
  in Monitor utility, Vol. 2: M-Z, A–30
RMS class record
  in Monitor utility, Vol. 2: M-Z, A–31
RMS statistics
  in Monitor utility, Vol. 2: M-Z, 1–58
RMS system parameters
  RMS*, Vol. 2: M-Z, C–53
  RMS_CONPOLICY, Vol. 2: M-Z, C–53
  RMS_DFLRL, Vol. 2: M-Z, C–53
  RMS_DFMBFIDX, Vol. 2: M-Z, C–53
  RMS_DFMBFREL, Vol. 2: M-Z, C–54
  RMS_DFMBFSDK, Vol. 2: M-Z, C–54
  RMS_DFMBFSMT, Vol. 2: M-Z, C–54
  RMS_DFMBFSUR, Vol. 2: M-Z, C–54
  RMS_DFMBNC, Vol. 2: M-Z, C–54
  RMS_EXTEND_SIZE, Vol. 2: M-Z, C–55
RSRVPAGCNT system parameter, Vol. 2: M-Z, C–56
SAVEDUMP system parameter, Vol. 2: M-Z, C–56
Save sets
  description of, Vol. 1: A-L, 7–3
  directing output to, Vol. 1: A-L, 7–11
/SAVE_SET qualifier
  as Backup utility input save-set qualifier, Vol. 1: A-L, 7–84
  as Backup utility output save-set qualifier, Vol. 1: A-L, 7–85
SAVPARAMS phase of AUTOGEN, Vol. 1: A-L, 6–9
SA_APP system parameter, Vol. 2: M-Z, C–56
SBIERRENABLE system parameter, Vol. 2: M-Z, C–56
SCA (Systems Communications Architecture)
  in SCACP utility, Vol. 2: M-Z, 4–3
  paths (equivalent to circuits), Vol. 2: M-Z, 4–3
SCA Control Program (SCACP)
  commands, Vol. 2: M-Z, 4–7
    EXIT, Vol. 2: M-Z, 4–10
    HELP, Vol. 2: M-Z, 4–11
    SET_CHANNEL, Vol. 2: M-Z, 4–12
    SET_CIRCUIT, Vol. 2: M-Z, 4–14
    SET_LAN_DEVICE, Vol. 2: M-Z, 4–15
    SET_PORT, Vol. 2: M-Z, 4–16
    SET_TRACE, Vol. 2: M-Z, 4–17
    SET_VC, Vol. 2: M-Z, 4–19
    SHOW_CHANNEL, Vol. 2: M-Z, 4–20
    SHOW_CIRCUIT, Vol. 2: M-Z, 4–23
    SHOW_LAN_DEVICE, Vol. 2: M-Z, 4–25
    SHOW_PORT, Vol. 2: M-Z, 4–28
    SHOW_TRACE, Vol. 2: M-Z, 4–29
    SHOW_VC, Vol. 2: M-Z, 4–32
    SPAWN, Vol. 2: M-Z, 4–34
    START_LAN_DEVICE, Vol. 2: M-Z, 4–35
    START_TRACE, Vol. 2: M-Z, 4–36
    STOP_LAN_DEVICE, Vol. 2: M-Z, 4–38
    STOP_TRACE, Vol. 2: M-Z, 4–39
  event tracing, Vol. 2: M-Z, 4–6
  invoking, Vol. 2: M-Z, 4–8
  LAN channels, Vol. 2: M-Z, 4–4
  LAN circuits, Vol. 2: M-Z, 4–4
  LAN cluster ports, Vol. 2: M-Z, 4–6
  overview, Vol. 2: M-Z, 4–3
  PEDRIVER (LAN cluster driver), Vol. 2: M-Z, 4–4
  privileges required, Vol. 2: M-Z, 4–9
  terminology
    SCA, Vol. 2: M-Z, 4–3
    troubleshooting with, Vol. 2: M-Z, 4–7
    virtual circuits, Vol. 2: M-Z, 4–4
SCACP
  See SCA Control Program
SCBs (storage control blocks)
  updating, Vol. 1: A-L, 3–4
Scheduling classes
  creating, Vol. 2: M-Z, 7–19
  deleting, Vol. 2: M-Z, 7–24
  displaying, Vol. 2: M-Z, 7–28
  modifying characteristics, Vol. 2: M-Z, 7–25
  resuming suspended classes, Vol. 2: M-Z, 7–27
  suspending temporarily, Vol. 2: M-Z, 7–29

SCB蜊 system parameter, Vol. 2: M-Z, C–56

Screens
  refreshing from LATCP, Vol. 1: A-L, 14–29

SCROLL command
  in LATCP, Vol. 1: A-L, 14–30
  in Show Cluster utility, Vol. 2: M-Z, 5–66

SCROLL keypad function, Vol. 2: M-Z, B–3

SCS (Systems Communications Services)
circuits and ports in SCACP utility, Vol. 2: M-Z, 4–3
show cluster information, Vol. 2: M-Z, 5–3

SCS class record
in Monitor utility, Vol. 2: M-Z, A–37


SCSI_MAXDG, Vol. 2: M-Z, C–58

SCSI_MAXMSG, Vol. 2: M-Z, C–58

SCS statistics
in Monitor utility, Vol. 2: M-Z, 1–62

SCSSYSTEMID system parameter, Vol. 2: M-Z, C–58

SCSSYSTEMIDH, Vol. 2: M-Z, C–59

SECAUDIT.COM command procedure
  See Audit Analysis utility

Security Alarm ACEs
  See Alarm ACEs

Security alarm messages
  specifying access criteria for, Vol. 1: A-L, 1–6, 1–8

Security archive files, analyzing, Vol. 1: A-L, 4–4

Security Audit ACEs
  See Audit ACEs

Security audit data packets

Security audit event messages
data packets in, Vol. 1: A-L, F–6
  event flags, Vol. 1: A-L, F–6
  extracting from log files, Vol. 1: A-L, 4–3
  format, Vol. 1: A-L, F–1
  types of events, Vol. 1: A-L, F–2


Security audit log files
  advancing to next record, Vol. 1: A-L, 4–37
  analyzing, Vol. 1: A-L, 4–3, 4–4
  displaying records, Vol. 1: A-L, 4–30
  displaying the full record, Vol. 1: A-L, 4–10
  excluding information from reports, Vol. 1: A-L, 4–11
  header packet format, Vol. 1: A-L, F–1
  resuming processing, Vol. 1: A-L, 4–29
  returning to previous record, Vol. 1: A-L, 4–37
  selecting records by event class, Vol. 1: A-L, 4–8
  selecting records by time, Vol. 1: A-L, 4–5, 4–25
  specifying duration of record display, Vol. 1: A-L, 4–14
  writing alarm messages to, Vol. 1: A-L, 1–8

Security audit records
criteria for selecting, Vol. 1: A-L, 4–15

Security audit reports
  advancing the display, Vol. 1: A-L, 4–36
  binary output, Vol. 1: A-L, 4–6
  brief format, Vol. 1: A-L, 4–7
  creating, Vol. 1: A-L, 4–3
  displaying selection criteria, Vol. 1: A-L, 4–38
  duration of record display, Vol. 1: A-L, 4–14
  excluding information, Vol. 1: A-L, 4–11
  full format, Vol. 1: A-L, 4–10
  interrupting the display, Vol. 1: A-L, 4–28
  modifying selection criteria, Vol. 1: A-L, 4–30
  processing additional log files, Vol. 1: A-L, 4–35
  resuming the processing, Vol. 1: A-L, 4–28
  summary of records, Vol. 1: A-L, 4–26

Security event classes
  extracting audit records by, Vol. 1: A-L, 4–8

Security objects
classes, Vol. 1: A-L, 1–3

Security operators
  sending alarm messages to audit log files, Vol. 1: A-L, 1–8
  sending alarm messages to terminals, Vol. 1: A-L, 1–6

SECURITY_POLICY system parameter, Vol. 2: M-Z, C–59
SELECT command
  in Show Cluster utility, Vol. 2: M-Z, 5–68
/SELECT qualifier
  in Backup utility, Vol. 1: A-L, 7–86
Service node, Vol. 1: A-L, 14–3
controlling access to, Vol. 1: A-L, 14–35, 14–40
deleting a port, Vol. 1: A-L, 14–23
modifying characteristics of, Vol. 1: A-L, 14–33, 14–47
naming, Vol. 1: A-L, 14–44
Services
creating with LATCP, Vol. 1: A-L, 14–15
database, Vol. 1: A-L, 14–37, 14–40
deleting with LATCP, Vol. 1: A-L, 14–25
displaying counters, Vol. 1: A-L, 14–66
displaying information using LATCP, Vol. 1: A-L, 14–66
general timesharing, Vol. 1: A-L, 14–17
limiting size of node database, Vol. 1: A-L, 14–37, 14–40
modifying characteristics of, Vol. 1: A-L, 14–47
responder, Vol. 1: A-L, 14–38
Session limit, Vol. 1: A-L, 14–38
Sessions
SET/OUTPUT command
  in SYSGEN, Vol. 2: M-Z, 6–21
SET/STARTUP command
  in SYSGEN, Vol. 2: M-Z, 6–22
SET ACP command
SET AUDIT command
  recording alarm messages, Vol. 1: A-L, 1–8
SET AUTO_POSITIONING command
  in Show Cluster utility, Vol. 2: M-Z, 5–69
SET command
  (Field), Vol. 2: M-Z, 5–70
  in Point-to-Point Protocol utility, Vol. 2: M-Z, 2–11
  in SYSGEN, Vol. 2: M-Z, 6–20
SET DEFAULT command, Vol. 2: M-Z, 1–82
  in Monitor utility, Vol. 2: M-Z, 1–82
SET DEVICE command
SET ENVIRONMENT command
  in SYSGEN, Vol. 2: M-Z, 7–117
SET FUNCTION command, Vol. 2: M-Z, B–3
  in Show Cluster utility, Vol. 2: M-Z, 5–71
SET INTERVAL command
  in Show Cluster utility, Vol. 2: M-Z, 5–72
SET LINK command
  in LATCP, Vol. 1: A-L, 14–31
SET LOG command
  in UCM, Vol. 2: M-Z, 8–21
SET NODE command
  in LATCP, Vol. 1: A-L, 14–33
SETPARAMS.DAT file, Vol. 1: A-L, 6–10, 6–11
SETPARAMS phase of AUTOGEN, Vol. 1: A-L, 6–11
SET PORT command
  in LATCP, Vol. 1: A-L, 14–43
SET PROFILE command
  in SYSMAN, Vol. 2: M-Z, 7–119
SET QUORUM command
  avoiding use of /CLUSTER with SYSMAN DO command, Vol. 2: M-Z, 7–54
SET SCREEN command
  in Show Cluster utility, Vol. 2: M-Z, 5–73
SET SECURITY command
  /CLASS qualifier, Vol. 1: A-L, 1–4
  specifying object class, Vol. 1: A-L, 1–4
SET SERVICE command
  in LATCP, Vol. 1: A-L, 14–47
SET TIMEOUT command
  in SYSMAN, Vol. 2: M-Z, 7–120
SETTIME system parameter, Vol. 2: M-Z, C–59
Setting page, swap, and dump file sizes, Vol. 1: A-L, 6–3
SHADOWING system parameter, Vol. 2: M-Z, C–60
/SHADOW qualifier
Shadow sets
maximum number of, Vol. 2: M-Z, C–60
SHADOW_D1-D5 system parameter, Vol. 2: M-Z, C–59
SHADOW_MAX_COPY system parameter, Vol. 2: M-Z, C–60
SHADOW_MAX_UNIT system parameter, Vol. 2: M-Z, C–60
SHADOW_MBR_TMO system parameter, Vol. 2: M-Z, C–61
SHADOW_REC_DLY system parameter, Vol. 2: M-Z, C–61
SHADOW_SYS_DISK system parameter, Vol. 2: M-Z, C–61
SHARE/INITIALIZE command
in SYSGEN, Vol. 2: M-Z, 6–24
SHARE command
in SYSGEN, Vol. 2: M-Z, 6–23
SHOW/ADAPTER command
in SYSGEN, Vol. 2: M-Z, 6–31
SHOW/BUS command
in SYSGEN, Vol. 2: M-Z, 6–32
SHOW/CONFIGURATION command
in SYSGEN, Vol. 2: M-Z, 6–33
SHOW/DEVICE command
in SYSGEN, Vol. 2: M-Z, 6–35
SHOW/DATA command
in SYSGEN, Vol. 2: M-Z, 6–36
SHOW/IDENTIFIER command
in Authorize utility, Vol. 1: A-L, 5–92
SHOW/PROXY command
SHOW/RIGHTS command
in Authorize utility, Vol. 1: A-L, 5–96
SHOW/STARTUP command, Vol. 2: M-Z, 6–38
SHOW/TURBOCHANNEL command
in SYSGEN, Vol. 2: M-Z, 6–39
SHOW/UNIBUS command
in SYSGEN, Vol. 2: M-Z, 6–40
SHOW CLUSTER command
initialization file, Vol. 2: M-Z, 5–13
in Show Cluster utility, Vol. 2: M-Z, 5–14
deselecting, Vol. 2: M-Z, 5–13
Show Cluster utility (SHOW CLUSTER)
See also Reports, SHOW CLUSTER
activation time, Vol. 2: M-Z, 5–15, 5–17, 5–18, 5–72
classes of data, Vol. 2: M-Z, 5–3
commands, Vol. 2: M-Z, 5–19
continuous mode, Vol. 2: M-Z, 5–14, 5–16
controlling displays, Vol. 2: M-Z, 5–12
data fields, Vol. 2: M-Z, 5–3
defining arrow keys, Vol. 2: M-Z, B–3
defining keypad keys, Vol. 2: M-Z, 5–40, B–3
deselecting window, Vol. 2: M-Z, 5–43
directing output, Vol. 2: M-Z, 5–14
Execute Procedure (@) command, Vol. 2: M-Z, 5–22
exiting, Vol. 2: M-Z, 5–14, 5–44
invoking, Vol. 2: M-Z, 5–14
keypad, Vol. 2: M-Z, B–1
moving display window, Vol. 2: M-Z, 5–47, 5–68
/OUTPUT qualifier, Vol. 2: M-Z, 5–14
panning display window, Vol. 2: M-Z, 5–49
qualifiers, Vol. 2: M-Z, 5–14
Show Cluster utility (SHOW CLUSTER) (cont’d)
refreshing the display, Vol. 2: M-Z, 5–51
removing display information, Vol. 2: M-Z, 5–52 to 5–62
resetting display information, Vol. 2: M-Z, 5–46
sample display, Vol. 2: M-Z, 5–12
scrolling display window, Vol. 2: M-Z, 5–49, 5–68
selecting display fields, Vol. 2: M-Z, 5–33
CIRCUITS class, Vol. 2: M-Z, 5–23
CLUSTER class, Vol. 2: M-Z, 5–25
CONNECTIONS class, Vol. 2: M-Z, 5–27
COUNTERS class, Vol. 2: M-Z, 5–29
CREDITS class, Vol. 2: M-Z, 5–31
ERRORS class, Vol. 2: M-Z, 5–32
LOCAL_PORTS class, Vol. 2: M-Z, 5–35
MEMBERS class, Vol. 2: M-Z, 5–37
SYSTEMS class, Vol. 2: M-Z, 5–38
selecting display window, Vol. 2: M-Z, 5–68
SHOW command
in Audit Analysis utility, Vol. 1: A-L, 4–38
in Authorize utility, Vol. 1: A-L, 5–87
in CLUE, Vol. 1: A-L, 8–11
in Point-to-Point Protocol utility, Vol. 2: M-Z, 2–15
in SYSGEN, Vol. 2: M-Z, 6–26
SHOW CONFIGURATION command
SHOW DEFAULT command
in Monitor utility, Vol. 2: M-Z, 1–83
SHOW DEVICE command
in UCM, Vol. 2: M-Z, 8–22
SHOW DLL command
SHOW ENVIRONMENT command
in POLYCENTER Software Installation utility,
Vol. 2: M-Z, 3–58
SHOW HISTORY command
in POLYCENTER Software Installation utility,
Vol. 2: M-Z, 7–117, 7–121
in SYSMAN, Vol. 2: M-Z, 7–121
SHOW HISTORY command
in POLYCENTER Software Installation utility,
Vol. 2: M-Z, 3–58
SHOW KEY command
in SYSMAN, Vol. 2: M-Z, 7–122
SHOW LINK command
in LATCP, Vol. 1: A-L, 14–50
SHOW LOG command
in LANCP utility, Vol. 1: A-L, 13–49
SHOW NODE command
in LANCP utility, Vol. 1: A-L, 13–51
SHOW OBJECT command
in POLYCENTER Software Installation utility,
Vol. 2: M-Z, 3–58
SHOW PORT command
in LATCP, Vol. 1: A-L, 14–61

Index–30
STATS.DAT file
created by ANALYZE/DISK
STRUCTURE/STATISTICS, Vol. 1:
A-L, 3–19

Subprocesses
See also SPAWN command
creating
from LATCP, Vol. 1: A-L, 14–5, 14–69
with SPAWN command, Vol. 2: M-Z,
7–129
with the LANCP SPAWN command, Vol. 1:
A-L, 13–53
switching control of input stream to, Vol. 2:
M-Z, 7–17

Subsystem ACES, Vol. 1: A-L, 1–16
example, Vol. 1: A-L, 1–16
specifying identifier characteristics, Vol. 1:
A-L, 1–17
specifying identifiers, Vol. 1: A-L, 1–16

Subsystem attribute, Vol. 1: A-L
5–21, 5–52, 5–74

Subsystems
controlling access to, Vol. 1: A-L, 1–16
/SUMMARY qualifier
in Monitor utility, Vol. 2: M-Z, 1–16

Summary report

SWAPFILE.SYS file
See Swap files

Swap files
changing size, Vol. 1: A-L, 6–3
displaying the size calculated by AUTOGEN,
Vol. 1: A-L, 6–10
generating a new file sized by AUTOGEN, Vol. 1:
A-L, 6–11

SWPALLOCINC system parameter, Vol. 2: M-Z,
C–65

SWPFAIL system parameter, Vol. 2: M-Z, C–65

SWPFILCNT system parameter, Vol. 2: M-Z,
C–65

SWPOUTPGCNT system parameter, Vol. 2: M-Z,
C–65

SWPRATE system parameter, Vol. 2: M-Z, C–66

SWP_PRIO system parameter, Vol. 2: M-Z, C–65

Symbol table
command interpreter, Vol. 2: M-Z, C–13

Syntax
of BACKUP commands, Vol. 1: A-L, 7–5
SYSSYSTEM:STARTUP.COM command
procedure, Vol. 2: M-Z, D–6

SYSALF.DAT database in SYSMAN, Vol. 2: M-Z,
7–14

SYSBOOT facility
using during bootstrap operations, Vol. 2: M-Z,
6–3

SYSDUMP.DMP file
See Dump files

SYSGEN
See System Generation utility (SYSGEN)


SYSMAN
See System Management utility (SYSMAN)

SYSMANINI.INI file
changing file specification, Vol. 2: M-Z, 7–4

SYSMWCNT system parameter, Vol. 2: M-Z,
C–66

SYSPFC system parameter, Vol. 2: M-Z, C–66

SYSTEM class record
in Monitor utility, Vol. 2: M-Z, A–41

System Dump Priority registry
adding records, Vol. 2: M-Z, 7–57
description, Vol. 2: M-Z, 7–57
displaying an in-memory copy of the file, Vol. 2:
M-Z, 7–65
interaction with BUGCHECK, Vol. 2: M-Z,
7–57
listing records, Vol. 2: M-Z, 7–60
loading contents of file into memory, Vol. 2:
M-Z, 7–61
modifying an entry in the file, Vol. 2: M-Z,
7–62
removing an entry in the file, Vol. 2: M-Z,
7–64
unloading an in-memory copy of the file, Vol. 2:
M-Z, 7–66

System Generation utility (SYSGEN)
assign parameter values, Vol. 2: M-Z, 6–20

commands
AUTOCONFIGURE, Vol. 2: M-Z, 6–5
CONFIGURE, Vol. 2: M-Z, 6–8
CONNECT/ADAPTER, Vol. 2: M-Z, 6–10
CREATE, Vol. 2: M-Z, 6–13
DEINSTALL, Vol. 2: M-Z, 6–14
DISABLE, Vol. 2: M-Z, 6–15
ENABLE, Vol. 2: M-Z, 6–16
INSTAL, Vol. 2: M-Z, 6–17
LOAD, Vol. 2: M-Z, 6–18
RELOAD, Vol. 2: M-Z, 6–19
SET, Vol. 2: M-Z, 6–20

SET/OUTPUT, Vol. 2: M-Z, 6–21
SET/STARTUP, Vol. 2: M-Z, 6–22
SHARE, Vol. 2: M-Z, 6–23
SHARE/INITIALIZE, Vol. 2: M-Z, 6–24
SHOW, Vol. 2: M-Z, 6–26
SHOW/ADAPTER, Vol. 2: M-Z, 6–31
SHOW/BUS, Vol. 2: M-Z, 6–32
SHOW/CONFIGURATION, Vol. 2: M-Z,
6–33
SHOW/DEVICE, Vol. 2: M-Z, 6–35
SHOW/DRIVER, Vol. 2: M-Z, 6–36
SHOW/STARTUP, Vol. 2: M-Z, 6–38

SYSGEN
See System Generation utility (SYSGEN)


SYSMAN
See System Management utility (SYSMAN)

SYSMANINI.INI file
delay file specification, Vol. 2: M-Z, 7–4

SYSMWCNT system parameter, Vol. 2: M-Z,
C–66

SYSPFC system parameter, Vol. 2: M-Z, C–66

SYSTEM class record
in Monitor utility, Vol. 2: M-Z, A–41

System Dump Priority registry
adding records, Vol. 2: M-Z, 7–57
description, Vol. 2: M-Z, 7–57
displaying an in-memory copy of the file, Vol. 2:
M-Z, 7–65
interaction with BUGCHECK, Vol. 2: M-Z,
7–57
listing records, Vol. 2: M-Z, 7–60
loading contents of file into memory, Vol. 2:
M-Z, 7–61
modifying an entry in the file, Vol. 2: M-Z,
7–62
removing an entry in the file, Vol. 2: M-Z,
7–64
unloading an in-memory copy of the file, Vol. 2:
M-Z, 7–66

System Generation utility (SYSGEN)
assign parameter values, Vol. 2: M-Z, 6–20

commands
AUTOCONFIGURE, Vol. 2: M-Z, 6–5
CONFIGURE, Vol. 2: M-Z, 6–8
CONNECT/ADAPTER, Vol. 2: M-Z, 6–10
CREATE, Vol. 2: M-Z, 6–13
DEINSTALL, Vol. 2: M-Z, 6–14
DISABLE, Vol. 2: M-Z, 6–15
ENABLE, Vol. 2: M-Z, 6–16
INSTAL, Vol. 2: M-Z, 6–17
LOAD, Vol. 2: M-Z, 6–18
RELOAD, Vol. 2: M-Z, 6–19
SET, Vol. 2: M-Z, 6–20

SET/OUTPUT, Vol. 2: M-Z, 6–21
SET/STARTUP, Vol. 2: M-Z, 6–22
SHARE, Vol. 2: M-Z, 6–23
SHARE/INITIALIZE, Vol. 2: M-Z, 6–24
SHOW, Vol. 2: M-Z, 6–26
SHOW/ADAPTER, Vol. 2: M-Z, 6–31
SHOW/BUS, Vol. 2: M-Z, 6–32
SHOW/CONFIGURATION, Vol. 2: M-Z,
6–33
SHOW/DEVICE, Vol. 2: M-Z, 6–35
SHOW/DRIVER, Vol. 2: M-Z, 6–36
SHOW/STARTUP, Vol. 2: M-Z, 6–38

SYSGEN
See System Generation utility (SYSGEN)
System Generation utility (SYSGEN)

System Management utility (SYSGAN)

commands (cont’d)

SHOW/TURBOCHANNEL, Vol. 2: M-Z, 6–39
SHOW/UNIBUS, Vol. 2: M-Z, 6–40
TERMINAL, Vol. 2: M-Z, 6–42
USE, Vol. 2: M-Z, 6–43
WRITE, Vol. 2: M-Z, 6–45
directing output, Vol. 2: M-Z, 6–3, 6–33
parameters
See also System parameters
showing parameter values, Vol. 2: M-Z, 6–26
specifying file output, Vol. 2: M-Z, 6–8, 6–21
work area, Vol. 2: M-Z, 6–20, 6–43, 6–45
System loadable image
adding, Vol. 2: M-Z, 7–146
removing, Vol. 2: M-Z, 7–148
System management

creating disk quota files, Vol. 2: M-Z, 7–40
defining target system, Vol. 2: M-Z, 7–117
deleting node information, Vol. 1: A-L, 13–9, 13–29
displaying node information, Vol. 1: A-L, 13–26, 13–51
displaying target environment, Vol. 2: M-Z, 7–121
displaying user profile, Vol. 2: M-Z, 7–123
displaying wait time for node response, Vol. 2: M-Z, 7–124
invoking the LANCP utility, Vol. 1: A-L, 13–3
LANCP SPAWN command, Vol. 1: A-L, 13–53
limiting response time, Vol. 2: M-Z, 7–120
setting device information, Vol. 1: A-L, 13–14
setting wait time for node response, Vol. 2: M-Z, 7–120
startup procedures
See Startup database
SYSMAN tasks, Vol. 2: M-Z, 7–3
System management environment
See Management environment
System Management utility (SYSMAN)

commands

ALF ADD, Vol. 2: M-Z, 7–12
ALF REMOVE, Vol. 2: M-Z, 7–14
ALF SHOW, Vol. 2: M-Z, 7–16
ATTACH, Vol. 2: M-Z, 7–17
CLASS_SCHEDULE, Vol. 2: M-Z, 7–19
CONFIGURATION SET CLUSTER_AUTH, Vol. 2: M-Z, 7–30
CONFIGURATION SET TIME, Vol. 2: M-Z, 7–32
CONFIGURATION SHOW CLUSTER_AUTHORIZATION, Vol. 2: M-Z, 7–34
CONFIGURATION SHOW TIME, Vol. 2: M-Z, 7–35
DEFINE/KEY, Vol. 2: M-Z, 7–36
DISKQUOTA ADD, Vol. 2: M-Z, 7–38
DISKQUOTA CREATE, Vol. 2: M-Z, 7–40
DISKQUOTA DELETE, Vol. 2: M-Z, 7–42
DISKQUOTA DISABLE, Vol. 2: M-Z, 7–43
DISKQUOTA ENABLE, Vol. 2: M-Z, 7–45
DISKQUOTA MODIFY, Vol. 2: M-Z, 7–47
DISKQUOTA REBUILD, Vol. 2: M-Z, 7–49
DISKQUOTA REMOVE, Vol. 2: M-Z, 7–50
DISKQUOTA SHOW, Vol. 2: M-Z, 7–52
DO, Vol. 2: M-Z, 7–53
DUMP_PRIORITY ADD, Vol. 2: M-Z, 7–57
DUMP_PRIORITY LIST, Vol. 2: M-Z, 7–60
DUMP_PRIORITY MODIFY, Vol. 2: M-Z, 7–62
DUMP_PRIORITY REMOVE, Vol. 2: M-Z, 7–64
DUMP_PRIORITY SHOW, Vol. 2: M-Z, 7–65
DUMP_PRIORITY UNLOAD, Vol. 2: M-Z, 7–66
EXIT, Vol. 2: M-Z, 7–67
HELP, Vol. 2: M-Z, 7–68
IO AUTOCONFIGURE, Vol. 2: M-Z, 7–69
IO CONNECT, Vol. 2: M-Z, 7–71
IO CREATE_WWID, Vol. 2: M-Z, 7–75
IO FIND_WWID, Vol. 2: M-Z, 7–76
IO LIST_WWID, Vol. 2: M-Z, 7–79
IO LOAD, Vol. 2: M-Z, 7–80
IO REBUILD, Vol. 2: M-Z, 7–81
IO REPLACE_WWID, Vol. 2: M-Z, 7–82
IO SCSI_PATH_VERIFY, Vol. 2: M-Z, 7–84
IO SET EXCLUDE, Vol. 2: M-Z, 7–85
IO SET PREFIX, Vol. 2: M-Z, 7–86
IO SHOW BUS, Vol. 2: M-Z, 7–87
IO SHOW DEVICE, Vol. 2: M-Z, 7–89
IO SHOW EXCLUDE, Vol. 2: M-Z, 7–91
IO SHOW PREFIX, Vol. 2: M-Z, 7–92
LICENSE LOAD, Vol. 2: M-Z, 7–93
LICENSE UNLOAD, Vol. 2: M-Z, 7–94
System passwords, Vol. 1: A-L, 5–78
SYSTEMS class
  adding or restoring, Vol. 2: M-Z, 5–38
  fields belonging to, Vol. 2: M-Z, 5–11
  removing, Vol. 2: M-Z, 5–62
Systems Communications Services
  See SCS
System shutdown
  to install changed system parameters, Vol. 1: A-L, 6–11
System time
  setting, Vol. 2: M-Z, 7–32
SYSTEM_CHECK system parameter, Vol. 2: M-Z, C–66
SYSUAF logical name
SYSUAFs (system user authorization files)
  creating, Vol. 1: A-L, 5–3
  default directory entry, Vol. 1: A-L, 5–17
  default values, Vol. 1: A-L, 5–17
  displaying records in, Vol. 1: A-L, 5–87
  modifying, Vol. 1: A-L, 5–4
  recreating, Vol. 1: A-L, 5–4
  renaming records, Vol. 1: A-L, 5–82
SYS_LOADABLE ADD command
  in SYSMAN, Vol. 2: M-Z, 7–146
SYS_LOADABLE REMOVE command
  in SYSMAN, Vol. 2: M-Z, 7–146

TAILORED system parameter, Vol. 2: M-Z, C–67

Tape drive

TAPE_ALLOCLASS system parameter, Vol. 2: M-Z, C–67

/TAPE_EXPIRATION qualifier
  in Backup utility, Vol. 1: A-L, 7–89

TAPE_MVTIMEOUT system parameter, Vol. 2: M-Z, C–67

Target node name, Vol. 1: A-L, 14–63
Target port name, Vol. 1: A-L, 14–63
Target service name, Vol. 1: A-L, 14–63

TBSKIPWSL system parameter, Vol. 2: M-Z, C–67

Telnet protocol

TERMINAL command
  in SYSGEN, Vol. 2: M-Z, 6–42

Terminals
  modifying control-key echo strings, Vol. 2: M-Z, 6–42
  sending alarm messages to, Vol. 1: A-L, 1–6

Terminating a session, Vol. 1: A-L, 3–7

Terse report
  example, Vol. 1: A-L, 9–35

TESTFILES phase of AUTOGEN, Vol. 1: A-L, 6–10

Time
  See also SYSMAN command CONFIGURATION
  SHOW TIME
  cluster
    displaying, Vol. 2: M-Z, 7–35
    extracting records by, Vol. 1: A-L, 4–5
    setting, Vol. 2: M-Z, 7–32
    updating in a cluster, Vol. 2: M-Z, 7–33
  Timeout period
    displaying, Vol. 2: M-Z, 7–124
    setting, Vol. 2: M-Z, 7–120

TIMEPROMPTWAIT system parameter, Vol. 2: M-Z, C–67

TIMER class record
  in Monitor utility, Vol. 2: M-Z, A–42

Timer queue entries (TQEs)
  monitoring, Vol. 2: M-Z, A–42

Timer Queue Entry (TQE) statistics
  in Monitor utility, Vol. 2: M-Z, 1–74

Timers
  for circuits, Vol. 1: A-L, 14–33

TIME_CONTROL system parameter, Vol. 2: M-Z, C–67

TIMVCFAIL system parameter, Vol. 2: M-Z, C–68

TMSCP_LOAD system parameter, Vol. 2: M-Z, C–68

TMSCP_SERVE_ALL system parameter, Vol. 2: M-Z, C–69

TRANSACTION class record
  in Monitor utility, Vol. 2: M-Z, A–43

Transaction logs
  used by DECdtm, Vol. 1: A-L, 15–1

Transactions
  monitoring,Vol. 2: M-Z, 1–76

TRANSLATE command
  in Install utility, Vol. 1: A-L, 12–3

Trigger boot
  LANCP MOP downline load service, Vol. 1: A-L, 13–54

TRIGGER NODE command

TR numbers
  display on Alpha systems, Vol. 2: M-Z, 7–87

/TRUNCATE qualifier
  in Backup utility, Vol. 1: A-L, 7–90

TTY system parameters
  See also System parameters
terminal behavior
TTY system parameters (cont’d)
TTY_ALTALARM, Vol. 2: M-Z, C–69
TTY_ALTYPAHDS, Vol. 2: M-Z, C–69
TTY_AUTOCHAR, Vol. 2: M-Z, C–70
TTY_BUF, Vol. 2: M-Z, C–70
TTY_CLASSNAME, Vol. 2: M-Z, C–70
TTY_DEFCHAR, Vol. 2: M-Z, C–70
TTY_DEFCHAR2, Vol. 2: M-Z, C–71
TTY_DEFPOR, Vol. 2: M-Z, C–72
TTY_DIALTYPE, Vol. 2: M-Z, C–72
TTY_DMASIZE, Vol. 2: M-Z, C–72
TTY_PARITY, Vol. 2: M-Z, C–72
TTY_RSPEED, Vol. 2: M-Z, C–72
TTY_SCANDELTA, Vol. 2: M-Z, C–73
TTY_SILOTIME, Vol. 2: M-Z, C–73
TTY_SPEED, Vol. 2: M-Z, C–73
TTY_TIMEOUT, Vol. 2: M-Z, C–73
TTY_TYPAHDSZ, Vol. 2: M-Z, C–73

USB Configuration Manager (UCM) utility (cont’d)
SET LOG command, Vol. 2: M-Z, 8–21
SHOW DEVICE command, Vol. 2: M-Z, 8–22
USE command
in SYSGEN, Vol. 2: M-Z, 6–43
User (security category)
controlling types of access, Vol. 1: A-L, 1–14
User accounts
deleting, Vol. 1: A-L, 5–79
User directories
creating for a new account, Vol. 1: A-L, 5–19
User identification codes
See UICs
User names
as identifiers, Vol. 1: A-L, 1–14
identifiers added with, Vol. 1: A-L, 5–19
USER system parameters
USER3, Vol. 2: M-Z, C–74
USER4, Vol. 2: M-Z, C–74
USERD1, Vol. 2: M-Z, C–73
USERD2, Vol. 2: M-Z, C–73

V

VAXCLUSTER system parameter, Vol. 2: M-Z, C–74
VAXVMSSYS.OLD file, Vol. 1: A-L, 6–11
VAXVMSSYS.PAR file, Vol. 1: A-L, 6–11
VBN_CACHE_S system parameter, Vol. 2: M-Z, C–74
VBS class record
in Monitor utility, Vol. 2: M-Z, A–45
VBSS_ENABLE2 system parameter, Vol. 2: M-Z, C–75
VBSS_ENABLE system parameter, Vol. 2: M-Z, C–74
VCC_FLAGS system parameter, Vol. 2: M-Z, C–75
VCC_MAXSIZE system parameter, Vol. 2: M-Z, C–76
VCC_MAX_CACHE system parameter, Vol. 2: M-Z, C–76
VCC_MAX_IO_SIZE system parameter, Vol. 2: M-Z, C–77
VCC_MAX_LOCKS system parameter, Vol. 2: M-Z, C–77
VCC_MINSIZE system parameter, Vol. 2: M-Z, C–77
VCC_PTES system parameter, Vol. 2: M-Z, C–77
VCC_READAHEAD system parameter, Vol. 2: M-Z, C–77
VCC_WRITEBEHIND system parameter, Vol. 2: M-Z, C–77
VCC_WRITE_DELAY system parameter, Vol. 2: M-Z, C–78
VECTOR class record
  in Monitor utility, Vol. 2: M-Z, A–46
Vector CPU time
  obtaining information regarding processor, Vol. 2: M-Z, A–46
  obtaining information regarding system, Vol. 2: M-Z, A–46
Vector processing
Vectors
  addresses, Vol. 2: M-Z, 6–8, 6–10
  fixed space, Vol. 2: M-Z, D–1
  floating space, Vol. 2: M-Z, D–1
VECTOR_MARGIN system parameter, Vol. 2: M-Z, C–78
VECTOR_PROC system parameter, Vol. 2: M-Z, C–78
Verification
  of disk volumes, Vol. 1: A-L, 3–3
/VERIFY qualifier
  in Backup utility, Vol. 1: A-L, 7–91
/VIEWING_TIME qualifier
  in Monitor utility, Vol. 2: M-Z, 1–16
Virtual memory
  requirements for bitmaps, Vol. 1: A-L, 3–3
VMS$RESERVED_MEMORY.DATA
  Reserved Memory Registry file, Vol. 2: M-Z, 7–106
VMS$SYSTEM_IMAGES.IDX
  adding an entry, Vol. 2: M-Z, 7–147
  removing an entry, Vol. 2: M-Z, 7–148
VMS$VAXcluster communications
  receiving, Vol. 2: M-Z, C–14
VMSIMAGES.DAT file, Vol. 1: A-L, 6–10
VMS system parameters
  See System parameters
/VOLUME qualifier
  in Backup utility, Vol. 1: A-L, 7–92
Volume quota file
  See Disk quotas
Volumes
  repairing errors on a disk volume, Vol. 1: A-L, 3–16
Volume sets
  image save operation, Vol. 1: A-L, 7–51
VOTES system parameter, Vol. 2: M-Z, C–79

W
WBM_MSG_INT system parameter, Vol. 2: M-Z, C–79
WBM_MSG_LOWER system parameter, Vol. 2: M-Z, C–79
WBM_MSG_UPPER system parameter, Vol. 2: M-Z, C–79
WBM_OPCOM_LVL system parameter, Vol. 2: M-Z, C–80
Wildcard characters, Vol. 1: A-L, 7–8
  restriction in ACL editor, Vol. 1: A-L, 1–4
  using to represent directories, Vol. 1: A-L, 7–8
Windows
  compressing or expanding, Vol. 2: M-Z, 5–73
  designating, Vol. 2: M-Z, 5–68
  display SHOW CLUSTER information, Vol. 2: M-Z, 5–12
  moving, Vol. 2: M-Z, 5–69
  rearranging, Vol. 2: M-Z, 5–47
  scrolling, Vol. 2: M-Z, 5–66
  terminating selection, Vol. 2: M-Z, 5–43
  viewing large display, Vol. 2: M-Z, 5–49
WINDOW_SYSTEM system parameter, Vol. 2: M-Z, C–80
WLKSYSDSK system parameter, Vol. 2: M-Z, C–80
Work area
  copying to parameter file, Vol. 2: M-Z, 7–103
  loading parameters, Vol. 2: M-Z, 7–102
WPRE_SIZE system parameter, Vol. 2: M-Z, C–80
WPTTE_SIZE system parameter, Vol. 2: M-Z, C–80
WRITABLESYS system parameter, Vol. 2: M-Z, C–80
WRITE command
  in Show Cluster utility, Vol. 2: M-Z, 5–74
  in SYSGEN, Vol. 2: M-Z, 6–45
WRITESYSPARAMS system parameter, Vol. 2: M-Z, C–81
WSDEC system parameter, Vol. 2: M-Z, C–81
WSINC system parameter, Vol. 2: M-Z, C–81
WSMAX system parameter, Vol. 2: M-Z, C–81
WS_OPA0 system parameter, Vol. 2: M-Z, C–82

X
XA Gateway Control Program (XGCP) commands
  CREATE_LOG, Vol. 2: M-Z, 9–4
  EXIT, Vol. 2: M-Z, 9–5
  START_SERVER, Vol. 2: M-Z, 9–6
  STOP_SERVER, Vol. 2: M-Z, 9–7
  invoking, Vol. 2: M-Z, 9–3
  overview, Vol. 2: M-Z, 9–3
XFMAXRATE system parameter, Vol. 2: M-Z, C–82
XGCP
   See XA Gateway Control Program (XGCP)
XQPCTL2 system parameter, Vol. 2: M-Z, C–82
XQPCTLD1 system parameter, Vol. 2: M-Z, C–82

Z

ZERO COUNTERS command
   in LATCP, Vol. 1: A-L, 14–70
ZERO_LIST_HI system parameter, Vol. 2: M-Z, C–82